
SCADR Literature Review
Daniel Park

University of Cape Town
Cape Town, South Africa
prkjoo001@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning is one of the critical parts
of artificial intelligence. A machine has its own representation of
the world with given information, and it draws conclusions by
reasoning with what it has. Humans want to implement AI in a
way such that it will reason similar to human, but humans are not
always straight forward like machines. It is certainly not preferable
to keep human reasoning in the form of classical logic. Humans
make assumptions that are not always true, or only partially true.
This requires non-monotonic reasoning, where defeasible reasoning
comes in part. We aim to design and implement algorithms that
can handle defeasible reasoning, improving the scability of these
algorithms.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Com-
puting methodologies → Nonmonotonic, default reasoning
and belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, KLM approach, Rational Closure, satisfiability
solving

1 INTRODUCTION
Determining whether a given propositional logic formula is sat-
isfiable or not is known as the canonical NP-complete Boolean
satisfiability (SAT) problem [3]. Currently, there are many SAT
solvers available to the public that are very efficient, but focusing
mainly on classical propositional logic. These SAT solvers are capa-
ble of solving many reasoning problems, but there are very few that
focuses on defeasible reasoning with efficiency. This review will
focus on the aspects of classical propositional logic, defeasible logic,
SAT solvers, and how we can use these to implement an algorithm
for defeasible reasoning.

2 PROPOSITIONAL LOGIC
Propositional logic [2] is a study of logic with reasoning about
knowledge or information, representing human language into a
logical statement. We aim to combine or modify the propositional
statements to form ideal statements, but these statements can be
more complicated. Each statements have its own truth and the truth
of the combined statements relies on the base statements that were
used. We can then use this to formally analyse and reason about
a statement or a set of statements, or draw a conclusion that was
unknown by using our analysis.

2.1 Syntax
The propositional 𝑎𝑡𝑜𝑚𝑠 , also known as variables or symbols, are
used to build up the language of propositional logic [9, 19]. State-
ments are represented by propositional atoms. Each atom is as-
signed a truth-value, either True or False, denoted as T for True and
F for False. Meta variables, denoted with lower case Latin alphabet
letters: 𝑝, 𝑟, ..., are used to represent statements. For an example: a
person is an atom, but we denote it with 𝑝 , without any loss of inter-
pretation. Once 𝑝 is denoted for person, no other atoms other than
person can be denoted as 𝑝 . A finite set 𝑃 is a set of all propositional
atoms. The statements can be combined using connectives with the
truth-values of the combined statements relying on the truth-value
of each individual statements. Each logical statements consist of
logical operators, where each statement has its own truth-values
that are assigned depending on the statement [12].

All formulas that are element of the language L, where 𝛼, 𝛽 ∈ L,
and 𝑝 ∈ 𝑃 are recursively defined as follows: 𝛼 ::= ⊤ | ⊥ | 𝑝 | ¬𝛼 |
𝛼 ∧ 𝛼 | 𝛼 ∨ 𝛼 | 𝛼 → 𝛼 | 𝛼 ↔ 𝛼 .

There are in fact more operators than the ones mentioned above,
but we will only be using these operators since the composite of
them can define all the other formulas.

The negation operator takes in single operand, while the other
operators take in two operands [2]. For each operators:

• ⊤ is read as Top and means the statement is always True,
and ⊥ means the statement is always False.

• 𝛼 ∧ 𝛽 is a conjunction of two statements where if either of
the statements is false, then the composite statement is also
false.

• 𝛼 ∨ 𝛽 is an inclusive disjunction such that if either of the
statements is true, then the composite statement is also true.

• 𝛼 → 𝛽 Is read as if 𝛼 then 𝛽 , meaning that whenever 𝛼 is
true, 𝛽 is always True. The only case where this statement
is False is when 𝛼 is True, but 𝛽 is False. For all other cases,
this statement holds.

• 𝛼 ↔ 𝛽 Is read as 𝛼 if and only if 𝛽 . This statement only holds
for when 𝛼 is True then 𝛽 has to be True and vice versa. For
all other cases, the statement does not hold.

2.2 Semantics
For a statement consisting of an individual variable 𝑝 only, 𝑝 is
assigned True, and for a statement consisting of an individual ¬𝑝 ,
𝑝 is assigned False. A statement is known as inconsistent if it con-
sists of complementary atoms, such as both 𝑝 and ¬𝑝 in the same
statement. Such a statement does exist, but this just means that 𝑝
cannot exist according to the statement. Negation sign alternates
the truth-value of atoms where ¬𝑝 assigns False to 𝑝 , but ¬¬𝑝 as-
signs True to 𝑝 .

Daniel Park

The following is a truth table of formulas for 𝑝, 𝑞 ∈ 𝑃 :

𝑝 𝑞 ⊤ ⊥ 𝑝 ¬𝑝 𝑝 ∧ 𝑞 𝑝 ∨ 𝑞 𝑝 → 𝑞 𝑝 ↔ 𝑞

T T T F T F T T T T

T F T F T T F T F F

F T T F F F F T T F

F F T F F T F F T T

Table 1: Truth table where the rows represent the interpre-
tations

Sometimes, ¬𝑝 is also written as 𝑝 , and this will be used to
represent the valuations. For 𝑝, 𝑞 ∈ 𝑃 , referring to Table 1 from
above, the set of all valuations are {𝑝𝑞, 𝑝𝑞, 𝑝𝑞, 𝑝𝑞}. For example: the
set of valuations for the statement K = {𝑝 ∧ 𝑞} is {𝑝𝑞} and for
K = {𝑝 → 𝑞} is {𝑝𝑞, 𝑝𝑞, 𝑝𝑞}, where K is the knowledge base.

2.3 Entailment
An entailment is a logical consequence from a statement or a set
of statements. A statement or a set of statements logically follow
from a single or composition of statements when the statement
that is logically followed contains every truth of the base statement.
Entailment is not a formula, but a concept, and it is denoted as |=.
For the knowledge base K , a set of formulas, and 𝛼 , a statement,
K |= 𝛼 is read asK entails 𝛼 and this is true if and only if 𝛼 contains
every model of K . It is possible for 𝛼 to contain models that are
not in K , but the minimum requirement for K to entail 𝛼 is for 𝛼
to contain every model of K . For an example: K |= (𝑝 ∨ 𝑞), where
K = {𝑝 ∧ 𝑞}. By referring to Table 1, the statement 𝑝 ∨ 𝑞 has
the valuations 𝑝𝑞, 𝑝𝑞, 𝑝𝑞 and 𝑝 ∧ 𝑞 has the valuations 𝑝𝑞 only. By
inspection, it is clear that the statement (𝑝∨𝑞) contains everymodel
of K , thus K does entail (𝑝 ∨ 𝑞). A method of checking whether a
knowledge base K entails a statement 𝛼 is to see whether K |= ¬𝛼 .
This is useful since it is not efficient to check every valuations when
K actually does entail 𝛼 . In a case of K |= ¬𝛼 , we will just have to
find one valuation where it satisfies K |= ¬𝛼 . If K does not entail
¬𝛼 , then K |= 𝛼 . |= 𝛼 means that 𝛼 is valid if and only if 𝛼 is True
for all interpretations. ̸ |= 𝛼 means 𝛼 is invalid if and only if there is
at least one interpretation that falsifies 𝛼 . This entailment takes a
crucial role as this review goes on.

3 LIMITATIONS OF CLASSICAL
PROPOSITIONAL LOGIC

In a real-world scenario, it is not always straight forward to repre-
sent human language into a classical propositional logic language.
Classical propositional logic is monotonic. Monotonic means that
the conclusion you draw from all the information is fixed and adding
new statements does not change this conclusion. However, think
of a case where we have variables 𝑝, 𝑞, 𝑓 ∈ 𝑃 and atoms penguin,
bird and flies, where each atom is denoted by its corresponding
variables. From here we can have K = {𝑝 → 𝑏, 𝑏 → 𝑓 , 𝑝 → ¬𝑓 }.
Which states that penguins are birds, birds fly, and penguins cannot

fly. The above three statements are reasonable in a real-world case
but putting them into classical propositional logic language results
in the following: penguins are birds, penguins cannot fly, and birds
fly, thus such penguins cannot exist. We know that penguins are
birds that cannot fly, but the composite of the three statements is
telling us that such element p cannot exists for classical proposi-
tional logic. What we actually meant was that birds typically fly. We
know that not all birds can fly, such as penguins and ostriches, but
these are still referred to as birds. So, we add a statement, 𝑏 → ¬𝑓
to inform that there are birds that cannot fly. With monotonicity,
this leads to a contradiction since we already concluded that birds
fly. So, by adding new information on birds cannot fly, this will
lead to inconsistency. This is where we represent non-monotonic
KLM-style defeasible reasoning.

3.1 KLM-style Defeasible Approach
The Kraus, Lehmann and Magidor (KLM) approach [13] introduces
a defeasible operator |∼, where it expresses typicality. For 𝛼, 𝛽 ∈ L,
𝛼 |∼ 𝛽 is read as: typically, if 𝛼 , then 𝛽 . This means that 𝛽 is con-
cluded from 𝛼 unless there is contradictory information. Using the
KLM approach, we can now have an atom penguin that can exist.
By replacing→ from the statement 𝑏 → 𝑓 to 𝑏 |∼ 𝑓 and 𝑝 → ¬𝑓 to
𝑝 |∼ ¬𝑓 , we now have the following: K = {𝑝 → 𝑏,𝑏 |∼ 𝑓 , 𝑝 |∼ ¬𝑓 }.
The composite of these statements reads as "penguins are birds,
birds typically fly and penguins typically do not fly". This can entail
that penguin is a bird that cannot fly.

The equivalent conditions come in handy when simplifying com-
posite statements or when drawing conclusions. Lehmann and
Magidor have provided the extensions of the KLM properties [15].
The following defeasible implication, with knowledge base K , has
equivalent conditions:

(𝑅𝑒 𝑓)K |≈ 𝛼 |∼ 𝛼 (𝐿𝐿𝐸) ⊤ |= 𝛼 ↔ 𝛽,K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛽 |∼ 𝛾

(𝑂𝑟) K |≈ 𝛼 |∼ 𝛾,K |≈ 𝛽 |∼ 𝛾

K |≈ 𝛼 ∨ 𝛽 |∼ 𝛾
(𝐴𝑛𝑑) K |≈ 𝛼 |∼ 𝛽,K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 |∼ 𝛽 ∧ 𝛾

(𝑅𝑊) K |≈ 𝛼 |∼ 𝛽, 𝛽 |= 𝛾

K |≈ 𝛼 |∼ 𝛾
(𝐶𝑀) K |≈ 𝛼 |∼ 𝛽,K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

(𝑅𝑀) K |≈ 𝛼 |∼ 𝛾,K |0 𝛼 |∼ ¬𝛽
K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

The defeasible entailment, denoted as |≈, is used when a knowledge
base K entails a defeasible statement.

3.2 Ranked Interpretation
In KLM approach, due to typicality, it is not always clear to draw
a conclusion from a defeasible entailment. The semantics of KLM-
style rational defeasible implications use ranked interpretation [15]
for this purpose.

Definition 1. A ranked interpretation R is a function from U to
N∪{∞}, satisfying the following convexity property: for every 𝑖 ∈ N ,

SCADR Literature Review

if there exists a 𝑢 ∈ U such that R(𝑢) = 𝑖 , then there is a 𝑢 ∈ U for
which R(𝑢) = 𝑗 for every j such that 0 ≤ 𝑗 < 𝑖 .

The ranked interpretation assigns a rank to every possible valua-
tions of 𝑃 , where 𝑃 is the set of propositional atoms. The structure
of ranking interpretation starts from rank 0 to rankN , and an extra
rank ∞. Each rank consists of at least one valuation, meaning that
there cannot be an empty rank. A valuation with lower rank is
more typical than the valuations that have greater ranks. The valu-
ation at rank 0 is most preferred and the valuations at rank∞ are
impossible. The valuations at rank N can still occur, but it is least
preferred. R ⊩ 𝛼 is read as R satisfies 𝛼 and this holds if 𝛼 is true
in all ranks of R, excluding the rank∞. R ⊩ 𝛼 |∼ 𝛽 if, in the lowest
rank of where 𝛼 holds, 𝛽 also holds. R generates the ordering ⪯R
on U as follows: R1 ⪯K R2 if for every 𝑢 ∈ U,R1 (𝑢) ≤ R2 [5].
By Giordano et al, there is an unique minimal interpretation with
respect to ⪯K [10].

For an example, using the penguin example mentioned earlier, with
K = {𝑝 → 𝑏, 𝑏 |∼ 𝑓 , 𝑝 |∼ ¬𝑓 } and 𝑃 = {𝑝, 𝑓 , 𝑔} [5] we can have the
following graphical representation of ranked interpretation:

∞ 𝑝𝑏𝑓 𝑝𝑏𝑓

2 𝑝𝑏𝑓

1 𝑝𝑏𝑓 𝑝𝑏𝑓

0 𝑝𝑏𝑓 𝑝𝑏𝑓 𝑝𝑏𝑓

From the above figure, it shows that the rank of 𝑝𝑏𝑓 and 𝑝𝑏𝑓 is
equal to∞, meaning that these two valuations are not possible, and
the valuations 𝑝𝑏𝑓 , 𝑝𝑏𝑓 , 𝑝𝑏𝑓 are the ones that are most preferred
since they have rank 0. The valuations that are in rank 0 represents
the most typical world. This does not mean that the valuations that
are not in rank 0 are impossible (excluding the valuations in rank
∞), but they are less preferable as their rank increases.

3.3 Rational Closure
Rational Closure [15] and Lexicographic Closure [14] are two of the
multiple formalisations of defeasible entailment. Rational closure
was suggested by Lehmann and Magidor and Lexicographic closure
was proposed by Lehmann. Both rational closure and lexicographic
closure satisfies LM-rationality [15].
Ranked Interpretation Entailment. RK is a unique minimal
ranked interpretation with respect to ⪯K [10]. K |≈ 𝛼 |∼ 𝛽 if
RK ⊩ 𝛼 |∼ 𝛽 .
Base Rank Algorithm Entailment. The Base Rank Algorithm
will be used for checking defeasible entailment due to the above
algorithm missing the approach to find the unique minimal ranked
interpretation. The ranking of all the statements in the knowledge
base K is constructed with the following algorithm:

(1) Define K𝐶 as all the classical statements in K

(2) DefineK𝐷 as all the defeasible statements inK , and convert
all the defeasible statements to classical statements, where

the operator |∼ becomes→

(3) Σ0 = K𝐷

(4) Σ𝑖 = {𝛼 → 𝛽 | 𝛼 → 𝛽 ∈ K𝐶 ∪ Σ𝑖−1 |= ¬𝛼}

(5) 𝑖 starts from 1 to where Σ𝑖 = Σ𝑖−1 or Σ𝑖 is empty, and 𝑖 ∈ N

(6) R∞ = K𝐶

(7) R 𝑗 = Σ 𝑗 − Σ 𝑗+1, 0 ≤ 𝑗 < 𝑖, 𝑗 ∈ N
The result of this algorithm is the ranking ofK , where all the state-
ments are in the form of classical logic.

For example, let the set of atoms 𝑃 = {𝑏, 𝑓 , 𝑝,𝑤, 𝑟 }, and the knowl-
edge baseK = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 , 𝑟 → 𝑏, 𝑏 |∼ 𝑤}. By applying
the algorithm from above, we have the following:

• K𝐶 = {𝑟 → 𝑏, 𝑝 → 𝑏}

• K𝐷 = {𝑏 |∼ 𝑓 , 𝑝 |∼ ¬𝑓 , 𝑏 |∼ 𝑤} and this get converted into
{𝑏 → 𝑓 , 𝑝 → ¬𝑓 , 𝑏 → 𝑤}

• Σ0 = {𝑏 → 𝑓 , 𝑝 → ¬𝑓 , 𝑏 → 𝑤}

• Σ1 = {𝑝 → ¬𝑓 } since Σ0 ∪K𝐶 |= ¬𝑝 , but does not entail ¬𝑏

• Σ2 = ∅. We stop at Σ1 since Σ2 is empty

• R∞ = {𝑟 → 𝑏, 𝑝 → 𝑏}

• R1 = Σ1\Σ2 = {𝑝 → ¬𝑓 }

• R0 = Σ2\Σ1 = {𝑏 → 𝑓 , 𝑏 → 𝑤}
The visual representation of the ranking:

0 𝑏 → 𝑓 𝑏 → 𝑤

1 𝑝 → ¬𝑓

∞ 𝑟 → 𝑏 𝑝 → 𝑏

Statements with higher ranking have more typicality than the
statements that have lower ranking. For the entailment checking,
check the following:

• For K |≈ 𝛼 , if every statement in the rank ∞ entails 𝛼 , then
K |≈ 𝛼 holds.

• For K |≈ 𝛼 |∼ 𝛽 , if every statement in R entails ¬𝛼 then this
means that there is a conflict. In this case remove the ranking
of the highest level and repeat this step of checking whether
R entails ¬𝛼 . Repeat this procedure until the bottom rank
is the only rank remaining. If the statements in the bottom
rank entails ¬𝛼 , then conclude that K |≈ 𝛼 |∼ 𝛽 .

Daniel Park

The above entailment checking returns K |≈ 𝛼 |∼ 𝛽 if it holds by
the definition of ranked interpretation [7].

4 SAT SOLVER
With many formulas and variables, it can be challenging to figure
out whether a certain formula, or a composite of formulas, is either
satisfiable or not. This is where SAT solvers come in handy.

A SAT solver is a satisfiability solving algorithm that determines
whether a given input is satisfiable or not. The inputs are a formula
or a composite of formulas. For the SAT solver to produce satisfiable,
it is required to have at least one interpretation that satisfies the
input. If there is not a single interpretation that can satisfy the input,
the SAT solver will determine the input to be unsatisfiable. These
SAT solvers are known to be NP-complete (Non-deterministic Poly-
nomial time) [6, 16, 18, 21], but the efficiency varies for different
solvers.

4.1 Algorithms
The Semantic Tableaux [2] is a satisfiability algorithm for proposi-
tional logic. Currently, there are many SAT solvers publicly avail-
able, such as GRASP [16], POSIT [6], WalkSAT [17], and many of
them are designed and implemented employing Davis–Putnam–
Logemann–Loveland (DPLL) algorithm [1, 6, 16–18, 21] and heuris-
tic local search [11]. The general form of the input for SAT solvers
is CNF since it is simple and useful [18].

CNF stands for Conjunctive Normal Form, where it contains a
clause or conjunction of clauses. Clauses are connected by logical
operator ∧. A clause is a disjunction of literals where each literal
is an atom or its negation [20]. An example of CNF formula is:
(𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ 𝑐). This formula consists of two clauses with four
atoms. A formula (𝑎 → 𝑏) ∨ (𝑎 ∧ 𝑐) is not in conjunctive normal
form since it consists of logical operator →. For the SAT solvers
that require the formula to be in CNF, the classical propositional
logic statements must first be converted to CNF formula since CNF
formula does not accept logical operators other than ∨ and ∧.

The conversion to CNF requires the following rule:
Double Negation:

1. 𝐴 ↔ ¬(¬𝐴)
De Morgan’s Laws:
2. ¬(𝐴 ∨ 𝐵) ↔ (¬𝐴) ∧ (¬𝐵)
3. ¬(𝐴 ∧ 𝐵) ↔ (¬𝐴) ∨ (¬𝐵)
Distributive Law:
4. (𝐴 ∨ (𝐵 ∧𝐶)) ↔ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨𝐶)

A CNF formula is unsatisfied by any interpretation that fails at
least one clause or more.

4.2 Heuristic Local Search
Heuristic local search [11] techniques are not guaranteed to be com-
plete, meaning that it is not guaranteed for the algorithm to return
satisfiable if one exists or prove satisfiability [11]. For this reason,
most complete SAT solvers are based on DPLL search algorithm
[18].

4.3 DPLL
DPLL, sometimes just referred as Davis-Putnam (DP)[21], is a com-
plete, backtracking-based search algorithm for checking whether
a formula is satisfiable or not. An algorithm is complete when it
returns every right answer for the right input, but it might return a
right answer for a wrong input. The formulas for the DPLL algo-
rithm are in conjunctive normal form (CNF).

DPLL search algorithm employs backtrack searching, where a vari-
able and a propositional value are selected for branching purposes
at each step. Two values, either 0 or 1, can be assigned to a vari-
able at each branching step. Branching is assigning either 0 or 1 to
the selected variable. After that, the logical consequences of each
branching step is evaluated. Each time a conflict is found, the back-
tracking is executed.

Backtracking is undoing branching steps until a branch that has
only been assigned a single value is reached.When both values have
been assigned to the selected variable at a branching step, back-
tracking will undo this branching step. If both values have been
considered for the first branching step, and backtracking undoes
this first branching step, then the given CNF formula is considered
to be unsatisfiable. This kind of backtracking is called chronological
backtracking [21].

4.4 Efficiency
There are many SAT solving competitions going on around the
world every year and each year participants produce algorithms
that are more optimized and faster than previous years. The Kissat
SAT solver won first place in the main track of the SAT competition
2020 and unsatisfiable instances [8].

Kissat SAT solver is an improved reimplementation of CaDiCaL,
where CaDiCaL is a efficient version of Conflict-Driven Clause
Learning (CDCL) solver [4]. CDCL SAT solvers are widely used
across the world for their efficiency. The CDCL SAT solver is pri-
mary inspired by DPLL solvers [4].

5 CONCLUSION
Unlike machines, humans are sometimes quite difficult to under-
stand, and modeling human reasoning is not straight forward.
Classical reasoning is not sufficient enough to model human lan-
guage, and this is where defeasible logic comes in handy. With
non-monotonicity of defeasible logic, we can model human lan-
guage better than we would have done by using classical logic.
With Rational Closure [15], the defeasible part of the knowledge
base can be represented as classical propositional logic. We can use
this to improve the scability of defeasible entailment algorithms
into SAT solvers. For the SAT solving algorithm, the DPLL algo-
rithm [21] and CDCL [4] algorithm is used widely and CDCL is
very efficient compared to other SAT solvers out there [8]. With
Rational Closure and CDCL, this is a step forward to developing an
efficient system for defeasible reasoning.

SCADR Literature Review

REFERENCES
[1] Roberto J Bayardo Jr and Robert Schrag. Using csp look-back techniques to solve

real-world sat instances. In Aaai/iaai, pages 203–208. Providence, RI, 1997.
[2] Mordechai Ben-Ari. Mathematical logic for computer science. Springer Science &

Business Media, 2012.
[3] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,

volume 185. IOS press, 2009.
[4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Conflict-driven

clause learning sat solvers. Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, pages 131–153, 2009.

[5] Giovanni Casini, ThomasMeyer, KodylanMoodley, and Ivan Varzinczak. Towards
practical defeasible reasoning for description logics. 2013.

[6] Jon William Freeman. Improvements to propositional satisfiability search algo-
rithms. PhD thesis, Citeseer, 1995.

[7] Michael Freund. Preferential reasoning in the perspective of poole default logic.
Artificial Intelligence, 98(1-2):209–235, 1998.

[8] SAT2020. 2020. SAT Competition 2020. Retrieved from
https://satcompetition.github.io/2020/results.html.

[9] Jean H Gallier. Logic for computer science: foundations of automatic theorem
proving. Courier Dover Publications, 2015.

[10] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. Seman-
tic characterization of rational closure: From propositional logic to description
logics. Artificial Intelligence, 226:1–33, 2015.

[11] Holger H Hoos and Thomas Stützle. Local search algorithms for sat: An empirical
evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

[12] Adam Kaliski. An overview of klm-style defeasible entailment. Master’s thesis,
Faculty of Science, 2020.

[13] Sarit Kraus, Daniel Lehmann, and MenachemMagidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Artificial intelligence, 44(1-2):167–207,
1990.

[14] Daniel Lehmann. Another perspective on default reasoning. Annals of mathe-
matics and artificial intelligence, 15(1):61–82, 1995.

[15] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1–60, 1992.

[16] Joao P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[17] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants in
local search. In AAAI/IAAI, pages 321–326. Rhode Island, USA, 1997.

[18] Matthew WMoskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535, 2001.

[19] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.
[20] Frank VanHarmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of knowledge

representation. Elsevier, 2008.
[21] Hantao Zhang and Mark Stickel. Implementing the davis–putnam method.

Journal of Automated Reasoning, 24(1):277–296, 2000.

	Abstract
	1 Introduction
	2 Propositional Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Entailment

	3 Limitations of Classical Propositional Logic
	3.1 KLM-style Defeasible Approach
	3.2 Ranked Interpretation
	3.3 Rational Closure

	4 SAT Solver
	4.1 Algorithms
	4.2 Heuristic Local Search
	4.3 DPLL
	4.4 Efficiency

	5 Conclusion
	References

