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ABSTRACT
Neural Machine Translation (NMT) has shown significant improve-

ments over traditional phrase-based machine translation over re-

cent years. Nonetheless, NMT models have a steep learning curve

with respect to the amount of data thus underperform when the

amount of training data is limited, as in the case of low resource

languages. South African languages being under-resourced have

achieved low performance in the machine translation paradigm. To

address this issue, we compare different data augmentation tech-

niques on two Nguni languages, namely, IsiXhosa and IsiZulu, with

English to IsiXhosa and English to IsiZulu baseline models. The first

data augmentation technique makes use of target-side monolingual

data to augment the amount of parallel data via back-translation

(convert target side language into source side language) and the sec-

ond technique involves training a multilingual model on a joint set

of bilingual corpora containing both the IsiXhosa and the IsiZulu

language. We evaluate each model on the publicly available Aut-

shumato evaluation set
1
based on their BLEU scores and show that

both techniques result in an improvement in BLEU scores over the

baseline models. Moreover, we find that the first technique slightly

outperforms the second technique.

CCS CONCEPTS
• Computing methodologies→Machine translation.

KEYWORDS
Neural Machine Translation, Low Resource Language, Transformer

Architecture

1 INTRODUCTION
Neural Machine Translation (NMT) has become the new state of the

art, outperforming traditional phrase-based machine translation in

recent years [21] [12]. The Transformer architecture [19] coupled

with NMT, which is a widely used approach, has shown significant

improvements in machine translation performance when trained

on high resource languages [21]. However, NMT models require a

large amount of parallel data, which are often sparse in low resource

languages, thus under-performwhen trained on a limited amount of

data. In addition to a large amount of data required, the transformer

architecture requires a significant amount of hyper-parameters

tuning, especially in low resource settings [3].

South African languages being under-resourced have achieved

low performance in the machine translation paradigm. To address

this issue, we train different Neural Machine Translation models on

two Nguni languages, namely, IsiXhosa and IsiZulu, as target lan-

guage and English as the source language. The Nguni language is a

1
Available at: https://repo.sadilar.org/handle/20.500.12185/506

South African language that forms part of a larger group, namely,

the Bantu language. In addition to being low resource languages,

Bantu languages have a complex structure due to their agglutinat-

ing morphology [22]. As a result, they often have large vocabularies,

which makes it hard for Neural Machine Translation models to han-

dle such languages [13]. To make the language more interpretable

by the NMTmodels we use Byte Pair Encoding (BPE) [18] sub word

tokenization to break large vocabularies into smaller sub word

units.

In this study, we compare the performance of different data

augmentation techniques against English to IsiXhosa and English to

IsiZulu baseline models. The data augmentation techniques involve

training a reverse model to back-translate target-side monolingual

data into the source-side language. This back-translated data is

combined with the parallel corpus which is used to train an NMT

model. We hypothesise that a larger monolingual dataset would

result in a significant increase in machine translation performance.

The second technique involves training a multilingual model on

a joint set of bilingual corpora. This technique makes use of the

fact that both languages come from the same language subclass

and therefore have similar semantics that would help increase the

performance of individual translation. We use the Autshumato

Evaluation set to compute the BLEU scores of all these models and

compare the performance of the models with each other based on

their BLEU scores.

The rest of this paper is presented as follows: in section 2, we

give some background about the Neural Machine Translation ar-

chitecture, automatic evaluation of translation models, subword

tokenizer, using monolingual data to create additional parallel data

and multilingual models. In section 3, we discuss some work that is

related to this study. A summary of the datasets used and how they

are pre-processed is shown in section 4. Subsequently, in section

5, we discuss how the experiment was implemented and executed.

The results for these experiments follows in section 6 and their

corresponding discussions in section 7. Finally, we conclude and

provide some discussion about the future work that could extend

this study.

2 BACKGROUND
2.1 Neural Machine Translation
Neural Machine Translation (NMT) is a recently introduced para-

digm that has achieved state of the art performance outperforming

traditional machine translation methods [4]. It models the machine

translation process by using a single, large Neural Network that

takes as input a sentence and outputs its corresponding translation

one element at a time, in an end-to-end fashion. This allows all



parameters of the model to be simultaneously changed to maximise

translation performance.

2.2 Encoder-Decoder Model
Most Neural Network translation relies on the encoder-decoder

network [4]. The encoder in an encoder-decoder or sequence-to-

sequence network takes an arbitrary length input and produces

a fixed-length vector representation of the input, as output. This

output is known as the context vector which is used by the decoder

to produce a variable-length translation of the input[6].

2.2.1 RNN Encoder-Decoder. This Neural Network architecture

was proposed by Cho et al [7]. Given an arbitrary length input

sequence 𝑥 = (𝑥1, 𝑥2, ...𝑥𝑛) and another arbitrary length output

sequence 𝑦 = (𝑦1, 𝑦2, ...𝑦𝑛), this model learns a conditional distri-

bution over the two sequences as follows:

𝑝 (𝑦 | 𝑥) =
𝑁∏
𝑛=1

𝑝 (𝑦𝑛 | 𝑦𝑛, 𝑥) (1)

where 𝑥 is the source text and y the target text.

The RNN Encoder-Decoder consists of two Recurrent Neural

Networks which can be simultaneously trained to maximise the

conditional log-likelihood:

max

𝜃

1

𝑁

𝑁∑
𝑛=1

𝑙𝑜𝑔𝑝𝜃 Pr(𝑦 | 𝑥) (2)

where 𝜃 is the set of parameters to be learn by the model, 𝑥 the

input sequence and 𝑦, the output sequence from a training set.

The first RNN, the encoder reads a sequence of inputs 𝑥 =

(𝑥1, 𝑥2, ...𝑥𝑛) and updates some hidden states,ℎ𝑡 at time 𝑡 according

to the following equation:

ℎ𝑡 = 𝜎 (ℎ<𝑡−1>, 𝑥𝑛) (3)

where 𝜎 is a non-linear activation function.

After reading the input sequence, the last hidden state represents

the context vector, c of the whole input sequence.

The second RNN, the decoder uses the context vector, c as its

initial hidden state. It generates an output sequence by predicting

𝑦𝑡 in a hidden state, ℎ𝑡 . 𝑦𝑡 and ℎ𝑡 both depend on the previous

hidden state, the previous output 𝑦𝑡−1 and the context vector, 𝑐 [7].

This can be formally represented as follows:

𝑝 (𝑦𝑡 | {𝑦1, 𝑦2, ..., 𝑦𝑡−1, 𝑐} = 𝜎 (𝑦𝑡−1, ℎ𝑡 , 𝑐) (4)

where 𝜎 is a non-linear activation function.

2.2.2 Attention mechanism. With the encoder and decoder sepa-

rated, the decoder only knows about the source text through the

context vector. The Neural Network must compress all the infor-

mation from the source text into the final state of the encoder. This

makes the Neural Network unable to give correct translations for

longer sentences [4].

The attention mechanism proposed by Bahdaunau et al [4].

solves this issue by making all information from all the hidden

states in the encoder available to the decoder instead of only the

last hidden state. This is achieved by taking a weighted sum of all

the hidden states in the encoder and creating a fixed-length vector

from the weighted sum. This fixed-length vector is then used by the

decoder. The weighted sum changes depending on the current to-

ken that is being processed by the decoder thus making the context

vector dynamic [4].

2.2.3 Transformers. While Recurrent Neural Network and other

sequence-to-sequence models have been the state of the art in

the machine translation paradigm, their inherent sequential na-

ture prevents them from being parallelised [20]. This causes their

performance to degrade over long sentences. A new model archi-

tecture, transformers, proposed by Vaswani et al [20]. rely solely

on attention mechanism allows more parallelism.

The transformer has a similar overall architecture to neural se-

quence models with an encoder that compresses an input sequence

to a fixed-length vector and the decoder uses this fixed-length vec-

tor to produce an output sequence one element at a time. However,

the transformer uses stacked, point-wise, fully connected layers for

both the encoder and decoder. The encoder consists of six stacked

identical layers with each layer containing two sublayers. The first

layer is a multi-head self-attention mechanism, and the second layer

is a fully connected feed-forward network. These two sublayers

consist of a residual connection around them, followed by a layer

normalization. The decoder contains similar layers and connections

as the encoder with the addition of a multi-head attention layer

which performs multi-head attention on the output of the encoder.

Since the decoder is auto-regressive the self-attention layer stack

is also modified to prevent the decoder from being conditioned on

future words.

The attention function in the transformer takes as input a query

and key-value pairs and returns the weighted sum of the values [20].

A compatibility function is used to compute how much weight to

assign to each value. The transformer uses the Scaled Dot-product

Attention where the dot product of the query of dimension, 𝑑𝑞 is

computed with the keys of dimension,𝑑𝑘 . Which is then divided by√
𝑑𝑘 and a softmax function is applied to obtain the weights on the

values.

2.3 Automatic Evaluation: BLEU
The Bilingual Evaluation Understudy (BLEU) method of evaluat-

ing translation was proposed by Papineri et al [17]. It is fast, in-

expensive, provides an objective view and strongly correlates to

human evaluation [9]. It works by comparing n-grams (sequence

of n words) of a machine translated output with n-grams of an

equivalent human translated text and count the number of matches

between them. This represents the precision measure, 𝑝𝑛 which is

modified to eliminate repetitions. Otherwise, over-generated words

by the machine translation would result in absurd but high pre-

cision measurements [17]. This can be generalised for a multiple

sentence test corpus as follows:

𝑃𝑛 =

∑
𝑆 ∈𝐶

∑
𝑛𝑔𝑟𝑎𝑚∈𝑆

𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ (𝑛𝑔𝑟𝑎𝑚)∑
𝑆 ∈𝐶

∑
𝑛𝑔𝑟𝑎𝑚∈𝐶

𝐶𝑜𝑢𝑛𝑡 (𝑛𝑔𝑟𝑎𝑚) (5)
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where 𝑆 is the machine translation output,𝐶 is the complete test

corpus.

To prevent sentences that are too short from getting a high

precision, a Brevity penalty (BP) can be added over the corpus.

BP can be calculated as follows:

𝐵𝑃 =

{
1 𝑐 > 𝑟

𝑒 (1−
𝑟
𝑐 ) 𝑐 ≤ 𝑟

(6)

where 𝑟 is length of the human translated text and 𝑐 the length

of the machine translated text.

Equation (2) outputs a 1 if the 𝑐 is greater than 𝑟 . Otherwise a

penalty factor of 𝑒

(
1− 𝑥

𝑦

)
is applied.

The BP can then be applied to the BLEU score as follows:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ×
(

4∏
𝑛=1

𝑝𝑛

)
(7)

2.4 Subword Segmentation
Bantu languages have a rich noun class system and a complex

structure due to their agglutinating morphology [22]. This makes

it hard for Neural Machine Translation models to handle such

languages [13] and requires mechanisms to go below word-level

[18]. As such, in this study we make use of Byte Pair Encoding [18]

sub-word tokenization to break large vocabularies into smaller sub-

word units which can be easily interpreted by Neural Translation

models. In addition, this help translates rare words more accurately

and generate words that were not seen during training.

This technique of using subword units to encode rare words was

proposed by Sennrich et al. [18]. Their main goal was to enable

neural machine translation models to generate translations for

words that were not present in the training set but instead to use

known subword units when translating unknown words.

2.5 Using Monolingual Data
The performance of a Machine Translation model depends on the

amount of data the model has been trained on; consequently, the

more data we have, the better our model will perform.While phrase-

based Machine Translation models like Statistical Machine Trans-

lation have benefited by using monolingual data as training data,

Neural Machine Translation uses only parallel data for training

which are often sparse, especially for low resource languages [18].

On the other hand, in some cases, there is a substantial amount of

monolingual data available for the target language.

Sennrich et al. [18] showed that monolingual training data can

be treated as additional parallel training data which could improve

the quality of translation models by mixing monolingual target

sentences into the training set. They proposed two techniques to

achieve this: the first one treats monolingual training examples as

parallel examples with an empty source side. The second technique

that the author proposed is to pair monolingual training instances

with a synthetic source sentence. This synthetic data is obtained

by using a reverse model to translate the monolingual target text

into the source language. This process is known as back-translation.

In this study, we will use the second technique since it resulted

in a greater improvement in the BLEU score compared to the first

technique.

2.6 Multilingual Translation
The performance of Machine Translation models can be improved

by training the models on a joint set of bilingual corpora with lan-

guages that have similar semantics [8]. This brings multilinguality

which helps improve individual translations [10].

In this study, we will make use of the technique proposed by

Dong et al [8] which uses a one-to-many translation model to

improve translation performance. More specifically, we will train

a machine translation model with English as the source language

and both IsiXhosa and IsiZulu as target languages, in an attempt

to alleviate the data sparsity problem of these two languages. We

hypothesize that this will help increase the translation quality of

English to IsiZulu by taking advantage of the semantic similarity

of these two languages as well as the additional parallel corpora

for the translation from English to IsiXhosa.

3 RELATEDWORK
Little research has been conducted in the machine translation field

for South African Languages. However, several bench-marking

using the state of the art Neural Machine Translation has been

conducted to provide some groundwork in this particular field [1]

[15] [14].

One of those benchmarking studies performed by Martinus et

al [1] compared the performance of convolution sequence to se-

quence and transformer architecture on five different South African

languages. They showed that the Transformer model outperformed

the convolution sequence to sequence model on all those languages,

with Afrikaans achieving the highest BLEU scores despite having

the smallest corpus size. IsiZulu however, had a BLEU score of 1.34

which was the lowest among all the other languages. The authors

attributed this bad performance to the agglutinating nature of the

language as well as the size and quality of the data.

Another study conducted by Nyoni et al [16] compared zero-shot

learning, transfer learning and multilingual learning on three Bantu

languages, namely, Shona, IsiXhosa and IsiZulu. They achieved an

18.6 ± 0.1 BLEU score with their multilingual English to IsiXhosa

to IsiZulu model, yielding a gain of 9.9 over their baseline model.

They showed that multilingual learning outperformed both transfer

learning and zero-shot learning.

To the best of our knowledge, no studies have made use of syn-

thetic parallel sentences obtained from monolingual data to train

Neural Machine Translation models for South African Languages.

Nonetheless, this technique has been widely used to improve the

translation performance of other non-South African languages [18]

[23] [5].

Sennrich et al. [18] showed that monolingual training data can

be treated as additional parallel training data which could improve

the quality of NMT systems by mixing synthetic parallel sentences

obtained from target side monolingual data into the training set.

This synthetic data is obtained by translating themonolingual target

text into the source language by training a reverse model that back-

translates from the target language to the source language. An NMT
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Table 1: Summary of the number of sentences in each
dataset used to train our models. A subset of the c4 multi-
lingual dataset was used due to its massive size. The MeMaT
dataset contained smaller datasets that were combined into
a single corpus.

Datasets

Number of Sentences

IsiXhosa IsiZulu

SADiLaR (parallel) 126708 35489

SADiLaR (monolingual) 233192 -

JW300 (parallel) 866748 1046572

C4 (monolingual) 597242 (subset) 623981 (subset)

MeMaT 446065 (combined) -

model is then trained on the augmented parallel corpora to increase

the performance of the translation models.

In this study, wewill use the technique proposed by Sennrich et al

[18] to improve the translation performance for two South African

languages namely, IsiXhosa and IsiZulu by using their respective

monolingual data to create additional parallel data.

4 DATASETS
Monolingual corpora consisting of IsiZulu and IsiXhosa sentences

and bilingual corpora consisting of aligned translation sentences in

separate text files were retrieved from publicly available sources.

These sources include the South African Center for Digital Lan-

guage Resources (SADiLaR)
2
where aligned parallel corpora con-

taining translation for English to IsiXhosa and English to IsiZulu

and monolingual corpora containing IsiXhosa sentences were ob-

tained. English to IsiXhosa and English to IsiZulu parallel corpora

were extracted from the JW300 parallel corpus [2] which was re-

trieved from the Opus Corpus website
3
. This corpus contains over

300 sentences for different languages and is originally stored in

XML files which were converted into plain text using the opus

tools
4
. Additional parallel corpora containing translated sentences

from English to IsiXhosa were retrieved from an online repository

which has been made available as a result of the Medical Machine

Translation project (MeMaT)
5
. These datasets were combined into

a single corpus. In addition, a subset of the c4 multilingual dataset
6

containing monolingual IsiXhosa and IsiZulu corpus was used. To

evaluate our models we used the Autshumato Machine Translation

Evaluation set
7
which consists of 500 sentences for every official

South African language. These sentences have been translated sep-

arately by four different professional human translators. Table 1

provides a summary of the above datasets.

All datasets from the different sources have been acknowledged

and all copyrights have been taken into consideration.

2
Available at: https://repo.sadilar.org/handle/20.500.12185/1

3
Available at: https://opus.nlpl.eu/

4
Opus Tool can be downloaded from: https://opus-codec.org/downloads/

5
Memat dataset retrieved from: https://github.com/mkeet/MeMaT

6
Can be downloaded from: https://github.com/allenai/allennlp/discussions/5265

7
Available at: https://repo.sadilar.org/handle/20.500.12185/506

4.1 Data pre-processing
The data pre-processing steps involved combining the parallel cor-

pora for each language into a single corpus, removing empty lines

in both the target and the source language corpus in the case of

parallel texts, removing extra space between words and removing

sentences that are smaller than five words and greater than 200

words. The number of words was chosen to remove bad quality

sentences while at the same time preserving the quantity of data for

training the models. In the case of the monolingual texts, duplicate

sentences were removed to reduce similar sentences in the test

and training set thus preventing data leakage. However, in the case

of the parallel texts, deduplication was not performed to preserve

the alignment of the target and source sentences. These processes

were done by using a pre-written cleaning script obtained from the

Moses library
8
.

After the cleaning process, the data were randomised and parti-

tioned into 80 to 20 training and testing sets. A validation set was

derived from the training set by appending sentences with a line

number that are divisible by 100 (modulus 100) into a validation

text file.

Due to the agglutinating morphology of Nguni languages, they

have a complex structure which is often difficult for Neural Ma-

chine translation models to handle [9]. We used Byte Pair Encoding

(BPE) subword tokenization implemented by Moses
9
to break large

vocabularies into smaller subwords and to decompose rare words

into meaningful subwords instead of being replaced by an unknown

token. This enables the models to process unseen words and handle

large vocabularies more efficiently.

To apply BPE, we used a tokenizer to tokenize the dataset set

for both the target and the source language. The tokenized training

set for both languages were then combined into a single text file

which was used to train a BPE model (jointly learn). This model

was then used to apply BPE to the entire dataset. The vocabulary

size of the BPE model was varied on a range from 2000 to 30000 to

get the best performing model.

5 DESIGN AND EXPERIMENTS
The Fairseq modelling Toolkit

10
which is written in Pytorch was

used to implement the different Transformer Neural Machine Trans-

lation models used in this study. These models were initially trained

using Google Colab
11

on a combination of GPUs consisting mainly

of the Nvidia k80s, T4s, P4s and P100s. In addition to the previ-

ously mentioned GPUs, the Center for High Performing Computing

(CHPC) cluster
12

was used to significantly reduce the training time

of the models.

All Neural Machine Translation models in this study used a

variant of the transformer architecture from [19] consisting of

6 encoder and decoder layers, 8 attention heads, Feed-Forward

Networks of dimension 2048 and embedding layers producing an

8
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-

corpus-n.perl

9
Available at: https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-

corpus-n.perl

10
Downloaded from: https://github.com/pytorch/fairseq

11
https://colab.research.google.com/notebooks/intro.ipynb?utm𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑠𝑐𝑠−𝑖𝑛𝑑𝑒𝑥

12
https://www.chpc.ac.za/
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output of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 = 512. In addition, the models used a

rectified linear activation function (ReLU).

5.1 Model training and tuning
Each model was trained for 15 epochs and patience of 5 was used to

stop training if valid performance did not improve for 5 consecutive

runs.

5.1.1 Baseline model. English to IsiXhosa and English to IsiZulu

baseline models were trained with different hyper-parameters to

get the best performing model. These hyper-parameters include

the regularization parameters namely, dropout and weight decay

to prevent the model from overfitting the training data. These

parameters were tested on a range from 0.1 to 0.3 for dropout

and from 0 to 0.1 for weight decay. In addition, label smoothing

[9] of value 0.1 was applied to prevent overfitting and improve

generalization. This value was kept constant throughout all the

subsequent models. Following [19] we optimized the models using

the Adam Optimizer with 𝛽1 = 0.9, 𝛽2 = 0.98 and 𝜖 = 10
−9
. using

the following formula:

𝐿𝑟𝑎𝑡𝑒 = 𝑑−0.5
𝑚𝑜𝑑𝑒𝑙

.𝑚𝑖𝑛(𝑠𝑡𝑒𝑝_𝑛𝑢𝑚−0.5, 𝑠𝑡𝑒𝑝_𝑛𝑢𝑚).𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑡𝑒𝑝𝑠−1.5

(8)

with a warmup step of 4000, the learning rate was varied by

linearly increasing the learning rate for the first 4000 steps and

then decreasing it proportionally to the inverse square root of the

step number.

The above hyper-parameters for our best performing baseline

models were used for all of our subsequent models.

5.1.2 Model trained on augmented parallel data. To convert the tar-
get side monolingual data into additional parallel data a reverse ma-

chine translation model, that translates the target side language into

the source side, was trained to back translate the target language

into the source language. This was done by combining the monolin-

gual data obtained from the different sources into a single corpus

for each language and then splitting the combined data into 25

shards with each shard containing the same amount of data except

for the last shard. These shards were binarized and back-translation

was performed over these binarized shards which were combined

into one corpus. Back translated sentences were then extracted

using a pre-written python script (extract_bt_data.py), provided by

the Fairseq Toolkit, from these back-translated combined shards. A

length ratio filter was applied on these back-translated shards to

filter sentences that are smaller than five words and greater than

200 words. This filtered data was then combined with the parallel

data. These steps were repeated for each language to convert their

respective monolingual data into additional parallel data.

A Neural Machine Translation model was trained on these aug-

mented parallel data with 600000 monolingual sentences. To com-

pare the effect of the amount of monolingual data used on the

performance of the models, different subsample size of the monolin-

gual dataset was used. The subsample size was chosen on a range

from 0 (baseline) to 600000 sentences. The BLEU scores for each

model were recorded in table 5 and table 6 for IsiXhosa and IsiZulu

respectively.

Table 2: Shows the BLEU scores obtained for the Baseline
models as well as for the different models obtained using
the different data augmentation techniques. All these mod-
els were evaluated on the Autshumato Evaluation set.

Autshumato dataset

Model type IsiXhosa IsiZulu

Baseline 3.80 4.25

Augmented Data 3.94 3.87

Multilingual 3.92 4.24

5.1.3 Multilingual Model. A multilingual model with English as

the source language and IsiXhosa and IsiZulu as target languages

was trained and some hyper-parameter tuningwas performed to get

the best performing model. The training steps consisted of training

a joint BPE vocabulary model on all three languages and binarizing

the languages for both target languages. In addition, following [11]

we add an artificial language token at the beginning of the input

sentence to specify the target language. This was achieved by using

Fairseq decode-langtok command when training the models. This

process allowedmultilingual translation without the need to modify

the Neural Machine Translation architecture.

The encoder for the source language was shared and different

decoders were used for the target languages. By sharing the encoder,

the model makes full use of the source language corpora and learn

semantic and structured predictive representations[8].

5.1.4 Model evaluation. To compute the BLEU scores for each

model we combined the Autshumato Evaluation set text files, trans-

lated by four different translators, into one text file for both the

source and target language. The best checkpoint for each model

was then used to compute the BLEU scores for each model. This was

done by using the Fairseq interactive command in a non-interactive

way, by reading inputs from the text file and outputting the respec-

tive translations in a separate text file. The Fairseq score command

which uses a 4-gram BLEU was used to calculate the BLEU score of

the translated sentences in the output text file.

The model with the best BLEU scores was then compared with

each other. The discussion for the comparison is provided in section

6.4

6 RESULTS
In this section, we describe and compare the different results ob-

tained from our experiments in section 5. In section 6.1 we discuss

the results obtained from training the English to IsiXhosa and Eng-

lish to IsiZulu baseline models. Following this, in section 6.2 we

discuss the results obtained from training models on augmented

parallel corpora. Subsequently, in section 6.3 we provide some

discussion about the results obtained from training a multilingual

model with English as the source language and IsiXhosa and IsiZulu

as target languages. Finally, in section 6.4 we compare the differ-

ent data augmentation techniques based on their respective BLEU

scores and provide some discussion. Our experiment findings are

summarised in table 2
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6.1 Baseline model
The hyper-parameters for the baseline models were independently

tuned and the resulting BLEU scores were recorded in table 3 and

table 4 for English to IsiXhosa and English to IsiZulu respectively.

A dropout of 0.1, weight decay of 0 and a BPE token size of 10000

was found to give the best BLEU scores for the English to IsiXhosa

model. For the translation from English to IsiZulu, a dropout of 0.2,

weight decay of 0 and a BPE token size of 10000 resulted in the best

BLEU scores.

The English to IsiZulu baseline model achieved a BLEU score

of 4.25 which was the highest between the two baseline models

despite being trained on a smaller dataset. The model translating

from English to IsiXhosa which was trained on a larger dataset,

however, achieved a lower BLEU score. This high BLEU score for

the translation from English to IsiZulu was found to be a result of

the model overfitting the training data. In addition, the datasets on

which the model was trained consisted of the Autshumato training

set, thus may contain a similar type of content as the evaluation

set.

Increasing the size of the Byte Pair Encoding token size in both

languages resulted in a decrease in BLEU scores. This is due to the

models being trained on a small dataset.

6.2 Model trained on augmented parallel data
The English to IsiXhosa model trained on augmented parallel data

achieved a BLEU score of 3.94 and the English to IsiZulu model

trained on augmented parallel data achieved a BLEU score of 3.87.

The former model achieved a higher BLEU score since it was trained

on a larger parallel dataset.

An increase in the subsample size of the monolingual data which

is used as additional parallel data by back translating the target

language into the source language is seen to cause an increase

in BLEU scores as expected for both the models. The English to

isiXhosa model is seen to perform only slightly better than the

English to IsiZulu model when trained on a smaller subsample

size. A summary of the BLEU scores for the models trained on

the different subsample sizes is provided in table 5 and table 6 for

English to IsiXhosa and English to IsiZulu respectively.

6.3 Multilingual model
The English to IsiXhosa multilingual model achieved a BLEU score

of 3.92 and the English to IsiZulu multilingual model achieved a

BLEU score of 4.24. From these results, it appears that the translation

from English to IsiZulu has benefited from the parallel corpora of

English to IsiXhosa. This is due to the semantic similarities between

the two languages.

6.4 Comparison between models
The English to IsiXhosa model trained on augmented parallel data

gained a 0.14 increase in BLEU scores over the baseline English to

IsiXhosa model. The English to IsiZulu model did not show any

improvement over the baseline model. However, as mentioned in

section 6.1 this model is seen to have overfitted the training data.

When the model is trained on a larger parallel dataset obtained as

a result of the back-translated monolingual data, it takes longer for

the model to overfit the training data. This could have resulted in

an increase in BLEU scores over the baseline model if a different

evaluation set was used to evaluate the baseline model and if the

model was trained on a larger dataset.

Using a small subsample size of the monolingual data resulted

in the machine translation model trained on augmented parallel

data performing worse than the baseline models. However, as the

subsample size is increased the performance of the models increase

as well.

The English to IsiXhosa and IsiZulu multilingual model gained a

0.12 increase in BLEU scores over the baseline English to IsiXhosa

model.

The English to IsiXhosa model trained on augmented parallel

corpora outperformed the multilingual model with a BLEU score of

0.02. The Multilingual model for translation from English to IsiZulu

outperformed the augmented parallel corpora by 0.37 BLEU points.

7 CONCLUSIONS AND FUTUREWORK
In this study, we used the state of the art Transformer Neural Ma-

chine Translation to compare the translation performance of base-

line models with models trained using two different data augmen-

tation techniques on low resource South African languages namely,

IsiXhosa and IsiZulu. The first technique involved generating ad-

ditional parallel data from monolingual data via back-translation

and the second technique involved training a multilingual model

on a joint set of bilingual corpora. We found that both techniques

resulted in higher BLEU scores compared to the baseline models.

We also found that the model trained on augmented parallel data

outperformed the multilingual model for both language pairs. For

the multilingual model, we saw a greater improvement for the

translation from English to IsiZulu and found that training models

with target languages having similar semantics increase translation

performance for the language pair with the smallest dataset size.

In addition, we investigated how the size of the Byte Pair Encoding

token size affects the translation performance of the models and

the result showed that both languages performed better on smaller

BPE token sizes. We attribute this low performance when using a

larger BPE token size as a result of using a small size dataset.

By using publicly available datasets and toolkits we have shown

that using data augmentation techniques resulted in an increase in

machine translation performance for low resource South African

languages. To this end, future work may involve investigating the

performance of machine translation on an even larger amount

of monolingual data, to create additional parallel data, such as

making use of the full c4 multilingual dataset instead of a subset

of the dataset. In addition, more hyperparameter tuning for both

the baseline and multilingual models could be done and different

sizes of BPE token size especially on the lower range could be used.

Human evaluation could also be performed in addition to using

BLEU scores to compare the evaluate the performance of translation

models.
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APPENDIX - SUPPLEMENTARY INFORMATION

Table 3: Shows the BLEU scores for the English to IsiXhosa baseline model. Increasing the BPE token size causes a decrease
in BLEU scores

dropout BPE token size BLEU score

0 2000 3.20

0.1 10000 3.80

0.2 10000 3.60

0 10000 3.35

0 15000 3.41

0 20000 3.32

0 30000 3.29

Table 4: Shows the BLEU scores for the English to IsiZulu baseline model. Increasing the BPE token size causes a decrease in
BLEU scores

dropout BPE token size BLEU score

0 2000 4.17

0.2 2000 3.85

0.3 2000 3.94

0.2 10000 4.25

0.1 10000 4.20

0 15000 4.18

0 20000 4.08

0 30000 3.51

Table 5: Shows the BLEU scores for the English to IsiXhosa model trained on augmented parallel corpora. An increase in the
size of the monolingual data causes an increase in BLEU scores

dropout subsample size BPE token size BLEU scores

0.1 60000 10000 3.44

0.1 250000 10000 3.69

0.1 600000 10000 3.94

Table 6: Shows the BLEU scores for the English to IsiZulu model trained on augmented parallel corpora. An increase in the
size of the monolingual data causes an increase in BLEU scores

dropout subsample size BPE token size BLEU scores

0.2 60000 10000 3.43

0.2 250000 10000 3.61

0.2 600000 10000 3.87

Table 7: Shows the BLEU scores for English to IsiXhosa and IsiZulu multilingual model trained with a dropout of 0.1 and 0.2
respectively.

dropout BPE token size BLEU scores

0.1 10000 3.92

0.2 10000 3.83
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Table 8: Shows the BLEU scores for English to IsiXhosa and IsiZulu multilingual model trained with a dropout of 0.1 and 0.2
respectively.

dropout BPE token size BLEU scores

0.1 10000 4.19

0.2 10000 4.24
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