

CS/IT Honours

Final Paper 2021

Title: Scalable Defeasible Reasoning

Author: Joon Soo Park

Project Abbreviation: SCADR

Supervisor(s): Thomas Meyer

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 15

Experiment Design and Execution 0 20 10

System Development and Implementation 0 20 10

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Scalable Defeasible Reasoning
Daniel Park

University of Cape Town
Cape Town, South Africa
PRKJOO001@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning (KRR) is an approach to
artificial intelligence (AI) in which a system has some information
about the world represented formally (a knowledge base), and is
able to reason about this information. Defeasible reasoning is a non-
classical form of reasoning that enables systems to reason about
knowledge bases which contain seemingly contradictory informa-
tion, thus allowing for exceptions to assertions. Currently, systems
which support defeasible entailment for propositional logic are ad
hoc, and little to no work has been done on improving the scalability
of defeasible reasoning algorithms. We investigate the scalability of
defeasible entailment algorithms, and propose optimised versions
thereof, as well as present a tool to perform defeasible entailment
checks using these algorithms. We also present a knowledge base
generation tool which can be used for testing implementations of
these algorithms.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Com-
puting methodologies → Nonmonotonic, default reasoning
and belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, satisfiability solving

1 INTRODUCTION
Artificial Intelligence (AI) has been around for many years, with its
two core aspects being machine learning (ML) and knowledge rep-
resentation and reasoning (KRR) [3]. Our research will focus on the
latter. Knowledge representation refers to the notion of using some
formal set of symbols or notation in order to represent information
about the world. Reasoning refers to the idea of drawing inferences
from this information, with the key idea for this research being the
use of algorithms to reason about information (i.e., automated rea-
soning). We will utilise logics (a mechanism for formalising ways
to reason [2]) to represent information.

Propositional logic [2] is monotonic, which means the addition
of new information cannot contradict any previous conclusions you
could draw. This is not a "common-sense" approach to reasoning
[4].

Reasoning in such a way limits the ability to model human
reasoning, as the property of monotonicity does not hold in the
way that humans think.

For example, if a human knows that it rains every Saturday, and
that today is a Saturday, then it makes sense to conclude that it
is raining today, however if we are then told that it is not raining
today, a human would interpret the addition of this new fact to

mean that we have simply come across an exception to the notion
of it raining every Saturday.

Reasoning according to propositional logic simply notes that a
contradiction has occurred, meaning our knowledge can never all
be true, which means that any and all information can be inferred
from what we know, rendering our knowledge useless. What may
have allowed the additional information to not cause a contradic-
tion is if the initial knowledge we had rather stated that “typically, it
rains every Saturday”. We will use a framework for nonmonotonic
reasoning in which statements of the form "typically, something is
the case" are allowed.

The work in Sections 1,2 and 5 was done jointly with Bailey and
Hamilton.

2 BACKGROUND
2.1 Propositional Logic
Propositional Logic [2] is a framework for modelling information
about the world, in which statements (known as formulas) are
built up using propositional atoms, which are sentences which can
be assigned a truth value (true or false), and Boolean operators
(¬,∧,∨,→,↔). Formulas can be defined recursively as either being
simply an atom (e.g. 𝑝), or if 𝛼 and 𝛽 are formulas in L (the set of
all formulas), then so are ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽, and 𝛼 ↔ 𝛽 .

An interpretation is a function 𝐼 : P → {𝑇, 𝐹 } which attributes
a single truth value to each propositional atom, andW is the set
of all interpretations. The truth value of a formula 𝛼 under a given
interpretation 𝐼 is written as 𝐼 (𝛼), and if 𝐼 (𝛼) is true for some
formula 𝛼 , then we say 𝐼 satisfies 𝛼 , written 𝐼 ⊩ 𝛼 . A knowledge
base is a finite set of formulas, and it is said that an interpretation 𝐼

satisfies a knowledge baseK if for every 𝛼 ∈ K , 𝐼 ⊩ 𝛼 . A knowledge
base that is satisfied by at least one interpretation 𝐼 is said to be
satisfiable, and 𝐼 is then a model of K . The set of all models of a
knowledge base K or of all models of a formula 𝛼 are denoted
𝑀𝑜𝑑 (K) and𝑀𝑜𝑑 (𝛼) respectively.

2.2 Entailment
If a formula 𝛼 is true in every model of K (𝑀𝑜𝑑 (K) ⊆ 𝑀𝑜𝑑 (𝛼)),
then we sayK entails 𝛼 (denotedK |= 𝛼). Propositional entailment
is monotonic, which means that the addition of new formulas to a
knowledge base K should not contradict any previous inferences
made fromK . This causes a problemwhen contradictory statements
are added to a knowledge base, as it then means that there will be
no models ofK , and thus any statement is true in every model ofK ,
so such a knowledge base is meaningless, as it entails everything.
We therefore require a framework for nonmonotonic reasoning.
Our preferred approach to nonmonotonic reasoning is the KLM
approach [12] [14].

Daniel Park

Checking whether or not K |= 𝛼 can be reduced to checking the
satisfiability of the knowledge base with ¬𝛼 added to it (K ∪ {¬𝛼}),
where the satisfiability check can be done using a satisfiability (SAT)
solver, as discussed further in the related work section.

2.3 KLM Approach to Defeasible Reasoning
Defeasible reasoning is a form of reasoning which allows one to rea-
son about knowledge bases which contain seemingly contradictory
information, and allows for exceptions to general assertions. In the
KLM Approach [12] [14], we have a way to model statements of the
form 𝛼 |∼ 𝛽 , which is read as "𝛼 typically implies 𝛽", which simply
means that if 𝛼 is true, then this is typically enough information to
believe that 𝛽 is also true. For 𝛼 |∼ 𝛽 , 𝛼 is called antecedent and
𝛽 is called consequent. A detailed overview of this approach is
provided by Kaliski in [11].

The notion of defeasible entailment (denoted p≈) is not unique,
i.e., there are many acceptable ways to infer information from a
defeasible knowledge base (a knowledge base containing statements
of the form 𝛼 |∼ 𝛽). Rational closure [14] and lexicographic closure
[13] are two approaches to defeasible reasoning which both fall
within the KLM approach, and relevant closure [5] and ranked
entailment [14] are two which do not [6]. Thus, this research will
focus on the first two.

2.4 Rational Closure
Rational closure is the most conservative form of defeasible entail-
ment (i.e., it infers very little from a defeasible knowledge base),
and can be defined both semantically and algorithmically, as laid
out in [6].

2.4.1 Semantic Definition. A ranked interpretation is simply a rank-
ing of all interpretations in W (the set of all interpretations), in or-
der of typicality, starting at rank 0 (indicating the most typical inter-
pretations) and ending at rank n, which will include those interpre-
tations which are the least typical, but are still plausible), followed
by a single infinite rank, indicating those interpretations which are
impossible to occur. In ranked interpretations, no rank can be empty.
Formally, a ranked interpretation is a function 𝑅 : W → N ∪ {∞},
such that 𝑅(𝐼) = 0 for some 𝐼 ∈ W, and for every 𝑟 ∈ N, if 𝑅(𝐼) = 𝑟 ,
then for every 𝑗 such that 0 ≤ 𝑗 ≤ 𝑟 , there is an 𝐼 ∈ W for which
𝑅(𝐼) = 𝑗 .

R satisfies a formula 𝛼 if 𝛼 is true in all non-infinite ranks of a
ranked interpretation R, denoted 𝑟 ⊩ 𝛼 . For defeasible statements
(statements which use the |∼ operator), we say R satisfies 𝛼 |∼ 𝛽 if
in the lowest rank (the most typical rank) where 𝛼 holds, 𝛽 also
holds.

We can construct an ordering on the set of all possible ranked
interpretations for a knowledge base K , where 𝑅1 ≤K 𝑅2 if for
every interpretation 𝐼 ∈ W, 𝑅1 (𝐼) ≤ 𝑅2 (𝐼). There is a unique
minimal element 𝑅𝑚 of the ordering ≤K such that for every other
ranked interpretation 𝑅𝑖 in the set of all ranked interpretations for a
given knowledge base, 𝑅𝑚 ≤K 𝑅𝑖 , as shown in [10]. If 𝑅𝑚 ⊩ 𝛼 |∼ 𝛽 ,
then we say K defeasibly entails 𝛼 |∼ 𝛽 (denoted K p≈ 𝛼 |∼ 𝛽).

2.4.2 Algorithmic Definition: Base Ranks Algorithm. Before show-
ing the algorithm, we define the materialisation of a knowledge

base K as
−→
K = {𝛼 → 𝛽 : 𝛼 |∼ 𝛽 ∈ K}

(1) First, we create a sequence ofmaterialisations𝐸0, 𝐸1, ..., 𝐸𝑛−1, 𝐸∞
where 𝐸0 =

−→
K , and each 𝐸𝑖 = {𝛼 → 𝛽 ∈ 𝐸𝑖−1 : 𝐸𝑖−1 |= ¬𝛼}

for 𝑖 > 0. (This essentially means that each 𝐸𝑖 contains only
those statements 𝛼 → 𝛽 in 𝐸𝑖−1 such that 𝛼 can be proven
false according to those statements not in 𝐸𝑖−1). This process
terminates when 𝐸𝑖 = 𝐸𝑖−1 (or if 𝐸𝑖−1 = ∅) and we set n=i-1
and 𝐸∞ = 𝐸𝑛 .

(2) We then create a ranking such that 𝐸𝑛 \ 𝐸𝑛−1 is in the bot-
tom rank, (call this 𝑅∞) 𝐸𝑛−2 \ 𝐸𝑛−1 is in the next highest
rank, and so on. The ranking becomes such that the classical
statements in K are in the bottom rank (the infinite rank),
and statements are more general the higher the rank they
are in. If a statement 𝛼 → 𝛽 is in a rank i, then it is said
that 𝛼 → 𝛽 has base rank i. What this means is that in every
ranked interpretation r of 𝐸𝑖 , 𝛼 → 𝛽 will be true in at least
one of the interpretations in the most typical rank of r.

Algorithm 1: BaseRank
Input: A knowledge base K
Output: An ordered tuple (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛)

1 𝑖 := 0;

2 𝐸0 :=
−→
K ;

3 while 𝐸𝑖−1 ≠ 𝐸𝑖 do
4 𝐸𝑖+1 := {𝛼 → 𝛽 ∈ 𝐸𝑖 | 𝐸𝑖 |= ¬𝛼};
5 𝑅𝑖 := 𝐸𝑖 \ 𝐸𝑖+1;
6 𝑖 := 𝑖 + 1;
7 𝑅∞ := 𝐸𝑖−1;
8 if 𝐸𝑖−1 = ∅ then
9 𝑛 := 𝑖 − 1;

10 else
11 𝑛 := 𝑖;
12 return (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛);

2.4.3 Checking Defeasible Entailment. Input: a knowledge base K
and a defeasible implication statement 𝛼 |∼ 𝛽 .

(1) First, we check if ¬𝛼 is entailed by those statements in the
infinite rank. If the negation of the antecedent is not entailed,
we say that the formula, 𝛼 |∼ 𝛽 , is compatible with the
knowledge base.

(2) We then remove sets of classical implications rank by rank,
starting at the highest rank and working our way down until
we find a rank such that all the statements in that rank and
those remaining do not entail ¬𝛼 (thus, 𝛼 is satisfiable w.r.t.
the set of statements which are in the current rank and the
remaining ranks).

(3) We then check whether or not these remaining statements
entail 𝛼 → 𝛽 .

(4) If we get to the stage where we only have the bottom rank
remaining, and the statements in this rank entail ¬𝛼 then
we can simply conclude that it is the case that K p≈ 𝛼 |∼ 𝛽 .

Scalable Defeasible Reasoning

This algorithm only returns that a statement is defeasibly entailed
by a knowledge base if this is true in terms of the minimal ranked
interpretation for the knowledge base [9].

2.5 Lexicographic Closure
Lexicographic closure [13] is a refinement of rational closure, in
that the entailment check is done the same way, and only the
ranking of statements is done differently. A detailed description of
the intricacies of this approach is provided by Casini et al in [6].
Lexicographic closure is less conservative than rational closure in
terms of how much it infers from a knowledge base.

Lexicographic closure uses a more refined ranking, where state-
ments within ranks (according to the BaseRank algorithm) are
ranked amongst themselves, thus preserving the original ranking.
We consider all possible refined rankings of these statements, and
in the case of determining whether or notK p≈ 𝛼 |∼ 𝛽 , when check-
ing whether or not

−→
K |= ¬𝛼 , we remove statements one at a time

such that as few statements as possible are removed where the
remaining statements do not entail ¬𝛼 . If this is not able to occur,
then we remove the entire top rank and continue similarly with a
refinement of those statements in the following rank, etc.

Once the remaining statements do not entail ¬𝛼 , we check
whether these statements classically entail 𝛼 → 𝛽 . If we reach
the stage where only one rank is remaining and the remaining
statements still entail ¬𝛼 , then we can return that K p≈ 𝛼 |∼ 𝛽 .

The following is an example which may better explain how the
entailment checks for rational and lexicographic closure differ:

If we have a knowledge base

K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑏 |∼ 𝑤, 𝑝 |∼ ¬𝑓 }

which has been ranked according to the BaseRank algorithm as
follows:

𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓 , 𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 1: Base Ranking of Knowledge base K
And we wish to investigate whether or not the statement 𝑝 |∼ 𝑤 is
entailed by the knowledge base, then:

2.5.1 Entailment Check using Rational Closure.

(1) We check if ¬𝑝 is entailed by
−→
K . It is, so we throw away the

top rank.
𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓 , 𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 2: Removal of rank 0
(2) We then check if ¬𝑝 is entailed by the remaining statements

in ranks 1 and∞. It is not, so we checkwhether the statement
𝑝 → 𝑤 is entailed by the remaining statements. It is not, so
we conclude K p̸≈ 𝑝 |∼ 𝑤 .

2.5.2 Entailment Check using Lexicographic Closure.

(1) Consider all possible refined rankings of
−→
K such that the

statements in rank 0 have been ranked amongst themselves.
𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓

𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 3: Refined Ranking A

𝑅𝑎𝑛𝑘 0 𝑏 → 𝑤

𝑏 → 𝑓

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 4: Refined Ranking B

(2) We check if
−→
K |= ¬𝑝 . It does, so we remove the top statement

from each of our possible refined rankings.
𝑅𝑎𝑛𝑘 0 𝑏 → 𝑓

𝑏 → 𝑤

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 5: Refined ranking A with top statement removed

𝑅𝑎𝑛𝑘 0 𝑏 → 𝑤

𝑏 → 𝑓

𝑅𝑎𝑛𝑘 1 𝑝 → ¬𝑓
𝑅𝑎𝑛𝑘 ∞ 𝑝 → 𝑏

Figure 6: Refined ranking B with top statement removed
(3) We then check if the remaining statements in each of our

refined rankings entail ¬𝑝 . We see that the remaining state-
ments in refined ranking A do not entail ¬𝑝 , and thus we
check if these statements entail 𝑝 → 𝑤 . This is the case, so
we conclude that K p≈ 𝑝 |∼ 𝑤 .

Thus, it is clear that rational closure (RC) is more conservative
than lexicographic closure (LC), as we were able to conclude the
statement 𝑝 |∼ 𝑤 when using LC but not when using RC.

3 IMPLEMENTATION OF THE ALGORITHMS
The language used for this project is Java. Java was chosen for the
usage of 𝑇𝑤𝑒𝑒𝑡𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 at section 3.1, and Java Microbenchmark
Harness at section 4.3.

3.1 TweetyProject
𝑇𝑤𝑒𝑒𝑡𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 is a collection of libraries that can be used to imple-
ment different areas of AI. This project uses the libraries dealing
with Belief Revision, Satisfiability Reasoner and Propositional Logic
Parser from the 𝑇𝑤𝑒𝑒𝑡𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 . The most essential library for this
project is the classical satifiability solver. This project uses the
𝑆𝑎𝑡4 𝑗𝑆𝑜𝑙𝑣𝑒𝑟 of 𝑇𝑤𝑒𝑒𝑡𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 for checking if a query is satisfiable
by a knowledge base. 𝑆𝑎𝑡4 𝑗𝑆𝑜𝑙𝑣𝑒𝑟 is one of the variants of satisfi-
ablity solver provided by 𝑇𝑤𝑒𝑒𝑡𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 .

Daniel Park

3.2 The Implementations
The naïve implementation was developed first and then optimised
implementation using the power set was developed. After these
two implementations, further optimisations were considered. Bi-
nary search, one of the most famous search heuristics, was the first
approach. An implementation using binary search was developed
on top of the implementation that uses power set. For the perfor-
mance comparison, ternary search was also developed on top of
the implementation that uses power set.
The implemented algorithms use the knowledge representation
form of classical logics. The implementations first take in a defea-
sible knowledge base and a defeasible query as the inputs. The
BaseRank algorithm is then executed to construct the ranking of
the statements in the defeasible knowledge base. The infinite rank
of this knowledge base will only consist of the classical statements
in the knowledge base, if there are any. Otherwise, the infinite rank
will be empty. The defeasible statements in the knowledge base
are then converted to classical statements by replacing |∼ to →,
and they are ranked according to the BaseRank algorithm. It is
then checked whether the given query is entailed by the ranked
knowledge base by one of the four different implementations.

3.3 Analysis
A time complexity of an algorithm is the amount of time it takes to
execute the algorithm. This is given by time as a function of length
of input. We use O to represent this function, also known as the Big
O notation. The Big O notation considers the worst-case scenario
of the algorithm. Algorithms with different implementations can
have same Big O since we disregard the constants and lower order
terms.
For the measure of the time complexity, we will only consider
the number of entailment checks executed, and not how long it
took for the entailment checker to execute. This paper focuses on
the implementation around the satisfiability checker and not the
satisfiability checker itself. Thus, the aim of this paper to optimise
the algorithm wrapping around the satisfiability checker.

3.3.1 The naïve implementation. This implementation is based off
the description from section 2.5.2. The only difference between the
implementation and the description is the layout of the refinement.
In the description, we consider the ranking under all possible ways
of removing a statement from the current rank, which is the worst
rank after removing the lower ranks if there were any. We store
every refined rankings and then check whether the query is com-
patible with each refinements. The space usage of this method is
ample since we do not have to store every refined rankings. This
implementation stores the worst rank separate to the ranking of
the knowledge base. It then removes the worst rank in the rank-
ing of the knowledge base, replacing with a subset in the worst
rank with a statement in the worst rank removed. This refinement
is from the worst rank we stored earlier. It then checks whether
the query is compatible with this ranking of the knowledge base,
with substituted worst rank. If it does entail, then we replace the
refined ranking from the ranking of the knowledge base with a
subset of the worst rank with a different statement removed. We
do this until each and every statement was removed in the worst
rank, or the query is compatible with the remaining statements.

When the infinite rank has been reach after removing the ranks,
we do not go through the subsets of the infinite rank. We conclude
whether the query is entailed by the infinite rank. The rest of the
procedures work as described in the description. In summary, the
only difference between the implementation and the description is
whether storing every subsets of the worst rank together with rest
of the statements, or storing the subsets one at a time with rest of
the statements.

The below time and space complexity analysis are for the worst-
case scenario.

3.3.2 Time complexity of the naïve implementation.

• The algorithm first checks the entailment of the whole rank-
ing of the knowledge base, which equals to one entailment
check.

• If the lowest rank consists of n statements, then the algorithm
executes the classical entailment checker 𝑛 × (𝑛 − 1)times.

• If each rank consists of 𝑘 statements, then the algorithm
executes 𝑘 multiplied by the number of executions from the
above points.

In total, we have 𝑘 × (𝑛 × (𝑛 − 1) + 1) = 𝑘𝑛2 − 𝑘𝑛 + 𝑘. We are
considering a large knowledge base where the number of ranks
is strictly larger than the number of statements in the worst rank.
Letting 𝑘 << 𝑛, this is O(𝑛2) for the time complexity.

3.3.3 Space complexity of the naïve implementation.

• The algorithm first clones the whole knowledge base of size
𝑛.

• If the worst rank consists of 𝑘 statements, then the algorithm
stores 𝑘 − 1 statements at a time.

In total, we have 𝑘 +𝑛 − 1. This is O(𝑛) for the space complexity.

3.3.4 The optimised implementation of the algorithm using power
set. The key factor of Lexicographic Closure is to check whether
we can prove the negation of the antecedent of the query we are
checking for using one of the subsets of the statements in the worst
rank. Using the new definition of Lexicographic Closure adapted for
Datalog∨[16], it is possible to achieve this with fewer entailment
checks. Rather than checking each subset of the worst rank, we can
execute a single entailment check by combining the subsets using
disjunctions.

Definition 3.1 (Power set). A power set of A is the set of all
subsets of the set A including the set itself and the null or empty
set, denoted as P(A). For an example, for a set A consisting of
{𝑎, 𝑏, 𝑐}, P(A) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.

The implemented PowerSet(X)function uses this property of
power set to generate a new tuple of statements. By using the pre-
vious example, A = {𝑎, 𝑏, 𝑐}, the PowerSet(X) function first stores
the P(A) into a tuple. Then, the statements in each set of the tu-
ple are combined by conjunction. Afterwards, the sets containing
same number of statements are combined by disjunction. Thus, the
PowerSet(A) returns the following:

Scalable Defeasible Reasoning

{{𝑎 ∧ 𝑏 ∧ 𝑐}, {𝑎 ∧ 𝑏} ∨ {𝑎 ∧ 𝑐} ∨ {𝑏 ∧ 𝑐}, {𝑎} ∨ {𝑏} ∨ {𝑐}}.

Algorithm 2: Lexicographic Closure using PowerSet (X)
Input: A knowledge base K and a defeasible rule 𝛼 |∼ 𝛽

Output: true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 (𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1) := BaseRank(K);
2 𝑖 := 0;
3 𝑅 :=

⋃𝑗≤𝑘
𝑖=0 𝑅 𝑗 ;

4 while 𝑅∞ ∪ 𝑅 |= ¬𝛼 and 𝑅 ≠ ∅ do
5 for SR ∈ PowerSet(𝑅𝑖) do
6 𝑅 := 𝑅 \ 𝑅𝑖 ;
7 𝑅 := 𝑅 ∪ SR;
8 if 𝑅∞ ∪ 𝑅 ̸ |= ¬𝛼 then
9 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

10 𝑅 := 𝑅 \ 𝑅𝑖 ;
11 𝑖 := 𝑖 + 1;
12 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

For an example of the above algorithm, let a rank R consist of
statements {𝑎 → 𝑏, 𝑎 → 𝑐, 𝑎 → 𝑑}. Calling PowerSet(R) will gen-
erate the following tuple: {{𝑎 → 𝑏, 𝑎 → 𝑐, 𝑎 → 𝑑}, {𝑎 → 𝑏, 𝑎 →
𝑐}, {𝑎 → 𝑐, 𝑎 → 𝑑}, {𝑎 → 𝑏, 𝑎 → 𝑑}, {𝑎 → 𝑏}, {𝑎 → 𝑐}, {𝑎 →
𝑑}}. The statements in each set of the tuple are combined using
conjunction:{𝑎 → 𝑏 ∧ 𝑎 → 𝑐 ∧ 𝑎 → 𝑑}, {𝑎 → 𝑏 ∧ 𝑎 → 𝑐}, {𝑎 →
𝑐 ∧ 𝑎 → 𝑑}, {𝑎 → 𝑏 ∧ 𝑎 → 𝑑}, {𝑎 → 𝑏}, {𝑎 → 𝑐}, {𝑎 → 𝑑}}. The
sets containing same number of statements are then combined by
disjunction: {𝑎 → 𝑏 ∧ 𝑎 → 𝑐 ∧ 𝑎 → 𝑑}, {𝑎 → 𝑏 ∧ 𝑎 → 𝑐} ∨ {𝑎 →
𝑐 ∧ 𝑎 → 𝑑} ∨ {𝑎 → 𝑏 ∧ 𝑎 → 𝑑}, {𝑎 → 𝑏} ∨ {𝑎 → 𝑐} ∨ {𝑎 → 𝑑}}.
This tuple now only contains three statements separated by comma.
This is then returned by the function PowerSet(R).

The below time and space complexity analysis are for the worst-case
scenario.

3.3.5 Time complexity of the implementation using PowerSet.

• If the lowest rank consists of𝑛 statements, then the algorithm
executes the entailment checker 𝑛 times.

• If each rank consists of 𝑘 statements, then the algorithm
executes 𝑘 multiplied by the number of executions from the
above points.

In total, we have 𝑘 × 𝑛 = 𝑘𝑛. With 𝑘 << 𝑛, we have O(𝑛) for the
time complexity.

3.3.6 Space complexity of the implementation using PowerSet. For
the space complexity, PowerSet(A) = 2 |A | [20]. ∅ is not used since
it is redundant.

• The algorithm first clones the whole knowledge base of size
𝑛.

• If the worst rank consists of 𝑘 statements, then the algorithm
stores 2𝑘 statements at a time.

In total, we have 2𝑘 + 𝑛. So we have O(2𝑛) for the space com-
plexity.

The following implementation is optimised on top of the implemen-
tation using the PowerSet.

3.3.7 The optimised implementation using Binary Search. Binary
Search is used to search an element in a sorted array by dividing
the array in half repeatedly. We start by setting a key to the item
in the middle of the array. We then check whether the value of the
element we are looking for is less than the key or greater. If it is
less, then we disregard the first half of the array. Otherwise, we
disregard the second half. Repeat this procedure until the value is
found, or the array is empty.

Since our statements do not have "values" that we can use to com-
pare with other statements, we do not follow the exact description
of the binary search. In fact, we use the "dividing in half" of the
binary search. Binary search can be used to find the rank, such that
if that rank and the above ranks are removed, then the query is not
compatible with the remaining statements, but removing a rank
that is right below, one rank higher, will make the query compatible
with the remaining statements

For an example, let K be a knowledge base that forms eight
ranks, including the infinite rank, after applying the BaseRank
algorithm. Let the rank R𝑖 be a rank containing statements such
that when some of the statements in that rank are removed, then
the query will be compatible with the remaining statements. Let
R𝑖 be rank 5. We let our key to be 4, since 8 divided by 2 is 4.
We check whether removing the ranks from 0 to 3 still makes the
query compatible with the remaining statements. It does not, so we
remove the top 4 ranks. Since the remaining are from rank 4 to rank
∞, our mid now equals to 4 + (8 − 4)/2 = 6. Removing rank 4 and
5 will make the query compatible with the remaining statements,
so we check whether removing only rank 4 also makes the query
compatible with the remaining statements. Since it does not, we
apply the Lexicographic Closure algorithm with the knowledge
base containing statements from rank 5 to rank∞.
The below time and space complexity analysis are for the worst-case
scenario.

3.3.8 Time complexity of the implementation using binary search.

• If the lowest rank consists of𝑘 statements, then the algorithm
executes the entailment checker 𝑘 times.

• To find a rank where the subsets has to be checked for the
compatibility of the query, first, two entailment checks are
required and then it takes log2 (𝑛)[1] times to find the rank.
𝑛 is the number of ranks.

In total, we have 𝑘 + 2 × log2 (𝑛) = 2log2 (𝑛) + 𝑘 = 𝑂 (log(𝑛)).

3.3.9 Space complexity of the implementation using binary search.

• The algorithm first clones the whole knowledge base of size
𝑛.

• If the worst rank consists of 𝑘 statements, then the algorithm
stores 2𝑘 statements at a time.

In total, we have 2𝑘 +𝑛 = 2𝑘 +𝑛. So we have O(2𝑛) for the space
complexity.

Daniel Park

Algorithm 3: Lexicographic Closure using Binary Search
Input: A knowledge base K and a defeasible rule 𝛼 |∼ 𝛽

Output: true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 (𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1) := BaseRank(K);
2 left := 0;
3 right := 𝑘 + 1;
4 𝑅 :=

⋃𝑗≤𝑘
𝑖=0 𝑅 𝑗 ;

5 mid := Binary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1), 𝛼 |∼ 𝛽 , left, right);
6 if mid == ∞ then
7 return False;
8 else
9 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid 𝑅 𝑗 ;

10 for SR ∈ PowerSet(𝑅𝑖) do
11 𝑅 := 𝑅 \ 𝑅𝑖 ;
12 𝑅 := 𝑅 ∪ SR;
13 if 𝑅∞ ∪ 𝑅 ̸ |= ¬𝛼 then
14 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

15 𝑅 := 𝑅 \ 𝑅𝑖 ;
16 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;
17 Function Binary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1), 𝛼 |∼ 𝛽 , left, right):
18 if right > left then
19 mid = left + (right - left)/2;
20 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid+1 𝑅 𝑗 ;

21 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
22 return Binary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽,mid, right)
23 else
24 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid 𝑅 𝑗 ;

25 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
26 return mid
27 else
28 return Binary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽, left,mid)

29 else
30 return ∞

The following implementation is optimised on top of the imple-
mentation using the PowerSet.

3.3.10 The optimised implementation using Ternary Search. Ternary
Search uses the properties of Binary Search, except Ternary Search
uses two keys, mid1 and mid2, to set the intervals of the array. The
first key is set to diving the size of the array by three, and the second
key to diving the size of the array by three and multiplying it by two.
We then check whether removing the ranks from the first key and
above makes the query compatible with the remaining statements.
If it does not, we check whether removing the ranks above our
second key makes the query compatible with the remaining state-
ments. If removing the ranks from the first key and above makes
the query compatible with the remaining statements then we have

Algorithm 4: Lexicographic Closure using Ternary Search
Input: A knowledge base K and a defeasible rule 𝛼 |∼ 𝛽

Output: true, if K p≈ 𝛼 |∼ 𝛽 , and false, otherwise
1 (𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1) := BaseRank(K);
2 left := 0;
3 right := 𝑘 + 1;
4 𝑅 :=

⋃𝑗≤𝑘
𝑖=0 𝑅 𝑗 ;

5 mid := Ternary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1), 𝛼 |∼ 𝛽, left, right);
6 if mid ==∞ then
7 return False;
8 else
9 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid 𝑅 𝑗 ;

10 for SR ∈ PowerSet(𝑅𝑖) do
11 𝑅 := 𝑅 \ 𝑅𝑖 ;
12 𝑅 := 𝑅 ∪ SR;
13 if 𝑅∞ ∪ 𝑅 ̸ |= ¬𝛼 then
14 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

15 𝑅 := 𝑅 \ 𝑅𝑖 ;
16 return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;
17 Function Ternary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽, left, right):
18 if right > left then
19 mid1 = left + (right - left)/3;
20 mid2 = right - (right - left)/3;
21 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid1+1 𝑅 𝑗 ;

22 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
23 𝑅 :=

⋃𝑗≤𝑘
𝑖=𝑚𝑖𝑑2+1 𝑅 𝑗 ;

24 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
25 return Ternary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽,mid2 + 1, right);
26 else
27 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid2 𝑅 𝑗 ;

28 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
29 return mid2;
30 else
31 return Ternary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽,mid1 + 1,mid2 − 1);

32 else
33 𝑅 :=

⋃𝑗≤𝑘
𝑖=mid1 𝑅 𝑗 ;

34 if 𝑅∞ ∪ 𝑅 |= ¬𝛼 then
35 return mid
36 else
37 return Ternary((𝑅0, ..., 𝑅𝑘 , 𝑅∞, 𝑘 + 1),

𝛼 |∼ 𝛽, left,mid1)

38 else
39 return ∞

Scalable Defeasible Reasoning

found the rank to check the subsets of. The same procedure is done
for the second key. If the corresponding rank is not found, then the
two keys are adjusted according to the size of the remaining ranks.
This procedure is repeated until the corresponding rank has been
found. When it is found, the Lexicographic Closure algorithm is
applied to the remaining statements and the query.

3.3.11 Time complexity of the implementation using ternary search.

• If the lowest rank consists of𝑘 statements, then the algorithm
executes the entailment checker 𝑘 times.

• To find a rank where the subsets has to be checked for the
compatibility of the query, first, three entailment checks are
required and then it takes log3 (𝑛)[1] times to find the rank.
𝑛 is the number of ranks.

In total, we have 𝑘 + 3 × log3 (𝑛) = 𝑘 + 3log3 (𝑛) =O(log(𝑛)).

3.3.12 Space complexity of the implementation using ternary search.

• The algorithm first clones the whole knowledge base of size
𝑛.

• If the worst rank consists of 𝑘 statements, then the algorithm
stores 2𝑘 statements at a time.

In total, we have 2𝑘 +𝑛 = 2𝑘 +𝑛. So we have O(2𝑛) for the space
complexity.

3.4 Summary of the analysis
Time and space complexity of the implementations:

Naïve Power set Binary Search Ternary Search
Time O(𝑛3) O(𝑛2) O(𝑛log(𝑛)) O(𝑛log(𝑛))
Space O(𝑛) O(2𝑛) O(2𝑛) O(2𝑛)

4 EXPERIMENT EXECUTION
The aim of this experiment is to see the performance of the four im-
plementations on different variants of knowledge bases. The tests
are made on knowledge bases with different sizes and distributions.
The knowledge base generator by Bailey is able to generate knowl-
edge bases with different parameters. The parameters that can
be adjusted are the number of ranks, total number of statements
and the distribution of the statements. The number of ranks is the
total number of ranks that will be generated after applying the
BaseRank algorithm to the generated knowledge base. The total
number of statements is the total number of statements in the gen-
erated knowledge base. The statements are distributed throughout
the ranks according to the distribution parameter. Currently, the
available distributions are uniform, normal, inverse normal, expo-
nential and inverse exponential. The knowledge base generator is
able to generate defeasible statements and classical statements, and
those statements consists of numeric atoms. The statements are in
form {𝛼 |∼ 𝛽 |𝛼, 𝛽 ∈ Z}.

For the comparison between the implementations using binary

search and ternary search, it is believed that the key factor is the
time taken to find the rank that is required for the BaseRank func-
tion to be applied. For this purpose, the consequent is set to 1 for
all queries testing the knowledge base.
For an example, let a query 𝛼 consist of 5 as its antecedent and 1 as
its consequent such that 5 |∼ 1. Let a knowledge baseK consist of 10
defeasible statements and no classical statements. Let the generated
ranks from K by the BaseRank algorithm be the following:

Rank 0 1 → 0, 2 → 1
Rank 1 3 → ¬0, 3 → 2
Rank 2 4 → 0, 4 → 3
Rank 3 5 → ¬0, 5 → 4
Rank 4 6 → 0, 6 → 5
Rank∞ ∅

Both implementations removes rank 0 and rank 1, calling the
PowerSet function on rank 2. It will then decide whether 5 |∼ 1 is
compatible with the remaining statements. In this example, 5 |∼ 1
is compatible with the remaining statements but they do not entail
5 |∼ 1, thus returning false.

4.1 Specifications
The machine used for testing the implementations have the follow-
ing specifications:

• CPU: AMD Ryzen 5 2600, 6 core 12 thread, 3.4GHz clock
speed

• RAM: 2×8gb DDR4
• Power supplier: 530W

The machine used to test the implementations fails to execute the
subset rank function on a rank with 13 or more statements. Since
the space complexity of the subset rank is O(2𝑛), this machine
returns a “out of space” error when the function is called with 13
or more statements. Due to the PowerSet function being called
by every implementation, except the naïve implementation, the
exponential and inverse exponential distribution was not tested.

4.2 Hypothesis
The main focus of this experiment is comparing the execution time
of two implementations that uses binary search and ternary search.
By the analysis in section 3.3, binary search takes 2log2 (𝑛) times
for the worst case, where ternary search takes 3log3 (𝑛). Meaning
that the ternary search performs slightly better than the binary
search for the worst case. It is expected to obtain results where
the implementation using ternary search performs better than the
implementation using binary search.
Due to the structure of the implementations using binary search
and ternary search, it is expected to observe a result where the
execution time decreases as the index of the rank containing the
antecedent of the query increases. This is due to the implementa-
tions executing the entailment checker with fewer statements as
the index increases.

Daniel Park

4.3 Java Microbenchmark Harness
Java Microbenchmark Harness (JMH) is a tool used to benchmark
Java. JMH was developed by the team who developed Java Vir-
tual Machine (JVM). JMH is more accurate than calling the Sys-
tem.currentTimeMills() function before and after the execution of
the algorithms, and calculating the difference. JMH runs bench-
marks in a way where the results are not erroneous due to the
optimization of the virtual machine. JMH eliminates dead codes,
meaning that it will get rid of codes that is never used or does noth-
ing. Since we want to stress test our implementation around the
satifiability solver, we use JMH to test our implemented algorithms
and measure the execution time.
The benchmarking starts after the execution of the BaseRank al-
gorithm, exactly before the start of the execution of the reasoner
algorithms. This was done to measure the exact difference of the
execution time between the algorithms, excluding as many external
factors as possible.
The aim of this project is to investigate the scalability of defeasible
entailment algorithms, thus it is focused on optimising the imple-
mentations on top of the classical reasoner, and not the classical
reasoner itself.

4.4 Testing
Each tests were done with the following parameters:

• Fork (value = 2)
• Measurement (iterations = 10, time = 1)
• Warmup (iterations = 5, time = 1)

Fork, also called trail, is the number of trials the JMH will perform.
A trail contains a set of warmups and iterations. We will be running
two trials per each benchmark tests. Warmup is the number of
warmups it performs before running the actual benchmark. This is
to allow the JVM to perform and class loading, compilation to native
code, and caching steps before running the benchmark for gathering
results. The results obtained from the warmups are disregarded.
We will run 5 warmup runs per trail. The measurements is the
number of iterations the JMH performs after warming up. It gathers
the worst, average and the best values from the iterations. Our
measurement is set to 10, meaning that we will run our benchmark
tests 10 times per trail. In total, the JMH will gather results from 20
runs.

4.4.1 Test 1. The first test consists of a knowledge base with 50
ranks and 200 statements, containing classical statements. The
statements in this knowledge base is distributed with normal dis-
tribution. Eight queries were selected to test the implementations
starting from query containing the antecedent that is not in the
knowledge base. When the algorithms are executed with these
kinds of queries and a knowledge base, the query is compatible
with the knowledge base without removing any statements from
the knowledge base. Thus, this can be used to check the execution
time when the index is 0. The following queries contains the an-
tecedent of the statements in every eighth rank. The index∞ is the
index of the rank containing classical statements. The execution
time is measured in milliseconds.

Figure 7: Execution time for the naïve implementation

Figure 8: Execution time for the implementation using
PowerSet

Figure 9: Execution time for the implementation using bi-
nary search

Scalable Defeasible Reasoning

Figure 10: Execution time for the implementation using
ternary search

Figure 7 and figure 8 shows an exponential increase in the execu-
tion time as the index increases. This is due to the implementations
having to go through every rank before reaching the rank it is
looking for. By inspection, it is clear that the implementation using
PowerSet performs significantly better than the naïve implementa-
tion. Both figures have a slight drop from index 48 to∞. This is due
to the implementations not having to go through the subsets of the
infinite rank. Since the results for the naïve implementation and
the implementation using PowerSet shows the correlation between
the execution time and the index, further tests are done for these
two implementations.
Figure 9 and figure 10 shows unusual graphs. Not much could be
analysed by these results, thus more tests were done focusing on
these two implementations.

4.4.2 Test 2. The second test was conducted with a knowledge
base of 50 ranks and 200 statements, not containing any classical
statements. The statements in this knowledge base is distributed
with uniform distribution. For more results and accuracy, every
single antecedent in the knowledge base was tested.

Figure 11: The comparison of the execution time for the im-
plementations using binary search and ternary search

The summary of the figure 11:

Binary Search Ternary Search
Best 96.60 109.00
Average 253.97 222.03
Worst 407.11 323.46

This test shows that the implementation using ternary search
performed slightly better than the implementation using binary
search on average. This is due to ternary search having better time
complexity than the binary search. The binary search outperformed
the ternary search for the best case. This is due to the required
number of execution of the entailment checker for the binary search
is at least two, and three for the ternary search.

4.4.3 Test 3. This test aims to see the affect of the entailment
checker to the execution time of the implementations using search
heuristics. Cases where fewer comparisons are made, but resulting
in longer execution time due to large number of statements in the
rank, should be considered.
This test was conducted with a knowledge base of 250 ranks and
1000 statements, not containing any classical statements. The state-
ments in this knowledge base is distributed with uniform distribu-
tion

Figure 12: The comparison of logged execution time against
the number of entailment checks are called for the imple-
mentations using binary search

Daniel Park

Figure 13: The comparison of logged execution time against
the number of entailment checks are called for the imple-
mentations using ternary search

Tomeasure the the number of entailment checks called, a counter
was made to increment every time a comparison was made by the
implementations. The entailment checks are called when the com-
parisons are made.
Figure 12 and figure 13 shows a clear correlation between the exe-
cution time and the number of entailment checks called. The trends
are not exactly identical, but a reasonable reference to each other.
This allows us to focus more on the implementations by using the
knowledge base with uniform distribution.

4.4.4 Test 4. This test was done to see if the time complexity of
binary search is 2log2 (𝑛) and 3log3 (𝑛) for the ternary search. The
knowledge base from test 3, 250 ranks, 1000 statements, not con-
taining any classical statements and uniformly distributed, was
used for this test. The query was set to every antecedent in the
knowledge base and the number of entailment checks made were
stored for both implementations using binary search and ternary
search.
The summary of the test:

Binary Search Ternary Search
Best 2 3
Average 12.10 11.86
Worst 16 15

The best case for both implementations are as expected. 2log2 (250) =
15.93 ≈ 16 and 3log3 (250) = 15.07 ≈ 15. These values are equal to
what we observed.

4.4.5 Test 5. This test was done to see the behaviour of the imple-
mentation using ternary search on knowledge bases with different
distributions.

Figure 14: Execution time for the implementation using
ternary search

Figure 14 was tested with a knowledge base of 50 ranks, 200
statements, without any classical statements and distribution of
inverse normal.
By referring to figure 10, figure 11 and figure 14, the graphs tend to
have a shape of the distribution of the corresponding knowledge
bases. This is due to statements are distributed with the distribution
of the knowledge base, causing longer execution time of the entail-
ment checker with the ranks containing more statements relatively
than the other ranks.

4.5 Conclusions
From test 1, we have observed the behaviour of the nav̈e imple-
mentation and the implementation using PowerSet. The execution
time of these implementations increase as the index increases.
From test 2, we have observed that the implementation using bi-
nary search outperforms the implementation using ternary search
for the best case, but the opposite for the average and the worst
case. The summary of the results showed that the implementations
worked as expected, but more tests were required.
From test 3, we have observed that, for knowledge base where the
statements are distributed with uniform distribution, the execution
time and the number of comparisons made were highly correlated.
From this, we can rely on the execution time of the implementa-
tions, not having to measure the number of comparisons made
separately.
From test 4, we have shown that the implementations using binary
search and ternary search do have the time complexities analysed
in section 3.3.8 and section 3.3.11.
From test 5, we have shown that the shape of the execution time of
the implementation using ternary search follows the shape of the
distribution of the knowledge base.

From the analysis and the tests, it has been shown that the im-
plementation using ternary search performs better than the imple-
mentation using binary search. This was not a drastic improvement,
but a step towards a better scalable defeasible reasoner.

Scalable Defeasible Reasoning

5 RELATEDWORK
Rational closure (RC) and Lexicographic Closure (LC) both reduce to
a series of classical entailment checks. This means it is at its core the
problem of boolean satisfiability (SAT) and thus, research pertaining
to this problem is highly relevant to our proposed project.

5.1 Classical Satisfiability Solving
A satisfiability (SAT) solver is a system which computes the exis-
tence of a satisfying valuation (i.e., a model) for a specified boolean
formula. There are many such SAT solvers designed for classical
propositional satisfiability checking, thus understanding the ap-
proaches in this field will aid in the search for a suitable SAT solver
to be used in the prototype defeasible reasoners.

5.1.1 The DPLL Algorithm. DPLL [8] is a complete and sound SAT
checking algorithm. DPLL uses backtracking (retracting the most
recent assignment and performing a different assignment) to specu-
latively test various assignment combinations, along with Boolean
Constant Propagation (BCP) which constantly ensures that all vari-
ables which need to be true to satisfy a problem are kept true. DPLL
forms the basis of many modern SAT solvers.

5.1.2 The CDCL Process. GRASP [15, 18], introduced the Conflict
Driven Clause Learning (CDCL) process, in which variable assign-
ments which potentially cause conflicts are cached. This results
in better execution, and unlike DPLL [8], this does not rely on
chronological backtracking, and as such is more efficient.

5.1.3 Other Advancements. Several more advanced SAT solvers
utilise low-level optimisations such as different storage structures
and parallelism in order to obtain better performance [19], e.g.,
GridSAT [7] and Chaff [17]. Due to prolific research being done on
developing efficient SAT solving algorithms, many efficient SAT
solver implementations are now freely available.

6 FUTUREWORK
Currently the knowledge base generator by Bailey was not able
to generate complicated statements. If further research is done to
create complicated statements, more analysis could be made with
these implementations. The biggest knowledge base that was used
for this paper consists 250 ranks and 1000 statements. A more pow-
erful machine can be used to test larger knowledge bases. Since the
PowerSet has a space complexity of O(2𝑛), better implementations
can be made to decrease this space complexity.

REFERENCES
[1] Nitin Arora, Mamta Martolia Arora, and Esha Arora. A novel ternary search

algorithm. International Journal of Computer Applications, 144(11), 2016.
[2] Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition.

Springer, 2012.
[3] Zied Bouraoui, Antoine Cornuéjols, Thierry Denœux, Sebastien Destercke, Didier

Dubois, Romain Guillaume, João Marques-Silva, Jérôme Mengin, Henri Prade,
Steven Schockaert, Mathieu Serrurier, and Christel Vrain. From shallow to deep
interactions between knowledge representation, reasoning and machine learning
(kay r. amel group), 12 2019.

[4] G. Casini, T. Meyer, K. Moodley, and I. Varzinczak. Towards practical defeasible
reasoning for description logics. Jul 2013.

[5] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. Relevant
closure: A new form of defeasible reasoning for description logics. In Eduardo
Fermé and João Leite, editors, Logics in Artificial Intelligence, pages 92–106, Cham,
2014. Springer International Publishing.

[6] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. Taking defeasible entail-
ment beyond rational closure. In Francesco Calimeri, Nicola Leone, and Marco
Manna, editors, Logics in Artificial Intelligence - 16th European Conference, JELIA
2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in
Computer Science, pages 182–197. Springer, 2019.

[7] Wahid Chrabakh and Rich Wolski. Gridsat: A chaff-based distributed sat solver
for the grid. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
SC ’03, page 37, New York, NY, USA, 2003. Association for Computing Machinery.

[8] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[9] Michael Freund. Preferential reasoning in the perspective of poole default logic.
Artificial Intelligence, 98(1):209–235, 1998.

[10] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. Seman-
tic characterization of rational closure: From propositional logic to description
logics. Artif. Intell., 226:1–33, 2015.

[11] Adam Kaliski. An overview of klm-style defeasible entailment, 2020_.
[12] Sarit Kraus, Daniel Lehmann, and MenachemMagidor. Nonmonotonic reasoning,

preferential models and cumulative logics. Artificial intelligence, 44(1-2):167–207,
1990.

[13] Daniel Lehmann. Another perspective on default reasoning. Annals of Mathe-
matics and Artificial Intelligence, 15(1):61–82, Mar 1995.

[14] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1–60, 1992.

[15] Joaäo P. Marques-silva and Karem A. Sakallah. Grasp: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[16] Matthew Morris, Tala Ross, and Thomas Meyer. Algorithmic definitions for klm-
style defeasible disjunctive datalog. South African Computer Journal, 32(2):141–
160, 2020.

[17] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Annual
Design Automation Conference, DAC ’01, page 530–535, New York, NY, USA, 2001.
Association for Computing Machinery.

[18] João P. Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’96, page 220–227, USA, 1997. IEEE Computer
Society.

[19] Yakir Vizel, GeorgWeissenbacher, and SharadMalik. Boolean satisfiability solvers
and their applications in model checking. Proceedings of the IEEE, 103(11):2021–
2035, 2015.

[20] Cong-Cong Xing. Seven different proofs for| p (a)|= 2n. Journal of Computing
Sciences in Colleges, 31(5):53–61, 2016.

