Scalable Defeasible Reasoning

Project Proposal

Joel Hamilton
University of Cape Town
Cape Town, South Africa

HMLJOE001@myuct.ac.za

ABSTRACT

Knowledge representation and reasoning (KRR) is an approach to
artificial intelligence (AI) in which a system has some information
about the world represented formally (a knowledge base), and is
able to reason about this information. Defeasible reasoning is a
non-classical form of reasoning that enables systems to reason
about knowledge bases which contain seemingly contradictory in-
formation, thus allowing for exceptions to assertions. Entailment
checking is the process of determining whether or not a statement
can be inferred from a knowledge base. Currently, no programming
framework exists that supports defeasible entailment for propo-
sitional logic. We aim to investigate the scalability of defeasible
entailment algorithms, and implement these algorithms in a form
that allows for incorporation into a larger framework. We also aim
to implement a tool to generate knowledge bases which can be used
for the testing of these defeasible entailment algorithms and the
implementations thereof.

CCS CONCEPTS

« Theory of computation — Automated reasoning; « Com-
puting methodologies — Nonmonotonic, default reasoning
and belief revision.

KEYWORDS

artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, satisfiability solving

1 INTRODUCTION

Artificial Intelligence (AI) has been around for many years, with its
two core aspects being machine learning (ML) and knowledge rep-
resentation and reasoning (KRR) [2]. Our research will focus on the
latter. Knowledge representation refers to the notion of using some
formal set of symbols or notation in order to represent information
about the world. Reasoning refers to the idea of drawing inferences
from this information, with the key idea for this research being the
use of algorithms to reason about information (i.e., automated rea-
soning). We will utilise logics (a mechanism for formalising ways
to reason [1]) to represent information.

Propositional logic [1] is monotonic, which means the addition
of new information cannot contradict any previous conclusions you
could draw. This is not a "common-sense" approach to reasoning
[3].

Reasoning in such a way limits the ability to model human
reasoning, as the property of monotonicity does not hold in the
way that humans think.

Daniel Park
University of Cape Town
Cape Town, South Africa
PRKJOO001@myuct.ac.za

Aidan Bailey
University of Cape Town
Cape Town, South Africa
BLYAID001@myuct.ac.za

For example, if a human knows that it rains every Saturday, and
that today is a Saturday, then it makes sense to conclude that it
is raining today, however if we are then told that it is not raining
today, a human would interpret the addition of this new fact to
mean that we have simply come across an exception to the notion
of it raining every Saturday.

Reasoning according to propositional logic simply notes that a
contradiction has occurred, meaning our knowledge can never all
be true, which means that any and all information can be inferred
from what we know, rendering our knowledge useless. What may
have allowed the additional information to not cause a contradiction
is if the initial knowledge we had rather stated that “typically, it
rains every Saturday”. We will use a framework for nonmonotonic
reasoning in which statements of the form "typically, something is
the case" are allowed.

2 BACKGROUND
2.1 Propositional Logic

Propositional Logic [1] is a framework for modelling information
about the world, in which statements (known as formulas) are
built up using propositional atoms, which are sentences which can
be assigned a truth value (true or false), and Boolean operators
(=, A, V, =, «). Formulas can be defined recursively as either being
simply an atom (e.g. p), or if @ and f are formulas in L (the set of
all formulas), then so are =, @ A f,a V f,a — f, and a & f.

An interpretation is a function I : # — {T, F} which attributes
a single truth value to each propositional atom, and ‘W is the set
of all interpretations. The truth value of a formula « under a given
interpretation I is written as I(a), and if I(«) is true for some
formula «, then we say I satisfies «, written I I a. A knowledge
base is a finite set of formulas, and it is said that an interpretation I
satisfies a knowledge base K if for every a € K, I I a. A knowledge
base that is satisfied by at least one interpretation I is said to be
satisfiable, and I is then a model of K. The set of all models of a
knowledge base K or of all models of a formula « are denoted
Mod(K) and Mod () respectively.

2.2 Entailment

If a formula « is true in every model of K (Mod(K) C Mod(w)),
then we say K entails a (denoted K |=). Propositional entailment
is monotonic, which means that the addition of new formulas to a
knowledge base K should not contradict any previous inferences
made from K. This causes a problem when contradictory statements
are added to a knowledge base, as it then means that there will be
no models of K, and thus any statement is true in every model of K,
so such a knowledge base is meaningless, as it entails everything.

We therefore require a framework for nonmonotonic reasoning.
Our preferred approach to nonmonotonic reasoning is the KLM
approach [11] [13].

Checking whether or not K | « can be reduced to checking the
satisfiability of the knowledge base with -« added to it (KU {-a}),
where the satisfiability check can be done using a satisfiability (SAT)
solver, as discussed further in the related work section.

2.3 KLM Approach to Defeasible Reasoning

Defeasible reasoning is a form of reasoning which allows one to rea-
son about knowledge bases which contain seemingly contradictory
information, and allows for exceptions to general assertions. In the
KLM Approach [11] [13], we have a way to model statements of the
form a |~ f, which is read as "« typically implies ", which simply
means that if « is true, then this is typically enough information to
believe that f is also true. A detailed overview of this approach is
provided by Kaliski in [10].

The notion of defeasible entailment (denoted k) is not unique,
i.e., there are many acceptable ways to infer information from a
defeasible knowledge base (a knowledge base containing statements
of the form « |~ f). Rational closure [13] and lexicographic closure
[12] are two approaches to defeasible reasoning which both fall
within the KLM approach, and relevant closure [4] and ranked
entailment [13] are two which do not [5]. Thus, this research will
focus on the first two.

2.4 Rational Closure

Rational closure is the most conservative form of defeasible entail-
ment (i.e., it infers very little from a defeasible knowledge base),
and can be defined both semantically and algorithmically, as laid
out in [5].

2.4.1 Semantic Definition. A ranked interpretation is simply a rank-
ing of all interpretations in ‘W (the set of all interpretations), in or-
der of typicality, starting at rank 0 (indicating the most typical inter-
pretations) and ending at rank n, which will include those interpre-
tations which are the least typical, but are still plausible), followed
by a single infinite rank, indicating those interpretations which are
impossible to occur. In ranked interpretations, no rank can be empty.
Formally, a ranked interpretation is a function R : ‘W — N U {co},
such that R(I) = 0 for some I € ‘W, and for every r € N,if R(I) =r,
then for every j such that 0 < j < r, there is an I € ‘W for which
R(I) =j.

R satisfies a formula « if « is true in all non-infinite ranks of a
ranked interpretation R, denoted r I a. For defeasible statements
(statements which use the |~ operator), we say R satisfies a |~ f if
in the lowest rank (the most typical rank) where o holds, also
holds.

We can construct an ordering on the set of all possible ranked
interpretations for a knowledge base K, where Ry <¢¢ Ry if for
every interpretation I € ‘W, Ri(I) < Ry(I). There is a unique
minimal element R, of the ordering <¢¢ such that for every other
ranked interpretation R; in the set of all ranked interpretations for
a given knowledge base, Ry, <g¢ R;, as shown in [9].If Ry - a |~ S,
then we say K defeasibly entails a |~ f (denoted K k a |~ f).

Joel Hamilton, Daniel Park, and Aidan Bailey

24.2 Algorithmic Definition: Base Ranks Algorithm. Before show-
ing the algorithm, we define the materialisation of a knowledge
base K as

K={a—p:akpek)

(1) First, we create a sequence of materialisations Eg, E1, ..., Ep—1, Eco

where Eg :7)(, and each E; = {a — f € Ei_1 : Ei-1 E —a}
for i > 0. (This essentially means that each E; contains only
those statements @ — f in E;_; such that a can be proven
false according to those statements not in E;_1). This process
terminates when E; = E;_; (or if E;—1 = 0) and we set n=i-1
and Eo = Ej,.

(2) We then create a ranking such that E,, \ E,—; is in the bot-
tom rank, (call this Rw) En—2 \ Ep—1 is in the next highest
rank, and so on. The ranking becomes such that the classical
statements in K are in the bottom rank (the infinite rank),
and statements are more general the higher the rank they
are in. If a statement @ — f is in a rank i, then it is said
that @ — f has base rank i. What this means is that in every
ranked interpretation r of E;, « — f will be true in at least
one of the interpretations in the most typical rank of .

2.4.3 Checking Defeasible Entailment. Input: a knowledge base K
and a defeasible implication statement a |~ f.

(1) First, we check if -« is entailed by those statements in the
infinite rank.

(2) We then remove sets of classical implications rank by rank,
starting at the highest rank and working our way down until
we find a rank such that all the statements in that rank and
those remaining do not entail -« (thus, « is satisfiable w.r.t.
the set of statements which are in the current rank and the
remaining ranks).

(3) We then check whether or not these remaining statements
entail @ — f.

(4) If we get to the stage where we only have the bottom rank
remaining, and the statements in this rank entail -« then
we can simply conclude that it is the case that K k a |~ .

This algorithm only returns that a statement is defeasibly entailed
by a knowledge base if this is true in terms of the minimal ranked
interpretation for the knowledge base [8].

2.5 Lexicographic Closure

Lexicographic closure [12] is a refinement of rational closure, in
that the entailment check is done the same way, and only the
ranking of statements is done differently. A detailed description of
the intricacies of this approach is provided by Casini et al in [5].
Lexicographic closure is less conservative than rational closure in
terms of how much it infers from a knowledge base.
Lexicographic closure uses a more refined ranking, where state-
ments within ranks (according to the Base Rank algorithm) are
ranked amongst themselves, thus preserving the original ranking.
We consider all possible refined rankings of these statements, and
in the case of determining whether or not K k « |~ , when check-
ing whether or not?(E —a, we remove statements one at a time

such that as few statements as possible are removed where the
remaining statements do not entail —a. If this is not able to occur,

Scalable Defeasible Reasoning

then we remove the entire top rank and continue similarly with a
refinement of those statements in the following rank, etc.

Once the remaining statements do not entail —«a, we check
whether these statements classically entail @ — p. If we reach
the stage where only one rank is remaining and the remaining
statements still entail —«, then we can return that K k « |~ .

The following is an example which may better explain how the
entailment checks for rational and lexicographic closure differ:
If we have a knowledge base

K={blf.p—=bblrwph-f}

which has been ranked according to the Base Ranks algorithm as
follows:

Rank0 | b— f,b—>w
Rank1 | p — =f
Rankco | p—> b

Figure 1: Base Ranking of Knowledge base K

And we wish to investigate whether or not the statement p |~ w is
entailed by the knowledge base, then:

2.5.1 Entailment Check using Rational Closure.

(1) We check if —p is entailed by 7)(It is, so we throw away the
top rank.

Rank 0 | b—fb—w
Rank1 | p — =f
Rank oo | p — b

Figure 2: Removal of rank 0

(2) We then check if —p is entailed by the remaining statements
inranks 1 and oo. It is not, so we check whether the statement
p — w is entailed by the remaining statements. It is not, so
we conclude K ¥ p |~ w.

2.5.2 Entailment Check using Lexicographic Closure.
(1) Consider all possible refined rankings of ?(such that the

statements in rank 0 have been ranked amongst themselves.

Rank0 | b— f
b—-w
Rank1 | p — =f

Rankco | p — b

Figure 3: Refined Ranking A

Rank0 | b—>w
b—-f
Rank1 | p — =f

Rank oo | p — b

Figure 4: Refined Ranking B

N
(2) We checkif K | —p. It does, so we remove the top statement
from each of our possible refined rankings.

Rank 0 | b—F
b—-w
Rank1 | p — =f

Rank oo | p —b

Figure 5: Refined ranking A with top statement removed

Rank 0 | b—w
b—of
Rank1 | p — =f

Rank oo | p —> b

Figure 6: Refined ranking B with top statement removed

(3) We then check if the remaining statements in each of our
refined rankings entail —p. We see that the remaining state-
ments in refined ranking A do not entail —p, and thus we
check if these statements entail p — w. This is the case, so
we conclude that Kk p |~ w.

Thus, it is clear that rational closure (RC) is more conservative
than lexicographic closure (LC), as we were able to conclude the
statement p |~ w when using LC but not when using RC.

3 PROJECT DESCRIPTION
3.1 Overview of Problem

There currently exists no implementation of a satisfiability checker
for defeasible reasoning in the propositional logic context. While
there are many implementations of classical reasoners, this style of
reasoning is very limited, due to the inability to maintain the prop-
erty of monotonicity in the presence of contradictory information,
as discussed in section 2.2.

While there exists a defeasible reasoner implementation which
works for description logics [15] which could theoretically work
for propositional logic knowledge bases (which have been encoded
as description logics), translating large knowledge bases while pre-
serving the meaning of the knowledge is a tedious task.

There has also been no work to improve the computational
scalability of the defeasible reasoning approaches discussed in the
previous section, namely rational closure [13] and lexicographic
closure [12]. Another key issue that these two previous issues high-
light is the lack of readily available propositional logic knowledge
bases for testing purposes.

3.2 Why is it important?

Currently, there exists no tool for automated reasoning about propo-
sitional defeasible knowledge bases. Research thus far has focused
largely on developing theoretical approaches to nonmonotonic rea-
soning [10], but an implementation of some of these approaches
would result in a significant contribution to the logic-based Al re-
search community, as it would allow research to focus more on the
viability of applying these approaches in useful real-world contexts
(e.g., in robots, or decision-making systems in industries such as
law or medicine).

Also, characteristics of these theoretical approaches which hin-
der the implementational viability thereof may be identified, thus
also contributing towards the study of theoretical approaches to
nonmonotonic reasoning, and automated reasoning in general.

4 PROBLEM STATEMENT: RESEARCH
QUESTIONS & AIMS

4.1 Research Questions
4.1.1 Joel Hamilton.

e How can the rational closure (RC) algorithm be optimised
to result in better execution time (improved scalability) for
larger knowledge bases (larger number of formulas)?

e How does the runtime of both naive and optimised RC im-
plementations compare to an equivalent tool for description
logics?

e How does the performance of these RC implementations
change for knowledge bases of a constant size but with vary-
ing structures (e.g. number of ranks, distribution of ranks,
etc)?

4.1.2 Daniel Park.

e How can the lexicographic closure (LC) algorithm be opti-
mised to result in better execution time (improved scalability)
for larger knowledge bases?

e How does the performance of these LC implementations
change for knowledge bases of a constant size but with vary-
ing structures (e.g. number of ranks, distribution of ranks,
etc)?

4.1.3 Aidan Bailey.

e How efficient, useful and easy to use is our approach to
knowledge base generation such that it can be used to test
the LC and RC implementations in terms of soundness and
completeness?

e Which parameters found for knowledge base generation are
most useful for testing the RC and implementations in terms
of their efficiency, scalability, and robustness?

4.2 Project Aims
The key aims of this project are:

o To prototype a reasoner tool which reasons about defeasible
knowledge bases according to rational closure.

o To improve the scalability of such a rational closure imple-
mentation through the use of optimisation approaches.

o To develop a prototype reasoner to perform entailment check-
ing of defeasible knowledge bases according to lexicographic
closure.

o To improve the scalability of such a lexicographic closure
implementation through the use of optimisation approaches.

e To implement an experimental tool for the generation of
knowledge bases to be used for reasoner testing purposes.

o To determine which factors contribute towards the number
of ranks and the distribution of statements over the ranks in
a ranked knowledge base.

5 PROCEDURES & METHODS

The implementational aspects of this project are divided into three
major sections: A prototype implementation of defeasible reasoners
using Rational Closure (RC) (1) and Lexicographic Closure (LC) (2),
and the construction of a knowledge base generator (3). The Open-
JDK toolkit will be used with the defeasible reasoner prototypes

Joel Hamilton, Daniel Park, and Aidan Bailey

being built in Java and the knowledge base generator being built in
Scala.

We will start by studying the KLM approach for extending clas-
sical propositional logic with defeasible reasoning. We will then
develop simple prototype defeasible reasoners which use RC and
LC, respectively, as in [5]. These tools will allow users to input a
defeasible knowledge base together with a defeasible statement,
and the reasoner will check if the statement is defeasibly entailed
by the knowledge base (according to either RC or LC). A knowl-
edge base generator will be constructed to aid in the testing of the
prototype defeasible reasoners.

5.1 Knowledge Base Generator

In order to gain an understanding of how basic knowledge bases
could be generated, the fundamental makeup of a classical knowl-
edge base will be studied. We will begin by defining a suitable
structure for a classical knowledge base generator. We will then
analyse the structure of defeasible knowledge bases, the KLM ratio-
nality properties. Given that classical knowledge bases can easily
be encoded as defeasible ones, we will similarly amend the initial
classical knowledge base generator design in order to accommo-
date the KLM rationality properties and allow for simple defeasible
knowledge base generation.

Further analysis will then be done on how lexicographic and
rational closure work, in order to identify a collection of potential
knowledge generation parameters. This analysis can be categorized
into two key ideas, namely, how the ranking of a knowledge base
takes place (1) , and how defeasible entailment is checked using this
ranking (2). Measures of scalability and robustness will be identified
pertaining to these two areas which will speak to which potential
parameters could be incorporated into our knowledge base genera-
tor (e.g., number of ranks of a ranked knowledge base, distribution
of formulas over ranks). A refined collection of these parameters
will then be implemented in the knowledge base generator. The
knowledge base generation tool will be evaluated based the extent
that changing different parameters has on the prototype defeasible
reasoners’ test metrics.

5.2 Prototype Reasoners

The implementation of rational and lexicographic closure will re-
quire the study of their respective algorithms, and specifically, an
understanding of their reducibility to classical satisfiability solv-
ing. The correctness of these implementations will be checked
by seeing whether or not their output is correct (i.e., satisfies the
KLM rationality properties) when provided a defeasible knowledge
base (generated by our knowledge base generator) and a defeasible
statement as input. After a satisfactory naive implementation has
been constructed, the next step will be to use different optimisation
heuristics to obtain better performance. The efficiency, robustness
and scalability of the reasoner will be measured in relation to a vari-
ety of different knowledge bases using test metrics such as resource
usage and execution time. Comparisons will be made between the
naive implementation, the optimised implementation and the simi-
lar description logics tool [15]. The robustness and scalability will
be tested by using different structures of knowledge bases, poten-
tially involving different numbers of ranks and different rank sizes.

Scalable Defeasible Reasoning

The process of acquiring these test metrics will be automated using
a testbed.

A possible optimisation is the idea of trying different search
algorithms other than linear search for determining which ranks to
throw away for rational closure, or which statements to throw away
in the case of lexicographic closure. Since lexicographic closure is
essentially refinement of rational closure for entailment checking,
we believe that some approaches to optimising rational closure
may likely work for lexicographic closure as well, and potentially
vice-versa.

Our prototypes will be command line executable. Provided that
every other aspect of the project has been completed, we will likely
wrap our tools in an API for the purpose of integration into a larger
platform/framework.

5.3 Possible Challenges

e Finding an easy-to-use SAT solver library that accommo-
dates a widely used propositional logic format (DIMACS
CNF).

o Identifying useful optimization heuristics.

o Identifying a suitable generic approach to knowledge base
generation that can be applied to different logics.

o Identifying useful parameters for knowledge base generation
that will create knowledge bases with varying structures
(numbers of ranks, distribution of formulas across ranks,
etc).

6 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES

The algorithms built upon were conceived in openly published
academic literature and thus there is no issue of intellectual property
right other than the required acknowledgements being given to
the creators. The work produced will be freely available and will
eventually be implemented into an open source logical reasoning
tool.

The Java and Scala facilities provided by the OpenJDK will be
used to develop the implementations of these algorithms. The Open-
JDK has a "GPL v2 with the Classpath Exception” license that stip-
ulates the license of the code and executables produced using the
OpenJDK toolset is up to the user’s discretion and as such there
will be no legal issues here either.

There is no requirement of user (or animal) testing and no han-
dling of private user data. This implies no possible breach of the
POPI act or requirement of ethical clearance.

Conclusively, there are no foreseeable ethical, professional or
legal issues within the scope of this project.

7 RELATED WORK

Rational closure (RC) and Lexicographic Closure (LC) both reduce to
a series of classical entailment checks. This means it is at its core the
problem of boolean satisfiability (SAT) and thus, research pertaining
to this problem is highly relevant to our proposed project.

7.1 Classical Satisfiability Solving

A satisfiability (SAT) solver is a system which computes the exis-
tence of a satisfying valuation (i.e., a model) for a specified boolean

formula. There are many such SAT solvers designed for classical
propositional satisfiability checking, thus understanding the ap-
proaches in this field will aid in the search for a suitable SAT solver
to be used in the prototype defeasible reasoners.

7.1.1 The DPLL Algorithm. DPLL [7] is a complete and sound SAT
checking algorithm. DPLL uses backtracking (retracting the most
recent assignment and performing a different assignment) to specu-
latively test various assignment combinations, along with Boolean
Constant Propagation (BCP) which constantly ensures that all vari-
ables which need to be true to satisfy a problem are kept true. DPLL
forms the basis of many modern SAT solvers.

7.1.2 The CDCL Process. GRASP [14, 17], introduced the Conflict
Driven Clause Learning (CDCL) process, in which variable assign-
ments which potentially cause conflicts are cached. This results
in better execution, and unlike DPLL [7], this does not rely on
chronological backtracking, and as such is more efficient.

7.1.3 Other Advancements. Several more advanced SAT solvers
utilise low-level optimisations such as different storage structures
and parallelism in order to obtain better performance [18], e.g.,
GridSAT [6] and Chaff [16]. Due to prolific research being done on
developing efficient SAT solving algorithms, many efficient SAT
solver implementations are now freely available.

7.2 Defeasible Satisfiability Solving

While several theoretical formal approaches to defeasible entail-
ment exist, e.g, rational closure [13], lexicographic closure [12],
there has been little work done studying the scalability and imple-
mentational viability of these algorithms.

There currently exists no SAT solver which determines whether
or not a defeasible statement is in the rational or lexicographic
closure of a given defeasible knowledge base. Some work has been
done looking at implementing the ability to reason defeasibly in
the description logics context [15], but similar implementations for
the propositional case are absent from nonmonotonic reasoning
literature, thus also opening up the opportunity for an investigation
into the scalability of established LM-rational defeasible entailment
algorithms such as rational closure [13] and lexicographic closure

[12].

8 ANTICIPATED OUTCOMES
8.1 Experimental Tools Developed

A successful project will have contributed several experimental
defeasible reasoner prototypes for use by researchers in the KRR
field, in particular:

e One which uses a straightforward implementation of the
rational closure (RC) algorithm as per [5].

e One which uses an optimised implementation of the RC
algorithm, in order to provide better scalability for large
knowledge bases, and robustness for knowledge bases with
varying features (e.g., distribution of statements across ranks,
differing numbers of ranks).

e One which uses a straightforward implementation of the
lexicographic closure (LC) algorithm as per [5].

e One which uses an optimised implementation of the LC
algorithm, in order to provide better scalability for large
knowledge bases, and robustness for knowledge bases with
varying features (e.g., distribution of statements across ranks,
differing numbers of ranks).

The project will also deliver a knowledge base generator which is
able to create knowledge bases according to prespecified criteria
(e.g. the size of the knowledge base, the number of ranks when
ranked according to the Base Rank algorithm, etc.)

8.2 Research Impact

The successful project will have determined:

e How the RC and LC algorithm implementations can be opti-
mised in a way that results in better runtime for larger knowl-
edge bases compared to their naive counterparts (where
number of ranks are kept constant).

e How the runtime of the rational closure implementations
(naive and optimised) compare to a similar tool which was
developed for description logics [15].

e How the performance of the LC and RC implementations
change according to parameters such as number of ranks.

o How useful and efficient our implementation of knowledge
base generation is as a tool for testing prototype defeasible
reasoner implementations.

e Which parameters for specifying knowledge base complexity
are useful in terms of generating test cases for prototype
defeasible reasoner implementations.

8.3 Success Factors

The project will be considered successful if:
Defeasible Reasoner Prototypes & Optimisation:

o The reasoner prototypes provide correct answers. This can
be checked with test cases by using knowledge bases from
the generator.

o The naive and optimised prototypes using Rational Closure
perform more efficiently than the existing equivalent de-
scription logics tool [15].

o The optimised reasoner prototypes which use the RC and
LC algorithms perform more efficiently than their respective
naive implementations.

e We have identified useful optimisation approaches that result
in improved scalability of these two defeasible entailment-
checking algorithms.

Knowledge Base Generation

e Tool successfully generates knowledge bases which can be
used to test the robustness and scalability of the rational and
lexicographic closure defeasible reasoners.

o A collection of useful knowledge base generation parameters
has been identified that result in a versatile and useful tool.

9 PROJECT PLAN

9.1 Risks
See 1.1 and 1.2 of the Appendix.

Joel Hamilton, Daniel Park, and Aidan Bailey

9.2 Timeline
See 2.2 of the Appendix.

9.3 Resources Required

The physical resources we will be using are textbooks, scholar
papers and three computers. We will implement our algorithms
using Java and Scala (OpenJDK), with appropriate IDE for Java and
Scala development. We will need access to source code of publicly
available SAT solvers, and a description logics defeasible reasoner
[15] to compare our efficiency. We will be implementing our own
knowledge base generator to produce testing data for our reasoners;
thus, no knowledge base datasets will be required.

9.4 Deliverables

All common project deliverables, i.e., a literature review, project
proposal, project proposal presentation, software feasibility demon-
stration, final project paper, final project demonstration, project
poser, and project WebPage will all be produced. Multiple imple-
mentations for the rational closure and lexicographic closure algo-
rithms will be produced. These will take the initial form of naive
approaches, and then ones with optimisational heuristics that al-
low for large scale defeasible reasoning. A testbed and knowledge
base generator will be constructed to be used for formalized test-
ing of the defeasible reasoning algorithm implementations. Test
metrics relating to each of these implementations, as well as a pre-
vious implementation of defeasible reasoning, will be produced.
Finally, an ultimate comparison of the metrics collated from the
naive implementations, previous implementations, and new effi-
cient implementations will be produced, depicting the efficiency of
the new implementations and speaking directly to the success of
the project.

9.5 Milestones
See 2.1 of the Appendix.

9.6 Work Allocation

There are three major sections of project work that need allocation:

Student Work Allocation

Joel Hamilton | The development of naive and optimised
defeasible reasoner prototypes using the
Rational Closure algorithm, along with
significant research on potential optimisation
approaches.

Daniel Park The development of naive and optimised
defeasible reasoner prototypes using the
Lexicographic Closure algorithm, along
with significant research on potential

optimisation approaches.

Aidan Bailey | The construction of an experimental knowledge
base generator to be used for providing test cases

for testing the robustness and scalability of the

defeasible reasoner prototypes, along with significant
research on which parameters may result in knowledge
bases differing in structure.

Scalable Defeasible Reasoning

There is a possibility of implementing an API wrapper for our
reasoner and generator. This will be done by all three members
collectively.

REFERENCES

[1] Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition.
Springer, 2012.

[2] Zied Bouraoui, Antoine Cornuéjols, Thierry Denceux, Sebastien Destercke, Didier
Dubois, Romain Guillaume, Jodo Marques-Silva, Jérome Mengin, Henri Prade,
Steven Schockaert, Mathieu Serrurier, and Christel Vrain. From shallow to deep
interactions between knowledge representation, reasoning and machine learning
(kay r. amel group), 12 2019.

[3] G. Casini, T. Meyer, K. Moodley, and 1. Varzinczak. Towards practical defeasible

reasoning for description logics. Jul 2013.

Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. Relevant

closure: A new form of defeasible reasoning for description logics. In Eduardo

Fermé and Jodo Leite, editors, Logics in Artificial Intelligence, pages 92-106, Cham,

2014. Springer International Publishing.

Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. Taking defeasible entail-

ment beyond rational closure. In Francesco Calimeri, Nicola Leone, and Marco

Manna, editors, Logics in Artificial Intelligence - 16th European Conference, JELIA

2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in

Computer Science, pages 182-197. Springer, 2019.

[6] Wahid Chrabakh and Rich Wolski. Gridsat: A chaff-based distributed sat solver
for the grid. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
SC 03, page 37, New York, NY, USA, 2003. Association for Computing Machinery.

[7] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394-397, July 1962.

[4

=

(5

=

=
S

jany

Michael Freund. Preferential reasoning in the perspective of poole default logic.
Artificial Intelligence, 98(1):209-235, 1998.

Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. Seman-
tic characterization of rational closure: From propositional logic to description
logics. Artif. Intell., 226:1-33, 2015.

Adam Kaliski. An overview of klm-style defeasible entailment, 2020_.

Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Artificial intelligence, 44(1-2):167-207,
1990.

Daniel Lehmann. Another perspective on default reasoning. Annals of Mathe-
matics and Artificial Intelligence, 15(1):61-82, Mar 1995.

Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1-60, 1992.

[14] Joado P. Marques-silva and Karem A. Sakallah. Grasp: A search algorithm for

propositional satisfiability. IEEE Transactions on Computers, 48:506-521, 1999.
Kody Moodley, Thomas Meyer, and Ivan Varzinczak. A protégé plug-in for
defeasible reasoning. volume 846, 06 2012.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Annual
Design Automation Conference, DAC 01, page 530-535, New York, NY, USA, 2001.
Association for Computing Machinery.

[17] Joao P. Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm

for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 96, page 220-227, USA, 1997. IEEE Computer
Society.

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers
and their applications in model checking. Proceedings of the IEEE, 103(11):2021—
2035, 2015.

Scalable Defeasible Reasoning Proposal Appendix

1 Risks

1.1 Risk Identification

ID | Risk Probability Impact
1 Unavailability of supervisor Very unlikely | Moderate
2 Loss of work due to computer failure Unlikely Significant
3 The group having poor communication leading Very Unlikely | Significant
to disagreement or conflict
4 Poor time management Possible Significant
5 A team member is unable to complete their assigned task | Possible Significant
6 Unable to optimize the algorithm Possible Moderate
7 Not being able to generate knowledge bases Possible Moderate
which vary in terms of structure.
1.2 Risk Mitigation, Monitoring, and Management
ID | Mitigation Monitoring Management
Check supervisor’s availability Con}mumcate :chrough . .
1 email and confirm Continue the project regardless
regularly .
meetings and agreements
Save the work regularly and Check for load-shedding RestF) re as much flata as .
2 . possible and continue work with
save it to the Cloud schedule regularly . .
what is available
Keep communicating with Get advice from supervisors
3 partners through email or Make sure everyone is upon a disagreement, and
IM, making sure no one is agreed on a decision resolve miscommunications
missing out clearly and as soon as possible.
Follow the timeline that every Check if every member. Create a new timeline with
4 . of the team is progressing . . .
member is agreed on . o adjusted time estimates
according to the timeline
5 Communicate and assist team Check partners progress Split the work evenly and
members when they get stuck regularly independently
Check whether the algorithms
Study as many optlmlzatlons are being opt1m1sed in the right Move focus away from optimisation and
6 methods as possible and way by comparing the foeus on constructing a useful tool
implement them to the algorithms performance with the previous g
versions
Study how the algorlthr'ns Keep checking whether the o Come up with additional knowledge base
work and attempt multiple approaches | generated knowledge bases are differing . .)
7 characteristics which can test

to construct knowledge bases
of varying structures.

in terms of structure (e.g. number
of ranks, etc)

the robustness of our reasoners.

2 Timeline

2.1 Milestones & Tasks

] MILESTONES \ Start Date \ End Date \
PHASE 1: Project Planning 03/05/2021 | 08/07/2021
Literature Review 03/05/2021 | 03/06/2021
Project Proposal 04/06/2021 | 23/06/2021
Project Proposal Presentation 24/06/2021 | 08/07/2021
PHASE 2: Project Work 12/07/2021 | 18/08/2021
Knowledge Base Generation Project Work 12/07/2021 | 13/08/2021
Construct testbench 12/07/2021 | 19/07/2021
Construct basic knowledge base generator 20/07/2021 | 27/07/2021
Add additional parameters to knowledge base generation | 28/07/2021 | 13/08/2021
Rational Closure Project Work 20/07/2021 | 18/08/2021
Construct naive implementation and base testing metrics | 20/07/2021 | 27/07/2021
Optimise naive implementation 28/07/2021 | 13/08/2021
Compute new testing metrics and comparison 14/08/2021 | 18/08/2021
Lexicographic Closure Project Work 20/07/2021 | 18/08/2021
Construct naive implementation and base testing metrics | 20/07/2021 | 27/07/2021
Optimise naive implementation 28/07/2021 | 13/08/2021
Compute new testing metrics and comparison 14/08/2021 | 18/08/2021
PHASE 3: Project Completion 01/08/2021 | 17/10/2021
Software Feasibility Demonstration 01/08/2021 | 09/08/2021
Draft of Final Paper 11/08/2021 | 05/09/2021
Complete Final Paper 07/09/2021 | 16/09/2021
Final Project Demonstration 18/09/2021 | 03/10/2021
Project Poster 04/10/2021 | 10/10/2021
Project WebPage 11/10/2021 | 17/10/2021

2.2 Gantt Chart
On final page of the appendix.

“=teamgantt

Created with Free Edition

5/21 6/21 7/21 8/21 9/21 10/21

SCADR start end
Literature Review 03/05/21 03/06/21
Literature Review 03/05 03/06
Project Proposal 04/06/21 23/06/21
Project Proposal 04/06 23/06
Project Proposal Presentation 24/06/21 08/07/21
Project Proposal Presentation 24/06 08/07
Knowledge Base Generation Project Work 12/07/21 13/08/21
Construct testbench 12/07 19/07
Construct basic KB generator 20/07 27/07
Add additional parameters to KB generation 28/07 13/08
Rational Closure Project Work 20/07/21 18/08/21
Construct naive implementation 20/07 27/07
Optimise naive implementation 28/07 13/08
Compute testing metrics and comparison 14/08 18/08
Lexicographic Closure Project Work 20/07/21 18/08/21
Construct naive implementation 20/07 27/07
Optimise naive implementation 28/07 13/08
Compute testing metrics and comparison 14/08 18/08
Software Feasibility Demonstration 01/08/21 09/08/21
Software Feasibility Demonstration 01/08 09/08
Draft of Final Paper 11/08/21 05/09/21
Draft of Final Paper 11/08 05/09
Complete Final Paper 07/09/21 16/09/21
Complete Final Paper 07/09 16/09
Final Project Demonstration 18/09/21 03/10/21
Final Project Demonstration 18/09 03/10
Project Poster 04/10/21 10/10/21
Project Poster 04/10 10/10
Project WebPage 11/10/21 17/10/21
Project WebPage 11/10 17/10

http://www.tcpdf.org

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Entailment
	2.3 KLM Approach to Defeasible Reasoning
	2.4 Rational Closure
	2.5 Lexicographic Closure

	3 Project Description
	3.1 Overview of Problem
	3.2 Why is it important?

	4 Problem Statement: Research Questions & Aims
	4.1 Research Questions
	4.2 Project Aims

	5 Procedures & Methods
	5.1 Knowledge Base Generator
	5.2 Prototype Reasoners
	5.3 Possible Challenges

	6 Ethical, Professional, and Legal Issues
	7 Related Work
	7.1 Classical Satisfiability Solving
	7.2 Defeasible Satisfiability Solving

	8 Anticipated Outcomes
	8.1 Experimental Tools Developed
	8.2 Research Impact
	8.3 Success Factors

	9 Project Plan
	9.1 Risks
	9.2 Timeline
	9.3 Resources Required
	9.4 Deliverables
	9.5 Milestones
	9.6 Work Allocation

	References

