

CS/IT Honours

Final Paper 2021

Title: An Investigation into the Scalability of Rational

Closure

Author: Joel Hamilton

Project Abbreviation: SCADR

Supervisor(s): Professor Thomas Meyer

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 20

Experiment Design and Execution 0 20 10

System Development and Implementation 0 20 0

Results, Findings and Conclusions 10 20 15

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

An Investigation into the Scalability of Rational Closure
Joel Hamilton

University of Cape Town
Cape Town, South Africa
HMLJOE001@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning (KRR) is an approach to
artificial intelligence (AI) in which a system has some information
about the world represented formally (a knowledge base), and is
able to reason about this information. Defeasible reasoning is a
non-classical form of reasoning that enables systems to reason
about knowledge bases which contain seemingly contradictory
information, thus allowing for exceptions to assertions. Currently,
systems which support defeasible entailment for propositional logic
are ad hoc, are few and far between, and little to no work has
been done on improving the scalability of defeasible reasoning
algorithms. We investigate the scalability of Rational Closure, and
propose optimisations thereof, as well as present a tool to perform
defeasible entailment checks using these optimised algorithms.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Com-
puting methodologies → Nonmonotonic, default reasoning
and belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, satisfiability solving

1 INTRODUCTION
Artificial Intelligence (AI) has been around for many years, with
its two core aspects being machine learning (ML) and knowledge
representation and reasoning (KRR) [2]. Our research will focus on
the latter. Knowledge representation refers to the notion of using
some formal set of symbols or notation to represent information
about the world. Reasoning refers to the idea of drawing inferences
from this information, with the key idea for this research being the
use of algorithms to reason about information (automated reason-
ing). We will utilise logics (a mechanism for formalising ways to
reason [1]) to represent information.

Propositional logic [1] is monotonic, which means the addition
of new information cannot contradict any previous conclusions you
could draw. This is not a "common-sense" approach to reasoning
[4].

Reasoning in such a way limits the ability to model human
reasoning, as the property of monotonicity does not hold in the
way that humans think.

For example, if a human knows that it rains every Saturday, and
that today is a Saturday, then it makes sense to conclude that it
is raining today, however if we are then told that it is not raining
today, a human would interpret the addition of this new fact to
mean that we have simply come across an exception to the notion
of it raining every Saturday.

Reasoning according to propositional logic simply notes that a
contradiction has occurred, meaning our knowledge can never all
be true, thus any and all information can be inferred from what we
know, rendering our knowledge useless. What may have allowed
the additional information to not cause a contradiction is if the
initial knowledge we had rather stated that “typically, it rains every
Saturday”. We will use a framework for nonmonotonic reasoning in
which statements of the form "typically, something is the case" are
allowed. Sections 1 and 2 were done jointly with Park and Bailey.

2 BACKGROUND
2.1 Propositional Logic
Propositional Logic [1] is a framework for modelling information
about the world, in which statements (known as formulas) are
built up using propositional atoms, which are sentences which can
be assigned a truth value (true or false), and Boolean operators
(¬,∧,∨,→,↔). Formulas can be defined recursively as either being
simply an atom (e.g. 𝑝), or if 𝛼 and 𝛽 are formulas in L (the set of
all formulas), then so are ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽, and 𝛼 ↔ 𝛽 .

An interpretation is a function 𝐼 : P → {𝑇, 𝐹 } which attributes
a single truth value to each propositional atom, andW is the set
of all interpretations. The truth value of a formula 𝛼 under a given
interpretation 𝐼 is written as 𝐼 (𝛼), and if 𝐼 (𝛼) is true for some
formula 𝛼 , then we say 𝐼 satisfies 𝛼 , written 𝐼 ⊩ 𝛼 . A knowledge
base is a finite set of formulas, and it is said that an interpretation 𝐼

satisfies a knowledge baseK if for every 𝛼 ∈ K , 𝐼 ⊩ 𝛼 . A knowledge
base that is satisfied by at least one interpretation 𝐼 is said to be
satisfiable, and 𝐼 is then a model of K . The set of all models of a
knowledge base K or of all models of a formula 𝛼 are denoted
𝑀𝑜𝑑 (K) and𝑀𝑜𝑑 (𝛼) respectively.

2.2 Entailment
If a formula 𝛼 is true in every model ofK (i.e.,𝑀𝑜𝑑 (K) ⊆ 𝑀𝑜𝑑 (𝛼)),
then we say K entails 𝛼 (denoted K |= 𝛼). This form of proposi-
tional entailment uses classical reasoning, which is a framework for
inferring information from given knowledge. Classical reasoning
is monotonic, which means that the addition of new formulas to a
knowledge base K should not contradict any previous inferences
made from K . This causes a problem when contradictory state-
ments are added to a knowledge base, as it then means that there
will be no models of K , and thus any statement is true in every
model of K , so such a knowledge base is meaningless, as it entails
everything. We therefore require a framework for nonmonotonic
reasoning. Our preferred approach to nonmonotonic reasoning is
the KLM approach [9, 12].

Checking whether or not K |= 𝛼 can be reduced to checking the
satisfiability of the knowledge base with ¬𝛼 added to it (K ∪ {¬𝛼}),
where the satisfiability check can be done using a propositional

Joel Hamilton

logic satisfiability (SAT) solver, which is a program which, given a
propositional logic formula, will return whether or not there exists
an interpretation which satisfies the formula.

2.3 KLM Approach to Defeasible Reasoning
Defeasible reasoning is a form of reasoning which allows one to rea-
son about knowledge bases which contain seemingly contradictory
information, and allows for exceptions to general assertions. In the
KLM Approach [9] [12], we have a way to model statements of the
form 𝛼 |∼ 𝛽 , which is read as "𝛼 typically implies 𝛽", which simply
means that if 𝛼 is true, then this is typically enough information to
believe that 𝛽 is also true. A detailed overview of this approach is
provided by Kaliski in [8].

The notion of defeasible entailment (denoted p≈) is not unique,
i.e., there are many acceptable ways to infer information from a de-
feasible knowledge base (a knowledge base containing statements
of the form 𝛼 |∼ 𝛽). The KLM approach is our approach of choice,
due to its properties which determine whether or not a defeasi-
ble entailment approach is accepted within the framework. These
properties are known as the KLM properties. [9, 12]. Rational Clo-
sure [12] and Lexicographic Closure [11] are two approaches to
defeasible reasoning which both fall within the KLM approach, and
relevant closure [5] and ranked entailment [12] are two which do
not [6]. This research focuses on Rational Closure [12] (RC).

2.4 Rational Closure
Rational closure is the most conservative form of defeasible entail-
ment (i.e., it infers very little from a defeasible knowledge base),
and can be defined both semantically and algorithmically, as laid
out in [6].

The semantic definition is based on structures known as ranked
interpretations, which are simply rankings of all interpretations in
W (the set of all interpretations), in order of typicality. [6]

This paper focuses on the algorithmic definition of Rational Clo-
sure, which is split into two sub-algorithms, namely BaseRank and
RationalClosure, as proposed in [6].
The BaseRank algorithm begins with the materialisation

−→
K of the

knowledge base K which is merely K which has had all its defeasi-
ble implications converted into classical implications. The algorithm
ranks all statements in

−→
K by how general they are. The algorithm

produces a ranking such that statements which are always true
(classical statements), are all in the bottom rank (the infinite rank),
and the rest of the ranks contain materialisations of defeasible
statements which become increasingly general as one moves up
the ranking.

Algorithm 1: BaseRank
Input: A knowledge base K
Output: An ordered tuple (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛)

1 𝑖 := 0;

2 𝐸0 :=
−→
K ;

3 repeat
4 𝐸𝑖+1 := {𝛼 → 𝛽 ∈ 𝐸𝑖 | 𝐸𝑖 |= ¬𝛼};
5 𝑅𝑖 := 𝐸𝑖 \ 𝐸𝑖+1;
6 𝑖 := 𝑖 + 1;
7 until 𝐸𝑖−1 = 𝐸𝑖 ;
8 𝑅∞ := 𝐸𝑖−1;
9 if 𝐸𝑖−1 = ∅ then
10 𝑛 := 𝑖 − 1;
11 else
12 𝑛 := 𝑖;
13 return (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛)

RationalClosure takes in a ranked knowledge base, and a de-
feasible implication statement (query) (e.g. 𝛼 |∼ 𝛽), and returns
whether or not the statement is defeasibly entailed by the ranked
knowledge base. The algorithm removes ranks one by one until
it finds that the antecedent of the implication statement (in this
case, 𝛼), is consistent with the knowledge base, and then returns
true if these remaining statements entail the materialisation of the
original query (in this case, 𝛼 → 𝛽), and false otherwise. Note that
a formula is consistent with a knowledge baseK when its negation
is not entailed by K .

Algorithm 2: RationalClosure
Input: A knowledge base K and a Defeasible Implication

𝛼 |∼ 𝛽

Output: true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);
2 𝑖 := 0;
3 𝑅 :=

⋃𝑗<𝑛
𝑖=0 𝑅 𝑗 ;

4 while 𝑅∞ ∪ 𝑅 |= ¬𝛼 and 𝑅 ≠ ∅ do
5 𝑅 := 𝑅 \ 𝑅𝑖 ;
6 𝑖 := 𝑖 + 1;
7 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

The following is an example which illustrates how the Rational
Closure algorithm works.

Consider a knowledge base containing the information that
"birds typically fly", "penguins are birds", "birds typically have
wings", and "penguins typically don’t fly", which has been for-
malised as follows:

K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑏 |∼ 𝑤, 𝑝 |∼ ¬𝑓 }

and then ranked according to the Base Ranks algorithm, producing
the following ranking:

An Investigation into the Scalability of Rational Closure

𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓 , 𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 1: Base Ranking of Knowledge base K

Given that "penguins are birds", it follows that birds are more gen-
eral concepts than penguins, and thus statements with birds as its
antecedent are higher up in the ranking than those with penguins
as its antecedent.

Consider that we want to investigate whether or not the state-
ment 𝑝 |∼ 𝑤 is entailed by the knowledge base, then:

(1) We check if ¬𝑝 is entailed by
−→
K . It is, so we throw away the

top rank.

𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓 , 𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 2: Removal of rank 0

(2) We then check if ¬𝑝 is entailed by the remaining statements
in ranks 1 and∞. It is not, so we checkwhether the statement
𝑝 → 𝑤 is entailed by the remaining statements. It is not, so
we conclude K p̸≈ 𝑝 |∼ 𝑤 .

2.5 Defeasible Reasoning Implementations
There exist some implementations of defeasible reasoning for both
propositional and first-order logic, as discussed in [3], however none
of these implementations are alignedwith the KLM approach [9, 12],
and thus no implementatons of KLM-style defeasible reasoning exist
in the propositional case.

Some work has been done which looks at implementing the abil-
ity to reason defeasibly in the context of description logics, such as
in [13], but the lack of a similar implementation in the propositional
case appears as a large gap in the literature regarding nonmono-
tonic reasoning, as does the lack of research into the scalability of
established LM-rational defeasible entailment algorithms such as
Rational Closure [12] in the propositional case.

3 PROJECT AIMS
The key aims of this project were:

• To build a prototype defeasible reasoner which integrates
with an existing classical reasoner to reason about defeasible
knowledge bases according to rational closure.

• To improve the scalability of such a rational closure im-
plementation through the use of various optimisation ap-
proaches.

• To obtain empirical results which help inform in which con-
texts (i.e. for which knowledge bases, and for which queries)
our optimisations are effective in obtaining better perfor-
mance than the existing Rational Closure algorithm.

4 IMPLEMENTATION & OPTIMISATION OF
RATIONAL CLOSURE

4.1 Naive Implementation
We developed a defeasible reasoner which returns whether or not a
defeasible implication statement (i.e. a statement of the form "𝛼 |∼
𝛽") is entailed by a specific defeasible knowledge base. This pro-
gram is "naive", due to its implementation of the RationalClosure
algorithm being implemented exactly as laid out in Algorithm 2
in this paper, as per [6]. We also created a user-friendly version
for the purposes of future research which shows the ranking of
statements before any queries are made, as well as shows the steps
made by each algorithm when computing a query. The naive im-
plementation, along with those described in the following three
subsections, were all accepted as being correct, as they all produced
correct results when tested with cases which correspond to the
KLM Properties. [12] This is strong evidence that our implementa-
tions are all LM-rational, and given their results were all exactly as
expected according to both the semantic and algorithmic definitions
of Rational Closure [6], we are confident in the correctness of these
defeasible reasoners.

All of these reasoners were developed using Java, and all made
extensive use of the TweetyProject library, version 1.20 [14, 15].

We utilise a built-in classical reasoner tool built into the Tweet-
yProject library, which uses a solver called Sat4j. [10]

4.2 Optimisation 1: Binary Search Entailment
Check

We developed a second reasoner, which uses an amended version of
RationalClosure, which we propose here, as RCBinCheck. This
algorithmworks by using a binary search algorithm to find the rank
from which all ranks need to be removed, as opposed to iterating
linearly from the top, downwards, as in RationalClosure.

When checking whether or not a statement 𝛼 |∼ 𝛽 is defeasibly
entailed by the already-ranked knowledge base, the binary search
would would replace the linear search for the rank where 𝛼 becomes
consistent with the knowledge base. This works as follows:

(1) Start with a min and a max value, representing the smallest
and largest possible rank which could be the rank we are
looking for. (If this is the first time performing step 1, then
set min as zero, and max as the number of ranks n).

(2) Choose the midpoint of min and max, let’s call this rank k.
(3) Check if removing rank k and all those above it results in 𝛼

being consistent with the knowledge base.
• If yes, it would proceed to the next step.
• If no, it would go back to the first step, but instead pass
in k as min, and the keep max the same, as we’d know
that the rank we are searching for (i.e. the rank where
𝛼 becomes consistent with the knowledge base) is in the
’lower’ half of our ranks, (i.e. a higher rank number), as
with all ranks up to and including rank k removed, 𝛼 is
still not consistent with the knowledge base, and thus we
need to remove more ranks.

(4) Check if adding rank k back in results in 𝛼 still being consis-
tent with the knowledge base.

Joel Hamilton

• If yes, then go back to step 1 but pass inmax as k, and keep
min the same, as we’d know that the rank we re searching
for is in the ’upper’ half of our ranks (i.e. a lower rank
number), as with all ranks up to and including rank k
removed, 𝛼 is consistent with the knowledge base, and
thus we need to remove fewer ranks.

• If no, then rank k is the rank from which we need to
remove all ranks, including rank k.

(5) Return true if 𝛼 → 𝛽 is entailed by the ranked knowledge
base with all ranks up to and including k removed, and false
otherwise.

Given that the efficacy of this optimisation is reliant on it not
requiring linear iteration through ranks to find which ranks to re-
move when performing the entailment check, we hypothesised that
there would be a certain number of ranks (which will be determined
by further research) for which this optimisation would perform bet-
ter (i.e. faster) than the naive implementation, and that the extent
to which this optimisation performed better would increase as the
number of ranks increase.

However, we also believed that this improved performance pro-
vided by the RCBinCheck implementation would only be present
for defeasible queries 𝛼 |∼ 𝛽 where 𝛼 becomes consistent at a rank
larger than approximately 𝑙𝑜𝑔(𝑛) where n is the number of ranks
in the knowledge base. This is because a binary search for the rank
would perform 𝑂 (𝑙𝑜𝑔 𝑛) consistency checks in both the average
and best cases, and the linear search performs 𝑂 (𝑛) consistency
checks in the worst case, but 𝑂 (1) consistency checks in the best
case, and thus if the rank at which 𝛼 becomes consistent is less
than 𝑙𝑜𝑔(𝑛), then the RationalClosure implementation is likely
to find this rank quicker than the RCBinCheck implementation.

Note that although the efficiency, in terms of number of consis-
tency checks, can be improved, each consistency check still reduces
to the Boolean satisfiability problem, which is NP-complete (proof
available in [7]), however this algorithm still ought to yield im-
provements in the best case, and possibly the average case. We
have formalised this algorithm as follows.

Algorithm 3: RCBinCheck
Input: A knowledge base K , and a Defeasible Implication

𝛼 |∼ 𝛽

Output: true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);
2 𝑙𝑜𝑤 := 0;
3 ℎ𝑖𝑔ℎ := 𝑛;
4 while ℎ𝑖𝑔ℎ > 𝑙𝑜𝑤 do
5 𝑚𝑖𝑑 = (𝑙𝑜𝑤 + (ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤)/2);
6 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑+1 𝑅 𝑗 ;
7 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
8 𝑙𝑜𝑤 :=𝑚𝑖𝑑 + 1;
9 else
10 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑
𝑅 𝑗 ;

11 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
12 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑+1 𝑅 𝑗 ;
13 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

14 else
15 ℎ𝑖𝑔ℎ :=𝑚𝑖𝑑

16 return true

4.3 Optimisation 2: Indexing Approach
We developed a third reasoner, which uses another amended ver-
sion of the entailment check from the original algorithm, which
we propose here, as StoredRankCheck. This algorithm works by
storing a hashtable of antecedents along with the rank number
at which they become consistent with the knowledge base. This
means that if one is querying a knowledge base with multiple de-
feasible queries, then those which have the same antecedent will
only require this computation (i.e. finding the rank at which the
antecedent becomes consistent with the knowledge base) to be run
once. This optimisation is more memory-intensive (as for knowl-
edge bases with large numbers of ranks, our hashtable can grow
quite large).

Consider a ranked knowledge base where a formula 𝛼 becomes
consistent with the knowledge base at rank 20. If the queries we
wish to query this knowledge base are as follows:

• 𝛼 |∼ 𝛽

• 𝛼 |∼ 𝛾

• 𝛼 |∼ 𝜙

• 𝛼 |∼ 𝛿

Then the calculation of rank 20 as being the rank from which we
need to remove statements would only need to be done once, as the
pair (𝛼, 20) would be stored in our hash table, and when computing
the remaining queries, we could simply retrieve this value from
our hash table as opposed to recalculating the value of 20 for each
query.

We hypothesised that this implementation would outperform the
naive implementation for query sets in which a large proportion of
queries have the same antecedents (the exact proportion of repeated
antecedents at which this improved performance starts to occur will

An Investigation into the Scalability of Rational Closure

need to be finetuned by further research). This is because the com-
putation of which ranks to remove would not need to be repeated
for statements which have the same antecedents. We predicted that
for query sets whose queries all use different antecedents, there
would be no notable difference in terms of execution between the
StoredRankCheck and the RationalClosure implementations, as
the same number of rank decision computations will be performed
by both implementations. We have formalised this algorithm as
follows.

Algorithm 4: StoredRankCheck
Input: A knowledge base K and a set of Defeasible

Implications 𝑆
Output: An array containing responses for each query,

true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 := 𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒;
2 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 := ∅;
3 (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);
4 for each 𝛼 |∼ 𝛽 ∈ 𝑆 do
5 if 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 contains 𝛼 then
6 i := 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 .get(𝛼);
7 𝑅 :=

⋃𝑗<𝑛
𝑖

𝑅 𝑗 ;
8 else
9 𝑖 := 0;

10 𝑅 :=
⋃𝑗<𝑛

𝑖=0 𝑅 𝑗 ;
11 while 𝑅∞ ∪ 𝑅 |= ¬𝛼 and 𝑅 ≠ ∅ do
12 𝑅 := 𝑅 \ 𝑅𝑖 ;
13 𝑖 := 𝑖 + 1;
14 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 .put(𝛼 , i);
15 add (𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽) to 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ;
16 return 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

4.4 Optimisation 3: Binary Indexing Approach
The fourth reasoner we developed uses an amended version of
StoredRankCheck, which instead uses the key aspect of RCBinCheck
(namely, the binary search algorithm) to compute the ranks before
storing them, as opposed to the linear search used in the origi-
nal algorithm (RationalClosure), and in StoredRankCheck. We
propose this algorithm here, as StoredRankBinCheck.

We hypothesised that this implementation would outperform the
naive implementation for query sets which contain a large propor-
tion of statements which use the same antecedents, and that the ex-
tent to which this implementation outperformed RationalClosure
would increase as the number of unique antecedents in the queries
in a given query set decreases. We also predicted that the imple-
mentation of StoredRankBinCheck would outperform the naive
implementation to an increasingly larger degree as the number
of ranks in the knowledge base grows, due to the binary search
aspect of this algorithm resulting in finding which ranks to remove
significantly faster. We have formalised this algorithm as follows.

Algorithm 5: StoredRankBinCheck
Input: A knowledge base K and a set of Defeasible

Implications 𝑆
Output: An array containing responses for each query,

true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 := ∅;
2 (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);
3 for each 𝛼 |∼ 𝛽 ∈ 𝑆 do
4 if 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 contains 𝛼 then
5 i := 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑅𝑎𝑛𝑘𝑠 .get(𝛼);
6 𝑅 :=

⋃𝑗<𝑛
𝑖

𝑅 𝑗 ;
7 add (𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽) to 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ;
8 continue;

9 else
10 𝑙𝑜𝑤 := 0;
11 ℎ𝑖𝑔ℎ := 𝑛;
12 while ℎ𝑖𝑔ℎ > 𝑙𝑜𝑤 do
13 𝑚𝑖𝑑 = (𝑙𝑜𝑤 + (ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤)/2);
14 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑+1 𝑅 𝑗 ;
15 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
16 𝑙𝑜𝑤 :=𝑚𝑖𝑑 + 1;
17 else
18 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑
𝑅 𝑗 ;

19 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
20 𝑅 :=

⋃𝑗<𝑛

𝑖=𝑚𝑖𝑑+1 𝑅 𝑗 ;
21 add (𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽) to

𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠;
22 break;

23 else
24 ℎ𝑖𝑔ℎ :=𝑚𝑖𝑑

25 add true to 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠;

26 return 𝑎𝑟𝑟𝑎𝑦𝑂𝑓 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

5 EXPERIMENT DESIGN
In order to determine how successful these optimisations were, we
compared their execution time against one another using prede-
termined knowledge bases and query sets (containing defeasible
implications) which we then passed into our different reasoners.
We then timed the execution time taken by each reasoner, using
built-in Java system time calls.

5.1 Creating Test Cases
5.1.1 Knowledge Bases. We used a knowledge-base generator (cre-
ated by Bailey) to generate test knowledge bases which would be
queried using our query sets. All our knowledge bases consisted of
only defeasible statements, all of the form 𝑎 |∼ 𝑏, where 𝑎 and 𝑏 are
propositional atoms. Our knowledge bases differed only in terms
of the following variables:

(1) Number of Ranks: The number of ranks in the knowledge
base when ranked according to BaseRank.

Joel Hamilton

(2) Statement Distribution: The distribution of statements over
the ranks in the knowledge base when ranked according to
BaseRank.

These are the variables over which we are comparing our optimised
implementations.

Thus, forNumber of Ranks, we generated knowledge bases which
had varying numbers of ranks (10, 50, and 100), but which each had
the same number of statements in each rank (2), and thus each had
the same distribution of statements over the ranks (uniform).

For Statement Distribution, we generated knowledge bases which
had different distributions of statements over the ranks (uniform,
normal, exponential), but the same number of ranks (50).

5.1.2 Query Sets. Our query sets were created manually, as each
query set was required to have some characteristic which would
allow us to gain insight into in which contexts our optimised algo-
rithms are most effective. For each knowledge base, we created 5
query sets:

(1) A set of queries whose antecedents all differ from one an-
other.

(2) A set of queries which all have the same antecedent.
(3) A set of queries whose antecedents are half unique, and are

half repeated.
(4) A set of queries whose antecedents all become consistent

with the knowledge base after all but the final rank have
been removed.

(5) A set of queries whose antecedents all become consistent
with the knowledge base after the first rank (rank 0) has
been removed.

The query sets whose number of unique antecedents are controlled
are to provide insight into how effective the StoredRankCheck
implementation is in particular at improving the execution time
from that of the RationalClosure implementation, as the idea
behind this optimisation relies on there being a large number of
repeated antecedents, and thus a large amount of unnecessary
computation no longer being done.

The query sets where the level at which their antecedents become
consistent with the knowledge base are controlled are to provide
insight into the effectiveness of the RCBinCheck implementation in
particular, as the idea behind this optimisation relies on the index
of the ranks from which all above ranks must be removed being as
large as possible.

All query sets should provide insight into the extent to which
the StoredRankBinCheck algorithm is effective in optimising the
execution of a Rational Closure entailment check, as the basis of
this optimisation is that it will be more effective for higher ranks
at which antecedents become consistent, as well as for query sets
which contain a large number of repeated antecedents.

5.2 Running Experiments
We created a program which, for a given knowledge base K , in-
stantiates four reasoners, which all use the same ranking algorithm
(BaseRank), but which each use a different entailment checking
algorithm (RationalClosure, RCBinCheck, StoredRankCheck, and
StoredRankBinCheck). This program then iterates through a given
query set, and measures the time taken (in milliseconds) for each

reasoner to determine whether or not K p≈ 𝛼 . The program then
writes these measurements to a CSV file, where each line repre-
sents a particular query, and each individual value is the number of
milliseconds taken for each reasoner to respond to the given query.
Note that the implementation of this testing program was written
in such a way that only the entailment check was timed, and not
the ranking of the statements, as there was no change made to this
aspect of the algorithms, and thus comparing the time taken to
rank the statements are not of any interest to us, and any variation
would be random.

These tests were run on a laptop with a Intel Core i5 processor,
2 cores, 4 logical processors, and 8GB ram.

Source code for rerunning experiments & reproducing results
are in the project repository at www.github.com/joelvhamilton/
rational-closure.

6 RESULTS & DISCUSSION
For each knowledge base and query set combination, we performed
a Wilcoxon signed rank test to compare the runtimes of each dif-
ferent implementation with that of the naive implementation, and
obtained a p-value for the null hypothesis that there is no statisti-
cally significant difference between the means of the two groups,
and the alternative hypothesis that the two group means do in fact
differ significantly. The full set of p-values obtained from all these
tests can be seen in section 1 of Appendix A.

6.1 Binary Search Optimisation Results
The query sets whose results are most relevant to evaluating the
performance of the RCBinCheck optimisation over varying numbers
of ranks are those where the ranks at which the queries’ antecedents
become consistent with the knowledge base have been controlled.

6.1.1 Comparison over Varying Numbers of Ranks. The comparison
between the runtimes of the RCBinCheck and RationalClosure
implementations yielded statistically significant p-values (𝛼 = 0.05)
for a 100-rank knowledge base for the query set where all an-
tecedents are rank-1 consistent, as well as for where all antecedents
are rank-100 consistent. An exploration of the data showed that the
mean of the runtimes for the rank-1 consistent entailment check
using the RCBinCheck implementation were significantly worse
than that of the RationalClosure implementation, and that for
the rank-100 consistent entailment check, the RCBinCheck imple-
mentation performed significantly better than its naive counterpart.
This strongly supports the idea that this optimisation is more effec-
tive when the ranks at which the antecedents of the queries become
consistent with the knowledge base are larger (i.e. a higher rank
number).

This same pattern is observed for the knowledge bases with
50- and 10 ranks, as the RCBinCheck optimisation performs signifi-
cantly better for query sets where the antecedents of the queries
become consistent at ranks 50 and 10, respectively, and signifi-
cantly worse for queries with rank-1 consistent antecedents. The
extent to which the RCBinCheck implementation outperforms the
RationalClosure implementation for queries with antecedents
which are final-rank-consistent tends to decrease as the number of
ranks in the knowledge base decreases, however some exploration

www.github.com/joelvhamilton/rational-closure
www.github.com/joelvhamilton/rational-closure

An Investigation into the Scalability of Rational Closure

of the data revealed that the performance of the RCBinCheck im-
plementation was relatively consistent, which is in fact evidence
against the number of ranks in a knowledge base being a key de-
terminant of whether or not the RCBinCheck optimisation will
perform better, and implies that the variable of interest is in fact the
ranks at which the antecedents of our queries become consistent, as,
of course, the rank number of the final rank changes for knowledge
bases with less ranks. This variable being key to evaluating our op-
timisation’s efficacy is perfectly logical, as it determines how many
ranks the program needs to iterate over, and thus, with varying
numbers of ranks in the knowledge base, if the rank at which the
antecedent became consistent with the knowledge base were to
remain the same, the performance of the RCBinCheck would not
change.

It may be the case that on average, knowledge bases with more
ranks will be queried with queries whose antecedents become con-
sistent at higher ranks, however this will vary from case to case,
and is not certain enough to be able to argue that this optimisation
will always be effective for knowledge bases containing more ranks.

6.1.2 Comparison over Varying Distributions of Statements over
Ranks. Over all distributions (Normal, Uniform, and Exponential),
we obtained extremely small p-values (all ≈ 0) when querying with
the rank-1 consistent query sets, and with the rank-50 query sets.
Once again, the RationalClosure implementation outperformed
the RCBinCheck implementation significantly for the rank-1 con-
sistent query sets, and the performance was the other way around
for the rank-50 consistent query sets. This was unsurprising, as
while the structure of the knowledge base was changing, the ranks
at which our queries’ antecedents became consistent remained
unchanged, and thus the change in number of ranks in our knowl-
edge base did not yield any difference in the performance of this
optimisation. Once again, the RationalClosure implementation
drastically outperformed the RCBinCheck implementation for the
rank-1 consistent query set, and vice-versa for the rank-50 query
set. This is very strong evidence that RCBinCheck is a significant im-
provement on the original RationalClosure algorithm for queries
whose antecedents become consistent at a very high rank number.
We foresee that future research will be able to refine at which rank
this optimisation becomes effective, and that this information will
be able to inform choice of implementation when a researcher (or
user) has a large number of queries to query a knowledge base with.

Similarly, it could be the case that on average, knowledge bases
with specific distributions of statements over ranks will be queried
with queries whose antecedents become consistent at higher ranks,
however this will vary from case to case, and is not certain enough
to be able to argue that this optimisation will always be effective
for knowledge bases containing more ranks.

6.2 Indexing Optimisation Results
The query sets whose results are most relevant for evaluating the
performance of the StoredRankCheck implementation are those
where the number of distinct antecedents is controlled.

6.2.1 Comparison over Varying Numbers of Ranks. The compar-
ison between StoredRankCheck and RationalClosure (i.e. the

comparison between the execution times of their implementations)
yielded statistically significant p-values (𝛼 = 0.05) for the query
sets where half of the antecedents were distinct, and where all
queries had the same antecedent (both < 0.05), across all the knowl-
edge bases (i.e. with 10, 50, and 100 ranks, respectively). In both
cases, the StoredRankCheck implementation significantly outper-
formed the RationalClosure implementation. This was slightly
less significant for the 10-rank knowledge base, which suggests
that the extent to which this optimisation performs better than the
RationalClosure implementation would increase for cases with
larger knowledge bases. This is however slightly misleading, as
once again, if the ranks at which the antecedents become consistent
were to be kept constant, then on average, the number of ranks
in the knowledge base would not significantly impact the perfor-
mance of either of our implementations, as the number of ranks
over which our program would need to iterate (either repeatedly,
or before storing this rank number, depending on the implemen-
tation) would be the same, and thus we believe the improvement
in performance for knowledge bases with more ranks is merely a
product of having queries which only become consistent in lower
ranks.

A narrowly significant p-value was only obtained for one of the
three cases where the query set contained all distinct antecedents,
which we attribute to random variation, as when a query set has
all distinct antecedents, the execution of RationalClosure and
the StoredRankCheck implementation are essentially the same (no
execution time is saved). These results strongly support the hy-
pothesis that the StoredRankCheck implementation outperforms
the naive implementation for query sets where a large proportion
of the antecedents in the query set are repeated. The impressive
performance of this optimisation for the query set with half-distinct
antecedents strongly suggests that the proportion of repeated an-
tecedents at which this optimisation begins to outperform the naive
implementation is somewhere below 50%. We foresee that future
research will refine the proportion of repeated statements at which
this optimisation begins to outperform the naive implementation.
It is important to note that this proportion would vary depending
on the ranks at which the antecedents in the query sets become
consistent with the knowledge base, as more execution time is
saved when the work being replaced by the hash table call is more
lengthy (i.e. iterations over more ranks).

6.2.2 Comparison over Varying Distributions of Statements over
Ranks. For all distributions of statements over the knowledge bases
(Uniform, Normal, and Exponential), the comparison between the
StoredRankCheck and RationalClosure implementations yielded
a similar pattern, whereby the p-value obtained for the query sets
with all the same antecedent was lower than the p-value obtained
for the query sets with half-distinct antecedents, which itself was
consistently much lower than the p-value obtained for the query
sets with all-distinct antecedents. This is very strong evidence in
favour of the notion that the distribution of statements does not
directly impact the performance of this implementation, which
makes perfect sense, as the more specific variable (which could
be impacted by the distribution, however we cannot say this with
certainty) which has a more direct impact on the performance of
the StoredRankCheck and RationalClosure implementations is

Joel Hamilton

the rank number of the rank at which the antecedents of our queries
become consistent with the knowledge base.

6.3 Binary Indexing Optimisation Results
6.3.1 Comparison over Varying Numbers of Ranks. The comparison
between the StoredRankBinCheck and RationalClosure imple-
mentations yielded statistically significant results (𝑝 < 0.05) for the
100 rank knowledge base when queried with all query sets, except
for the one containing statements with all distinct antecedents.
For the 50 and 10 rank knowledge bases, the query sets with half-
distinct (i.e. all repeated) antecedents also yielded relatively high
p-values. This can be explained by noting that the rank index stor-
ing aspect of the StoredRankBinCheck algorithm is likely to only
yield a significant improvement over RationalClosure for cases
where the query sets contain a large proportion of repeated an-
tecedents. It appears that there are enough distinct antecedents in
the half-distinct query set that the rank storing does not result in
improved performance for the 10- and 50-rank knowledge bases,
and that the antecedents in these query sets become consistent
with the knowledge base at a low enough rank number that the
binary search aspect of the algorithm did not yield a significant im-
provement in execution time when using the StoredRankBinCheck
implementation.

The remaining 12 trials when comparing over varying numbers
of ranks all yielded very low p-values (≈ 0), and the same pattern
from the binary search optimisation was observed, where the opti-
mised version (in this case, the StoredRankBinCheck optimisation)
performed significantly worse for the rank-1 consistent antecedents,
and performed significantly better for the final-rank consistent an-
tecedents. This is unsurprising, as all rank-1 consistent antecedents
result in best-case execution for the RationalClosure implemen-
tation, and final-rank consistent antecedents result in worst-case
execution for RationalClosure, and thus it makes sense that our
optimisation would result in better performance for final-rank con-
sistent antecedents. We foresee that future research can determine
at what rank (relative to the number of ranks n) this optimisation
begins to perform better. Similar to the indexing optimisation com-
parison, for all numbers of ranks, the performance for the query sets
containing queries with the same antecedent was very impressive
(all p-values ≈ 0), which is strong evidence in favour of the idea that
as the proportion of repeated antecedents grows, the performance
of the optimisation improves.

6.3.2 Comparison over Varying Distributions of Statements over
Ranks. Changing the distributions had no discernible impact on the
results. The results over all distributions are very similar, and differ
from one another similarly to how those results differ where the
distributions are kept constant. This suggests that it is once again
the rank number at which the antecedents of our queries become
consistent with the knowledge base, along with the proportion of
repeated antecedents in our query set, that determine the extent to
which the StoredRankBinCheck implementation outperforms the
naive implementation.

7 CONCLUSIONS AND IMPLICATIONS FOR
DEFEASIBLE REASONING

Our findings strongly suggest that query set characteristics are a
stronger determinant than knowledge base characteristics when
figuring out in which contexts our different optimisations result in
improved performance. The first key aspect of query sets to men-
tion is that if there is a large number of repeated antecedents in our
set of queries, then StoredRankCheck and StoredRankBinCheck
will both tend to outperform the naive RationalClosure imple-
mentation, as every time these optimised algorithms encounter an
antecedent it has come across before, it saves time by not perform-
ing the same calculation of which ranks to remove repeatedly.

The second key characteristic of query sets which determine
the extent to which our optimisations provide improved efficiency
over the original algorithm (as laid out by Casini et al in [6]) is
the average rank number at which the antecedents of our queries
become consistent with the knowledge base. If this number is 1,
then RationalClosure will tend to obtain a result quicker than
the RCBinCheck, and if this number is equal to the final rank
in the knowledge base, then if the knowledge base contains a
fair number of ranks (at least 10, based on this research), then
RCBinCheck will outperform the original algorithm tremendously.
The overall impression is that the larger the rank number at which
our queries’ antecedents become consistent with the knowledge
base, the greater the extent to which RCBinCheck will outperform
RationalClosure.

Based on how BaseRank works, statements whose antecedents
are consistent with the knowledge base in low number ranks are
often about more general concepts, e.g. a bird would likely be
represented as a more general (i.e. less specific) concept than a
penguin, and thus the generality of the defeasible implications
being checked, more specifically the generality of the antecedents,
could play large a role in determining how effective the RCBinCheck
and StoredRankBinCheck optimisations are.

8 FUTUREWORK
As mentioned throughout the paper, there are key aspects of this
research which we believe future researchers will be able to refine.
We foresee that these refinements should be done in a similar way,
but where the rank number at which queries become consistent
with the knowledge base is treated as the key explanatory variable,
and where knowledge base structure is kept the same. We believe
such research would determine to a greater degree of certainty what
proportion of repeated antecedents in a query set results in better
performance by the StoredRankCheck and StoredRankBinCheck
algorithms. We also foresee that future researchers will be able
to determine at which rank (relative to the number of ranks in
a knowledge base) individual queries are handled quicker by the
StoredRankBinCheck and RCBinCheck implementations.

The key limitation of this research was the inability to isolate the
experiments from the variation of other factors such as CPU usage,
RAM usage, and other volatile aspects of the systems/architectures
on which the experiments were run. We’d therefore suggest that
future researchers use a high-performance computer in a more
isolated environment in order to obtain less noisy data, and thus
more reliable results.

An Investigation into the Scalability of Rational Closure

The knowledge base and query set characteristics investigated
in this paper are merely the tip of the iceberg as it relates to factors
which determine the efficiency of optimisations, and therefore a
large amount of similar research can be done controlling other vari-
ables, such as formula structure, given that all our knowledge bases
contained statements of the same form, and that our implemen-
tations can handle much more complex propositional defeasible
formulas.

REFERENCES
[1] Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition.

Springer, 2012.
[2] Zied Bouraoui, Antoine Cornuéjols, Thierry Denœux, Sebastien Destercke, Didier

Dubois, Romain Guillaume, João Marques-Silva, Jérôme Mengin, Henri Prade,
Steven Schockaert, Mathieu Serrurier, and Christel Vrain. From shallow to deep
interactions between knowledge representation, reasoning and machine learning
(kay r. amel group), 12 2019.

[3] Daniel Bryant and Paul Krause. A review of current defeasible reasoning imple-
mentations. The Knowledge Engineering Review, 23(3):227–260, 2008.

[4] G. Casini, T. Meyer, K. Moodley, and I. Varzinczak. Towards practical defeasible
reasoning for description logics. Jul 2013.

[5] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. Relevant
closure: A new form of defeasible reasoning for description logics. In Eduardo
Fermé and João Leite, editors, Logics in Artificial Intelligence, pages 92–106, Cham,

2014. Springer International Publishing.
[6] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. Taking defeasible entail-

ment beyond rational closure. In Francesco Calimeri, Nicola Leone, and Marco
Manna, editors, Logics in Artificial Intelligence - 16th European Conference, JELIA
2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in
Computer Science, pages 182–197. Springer, 2019.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, first edition edition, 1979.

[8] Adam Kaliski. An overview of klm-style defeasible entailment, 2020_.
[9] Sarit Kraus, Daniel Lehmann, and MenachemMagidor. Nonmonotonic reasoning,

preferential models and cumulative logics. Artificial intelligence, 44(1-2):167–207,
1990.

[10] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7:59–6, 01
2010.

[11] Daniel Lehmann. Another perspective on default reasoning. Annals of Mathe-
matics and Artificial Intelligence, 15(1):61–82, Mar 1995.

[12] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1–60, 1992.

[13] Kody Moodley, Thomas Meyer, and Ivan Varzinczak. A protégé plug-in for
defeasible reasoning. volume 846, 06 2012.

[14] Matthias Thimm. Tweety - a comprehensive collection of java libraries for logical
aspects of artificial intelligence and knowledge representation. In Proceedings of
the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR’14), July 2014.

[15] Matthias Thimm. The tweety library collection for logical aspects of artificial
intelligence and knowledge representation. Künstliche Intelligenz, 31(1):93–97,
March 2017.

Appendix A

1 Rational Closure Implementation Runtime Comparison

The values in the tables are the p-values obtained when performing a Wilcoxon Signed Rank Test
(with continuity correction) on the time taken by each knowledge base to determine whether or not
each query in a given set of queries are entailed by the knowledge base. The sets of queries used in
each case all contain defeasible implications whose antecedents can be described by the description
in the left column.

• ’All Unique’ simply refers to a set of queries whose antecedents all differ from one another.

• ’All the same’ refers to a set of queries which all have the same antecedent.

• ’All repeated once’ refers to a set of queries which have k/2 distinct antecedents, each repeated
once, where k is the number of queries in the set.

• ’Rank n-consistent’ refers to a set of queries whose antecedents all become consistent with
the knowledge base with all ranks up to and including rank n-1 having been removed when
performing the Rational Closure entailment check.

The phrases in the top row of the results tables indicate the Rational Closure algorithm implemen-
tation being compared, i.e.:

• ’Naive’ refers to the RationalClosure implementation, with no optimisation approaches im-
plemented.

• ’Binary’ refers to the RCBinCheck implementation.

• ’Indexing’ refers to the StoredRankCheck implementation.

• ’Binary Indexing’ refers to the StoredRankBinCheck implementation.

1.1 Comparison over varying numbers of ranks

For these tests, the distribution of statements over the ranks in the knowledge bases used were
consistently ”uniform”, with each rank containing only 2 statements, in order to ensure that the
results obtained were a result of varying numbers of ranks and not due to varying numbers of
statements within ranks or due to varying distributions of statements over the ranks.

1

1.1.1 Knowledge Base with 100 ranks

Query Set Indexing vs Naive Binary vs Naive Binary Indexing vs Naive
All Unique 0.141 0.8507 0.9769
All the same 1.805e-15 4.893e-14 1.742e-15
All repeated once 0.0004468 0.0008448 0.0354
Rank 1-consistent 3.8e-0.7 1.144e-09 1.145e-09
Rank 100-consistent 7.105e-15 1.145e-09 3.553e-15

1.1.2 Knowledge Base with 50 ranks

Query Set Indexing vs Naive Binary vs Naive Binary Indexing vs Naive
All Unique 0.002597 0.5495 0.4931
All the same 7.789e-10 7.789e-10 7.789e-10
All repeated once 0.0005995 0.004143 0.1449
Rank 1-consistent 7.161e-08 7.780e-10 7.783e-10
Rank 50-consistent 2.039e-09 1.038e-08 7.79e-10

1.1.3 Knowledge Base with 10 ranks

Query Set Indexing vs Näıve Binary vs Naive Binary Indexing vs Naive
All Unique 0.1231 0.165 0.6477
All the same 4.371e-09 6.248e-06 2.096e-09
All repeated once 0.003174 0.8472 0.09556
Rank 1-consistent 2.162e-0.6 1.188e-07 1.455e-11
Rank 10-consistent 1.055e-09 0.0008376 1.748e-08

1.2 Comparison over varying distributions of statements over ranks

For these tests, the number of ranks in the knowledge bases used were kept constant at 50, in order
to ensure that results obtained were a result of the varying distributions and not varying numbers
of ranks.

1.2.1 Knowledge Base with Uniform Distribution of statements over ranks

Query Set Indexing vs Naive Binary vs Naive Binary Indexing vs Naive
All Unique 0.002597 0.5495 0.4931
All the same 7.789e-10 7.789e-10 7.789e-10
All repeated once 0.0005995 0.004143 0.1449
Rank 1-consistent 7.161e-08 7.780e-10 7.783e-10
Rank 50-consistent 2.039e-09 1.038e-08 7.79e-10

2

1.2.2 Knowledge Base with Normal Distribution of statements over ranks

Query Set Indexing vs Näıve Binary vs Naive Binary Indexing vs Naive
All Unique 0.06955 0.3876 0.05412
All the same 2.435e-09 8.793e-10 7.785e-10
All repeated once 3.765e-06 0.6157 0.0001513
Rank 1-consistent 1.17e-06 8.279e-10 3.896e-09
Rank 50-consistent 7.78e-10 1.457e-06 7.782e-10

1.2.3 Knowledge Base with Exponential Distribution of statements over ranks

Query Set Indexing vs Näıve Binary vs Naive Binary Indexing vs Naive
All Unique 0.4457 7.789e-10 8.275e-10
All the same 2.228e-07 7.79e-10 8.797e-10
All repeated once 0.00204 1.631e-08 1.766e-07
Rank 1-consistent 3.085e-08 7.789e-10 8.277e-10
Rank 50-consistent 1.298e-09 9.806e-09 1.161e-08

3

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Entailment
	2.3 KLM Approach to Defeasible Reasoning
	2.4 Rational Closure
	2.5 Defeasible Reasoning Implementations

	3 Project Aims
	4 Implementation & Optimisation of Rational Closure
	4.1 Naive Implementation
	4.2 Optimisation 1: Binary Search Entailment Check
	4.3 Optimisation 2: Indexing Approach
	4.4 Optimisation 3: Binary Indexing Approach

	5 Experiment Design
	5.1 Creating Test Cases
	5.2 Running Experiments

	6 Results & Discussion
	6.1 Binary Search Optimisation Results
	6.2 Indexing Optimisation Results
	6.3 Binary Indexing Optimisation Results

	7 Conclusions and Implications for Defeasible Reasoning
	8 Future Work
	References

