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ABSTRACT
Knowledge representation and reasoning (KRR) is an approach to
artificial intelligence (AI) in which a system has some information
about the world represented formally (a knowledge base), and is
able to reason about this information. Defeasible reasoning is a
non-classical form of reasoning that enables systems to reason
about knowledge bases which contain seemingly contradictory in-
formation, thus allowing for exceptions to assertions. Entailment
checking is the process of determining whether or not a statement
can be inferred from a knowledge base. Currently, no programming
framework exists that supports defeasible entailment in the proposi-
tional logic context. We aim to improve the scalability of defeasible
entailment algorithms, as well as implement these algorithms in a
form that allows for incorporation into a larger framework.

CCS CONCEPTS
•Theory of computation→Automated reasoning;Constraint
and logic programming; •Computingmethodologies→Non-
monotonic, default reasoning and belief revision.

1 INTRODUCTION
Artificial Intelligence (AI) has been around for many years, with its
two core aspects being machine learning (ML) and knowledge rep-
resentation and reasoning (KRR) [5]. Our research will focus on the
latter. Knowledge representation refers to the notion of using some
formal set of symbols or notation in order to represent information
about the world. Reasoning refers to the idea of drawing inferences
from this information, with the key idea for this research being the
use of algorithms to reason about information (i.e., automated rea-
soning). We will utilise logics (a mechanism for formalising ways
to reason [3]) to represent information.

This review will begin by discussing the syntax and semantics of
propositional logic [3], before delving into the notion of entailment
and automated ways of determining satisfiability. Then in section 4,
we present a brief overview of classical reasoning and the shortfalls
it presents. Following this, we introduce defeasible reasoning and
specifically, the KLM approach to defeasible reasoning [15] [17].
We will then provide an overview of Rational Closure [17], and the
algorithm to compute it [8]. We conclude by painting the picture
of the gap in the literature of this field which we aim to fill with
this project.

2 PROPOSITIONAL LOGIC
Propositional logic is a framework for modelling information about
the world. In this framework, statements are built up using atomic
propositions (propositional atoms), which are simply sentenceswhich
can be attributed a truth value (a value of true or false). Formulas
are statements which are built up from a set of propositional atoms

which are combined using Boolean operators. This section will in-
troduce the syntax and semantics of propositional logic as defined
in [3].

2.1 Syntax
2.1.1 Alphabet Definition. The alphabet P used to construct propo-
sitional formulas consists of:

(1) A set of propositional atoms: e.g., {𝑝, 𝑞, 𝑟, ...}
(2) Boolean operators, a subset of which are represented in the

following table:

Operator Name Operator Symbol
Negation ¬
Disjunction ∨
Conjunction ∧
Implication →
Equivalence ↔

Table 1: Boolean operators and their symbols

The negation operator is unary (it takes in a single operand), and
the other operators are binary (they take in two operands).

2.1.2 Formula Definition. A formula is a string of symbols from
an alphabet defined as in 2.1.1, and the set of all formulas L is built
up recursively in the following way:

• Every atom 𝑝 ∈ P is in L.
• The negation of any atom 𝑝 ∈ P, i.e. ¬𝑝 , is in L
• If 𝛼 and 𝛽 are in L, then ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽 and 𝛼 ↔ 𝛽

are all in L.

The constants ⊤ and ⊥ are also in L, where they are simply formu-
las that are always true and always false, respectively.

2.2 Semantics
2.2.1 Formula Semantics. Every formula in 𝛼 ∈ L has a truth
value, where the truth value of 𝛼 is dependent on the meaning of
the Boolean operators and the truth values of the atoms which
comprise the formula.

An interpretation is a function 𝐼 : P → {𝑇, 𝐹 } which assigns a
single truth value to each propositional atom, and W is the set of
all interpretations. The truth value of a formula 𝛼 under a given
interpretation 𝐼 is written as 𝐼 (𝛼), and if 𝐼 (𝛼) is true for some
formula 𝛼 , then it is said that 𝛼 is satisfied by the interpretation 𝐼 .
This means one of the following conditions must hold:

• 𝛼 is an atom, e.g. 𝑝 , and 𝐼 (𝑝) = 𝑇
• 𝛼 is the negation of another formula, e.g. ¬𝛽 , and 𝐼 (𝛽) = 𝐹 .
• 𝛼 is the conjunction of two other formulas, e.g. 𝛽 ∧ 𝛾 , and
𝐼 (𝛾) = 𝑇



Joel Hamilton

• 𝛼 is the disjunction of two other formulas, e.g. 𝛽 ∨ 𝛾 , and at
least one of 𝐼 (𝛽) = 𝑇 , or 𝐼 (𝛾) = 𝑇 , holds.

• 𝛼 = 𝛽 → 𝛾 , and at least one of 𝐼 (¬𝛽) = 𝑇 or 𝐼 (𝛾) = 𝑇 holds.
• 𝛼 = 𝛽 ↔ 𝛾 , and 𝐼 (𝛽) = 𝐼 (𝛾).

If an interpretation 𝐼 satisfies a formula 𝛼 , then 𝐼 is called a model
of 𝛼 , and𝑀𝑜𝑑 (𝛼) is defined as the set of all models of 𝛼 .

2.2.2 Knowledge Bases. A knowledge base is a finite set of propo-
sitional formulas, where a knowledge base K is satisfied by an
interpretation 𝐼 if for every 𝛼 ∈ K , 𝐼 (𝛼) = 𝑇 . The set of models
of a knowledge base is the set of interpretations 𝐼 ∈ W which
satisfy K . If a given formula 𝛼 is true in every model of K (that
is, 𝑀𝑜𝑑 (K) ⊆ 𝑀𝑜𝑑 (𝛼)), then K entails 𝛼 , written K |= 𝛼 , which
means that 𝛼 is a logical consequence of the knowledge baseK . The
following section will discuss checking satisfiability of formulas
and knowledge bases, as well as how entailment and satisfiability
are related.

3 SATISFIABILITY CHECKING
Checking whether or not a formula (or knowledge base) is satisfi-
able (that is, there is some interpretation under which the formula,
or every formula in the knowledge base, is true), is a fundamen-
tal problem in mathematics, known as the Boolean Satisfiability
Problem. While this problem has been proved to be NP-complete
(proof available in [12]), there exist algorithms for checking the
satisfiability of a knowledge base, such as the Semantic Tableaux
algorithm for propositional logic, as in [3].

A satisfiability (SAT) solver is an algorithm (or a program im-
plementation thereof) which, given a boolean formula, will return
whether or not there exists an interpretation which satisfies the
formula. Given that every formula in propositional logic is Boolean
(has a truth value), there are many implementations of satisfiability
solvers which specifically return whether or not a propositional
logic knowledge base is satisfiable. A large amount of research has
taken place that has looked at optimising the satisfiability checking
process.

3.1 Satisfiability Algorithms
For a satisfiability algorithm to return that a particular knowledge
base K in unsatisfiable, it must be the case that there are two
contradictory statements (e.g., an atom 𝑝 , and its negation ¬𝑝) that
need to be both be true for any interpretation 𝐼 for it to be a model
of K .

3.1.1 The DPLL Algorithm. The DPLL algorithm [10] is a complete
satisfiability algorithm (it will always return that a problem/formula
is satisfiable if it is in fact the case) which works by assigning values
to variables speculatively in such a way that tends to return the vari-
able assignment that satisfies the problem relatively quickly. This
algorithm makes use of backtracking, as well as utilises a process
known as Boolean Constant Propagation (BCP) which constantly
ensures that all variables which need to be true to satisfy a problem
are kept true. DPLL formed the basis of many satisfiability solvers,
however aspects of how DPLL works have been improved upon
since it was proposed.

3.1.2 The CDCL Process. GRASP [27] [18], introduced the Conflict
Driven Clause Learning (CDCL) process, which allows for more

efficient satisfiability checking, as it caches the variable assign-
ments which cause potential conflicts, and thus does not rely on
chronological backtracking, as in the DPLL algorithm proposed in
[10].

3.1.3 Other advancements. Several more advanced SAT solvers
have come about which utilise low-level optimisations such as
different storage structures and parallelism, in order to obtain better
performance [30]. Examples of such SAT-solving algorithms include
GridSAT [9], which was proposed in 2003, which is an improvement
on Chaff [25], which is itself a relatively efficient solver that had
been proposed two years prior. Due to the significant research
being done in developing efficient SAT solving algorithms, many
implementations of SAT solvers are now available, and thus the
ability to check the satisfiability of a propositional formula (or
knowledge base) is now as simple as the click of a button.

3.2 Reducing Entailment to Satisfiability
Checking

Checking whether or not a statement constructed in propositional
logic, as defined in [3], is entailed by a knowledge base can be
reduced to checking satisfiability, as if a formula 𝛼 is true for all
models of a knowledge base K , then there should exist no model
of K such that 𝛼 is false, and thus, we can check entailment as
follows:
Input: A knowledge base K , and a formula 𝛼 such that we wish to
determine whether or not K |= 𝛼 .

(1) Consider the knowledge base K ′ = K ∪ {¬𝛼}
(2) Use the Semantic Tableaux algorithm, (or an implementa-

tion of a more advanced satisfiability solving algorithm) to
determine whether or not K ′ is satisfiable.
• If K ′ is satisfiable, then we know that there exists at least
one interpretation 𝐼 which is a model of K ′ such that
𝐼 (𝛼) = 𝐹 , and thus 𝐾 ̸ |= 𝛼 .

• If K ′ is unsatisfiable, then we know K |= 𝛼 , as there are
no models of K ′ such that 𝐼 (𝛼) = 𝐹 .

A simple example of this is as follows:
If we have a knowledge baseK containing the following statements:

• Every employee pays tax.
• Every student is an employee.
• There exists a student.

with these statements formalised into propositional logic as follows:
• 𝑒 → 𝑡

• 𝑠 → 𝑒

• 𝑠
And we wish to investigate whether or not the statement "No one
pays tax", formalised as ¬𝑡 , is entailed by the knowledge base, then
we will consider the knowledge baseK ′ = K ∪ {¬(¬𝑡)}, and given
that ¬(¬𝑡) is equivalent to 𝑡 , we have:

K ′ = {𝑒 → 𝑡, 𝑠 → 𝑒, 𝑠, 𝑡}
A SAT solver (or the Semantic Tableaux algorithm) would then
return that this knowledge base is in fact satisfiable, and thus we
would be able to conclude that the statement "No one pays tax",
is not entailed by the knowledge base K , as there is at least one
interpretation 𝐼 which is a model of 𝐾 ′ where 𝐼 (¬𝑡) is false.
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Note that the above algorithm for entailment works solely in
the context of classical reasoning, which is a reasoning framework
which defines how new information is determined to be a logical
consequence of a knowledge base. This will be elaborated on in the
following section.

4 CLASSICAL REASONING
4.1 Tarskian Operators
Classical reasoning is a framework for inferring information from
given knowledge, and while the way in which to reason classically
about propositional knowledge bases may seem relatively intuitive
(e.g. for 𝑝 → 𝑞 to be satisfied, it must be the case that if 𝑝 is true,
then 𝑞 is also true), there exists a formal basis for classical reason-
ing, which makes use of concepts known as Tarskian consequence
operators [23] [28] [29]. A consequence operator is a mapping from
arbitrary sets of formulas in a given logical language to other sets
of formulas in the language, and such a consequence operator is
Tarskian if it satisfies the following set of properties, as outlined in
[14]:

Given a knowledge base K and a consequence operator C𝑛 :
• Inclusion: K ⊆ C𝑛 (K)
• Monotonicity: if K ⊆ K ′, 𝑡ℎ𝑒𝑛 C𝑛 (K) ⊆ C𝑛 (K ′)
• Idempotence: C𝑛 (K) = C𝑛 (C𝑛 (K))

Where, in the context of classical reasoning in propositional logic:
• Inclusion means that any knowledge base is a subset of the
set of all formulas which it entails.

• Monotonicity means that any information that is entailed
by a knowledge base K will still be entailed by K even if K
has new information added to it (additional formulas).

• Idempotence (also referred to as closure) means that deduc-
tion (i.e., determining what is entailed by a knowledge base
K) using classical reasoning will always produce the entire
set of all information that is entailed by K.

4.2 Classical Reasoning Limitations and
Possible Solutions

Reasoning in such a way limits the ability to model human reason-
ing with propositional logic, as the property of monotonicity does
not hold in the way that humans think.

For example, if a human knows that it rains every Saturday, and
that today is a Saturday, then it makes sense to conclude that it
is raining today, however if we are then told that it is not raining
today, a human would interpret the addition of this new fact to
mean that we have simply come across an exception to the notion
of it raining every Saturday. Given that classical reasoning does not
allow for exceptions, this example is a clear instance where classi-
cal deduction is not a “common-sense” approach to reasoning [6].
Classical reasoning simply notes that a contradiction has occurred,
and we are now no longer able to infer that it is raining today, and
thus the property of monotonicity cannot be maintained in the
presence of somewhat contradictory information. What may have
allowed the additional information to not cause a contradiction is
if the initial knowledge we had rather stated that “typically, it rains
every Saturday”, as opposed to the general assertion that it rains
every Saturday.

Several approaches to nonmonotonic reasoning exist, with some
key approaches having been outlined by Kaliski in [14], namely
Belief Revision [2] [1], Default logic [26], Propositional Typicality
Logic [4], Circumscription [19] [20], and Nonmonotonic Modal
Logic [22] [21] to name a few, however the approach used for this
research is the KLM approach, as proposed in [15] [17].

5 KLM-STYLE DEFEASIBLE REASONING
5.1 The KLM Approach
Defeasible reasoning is a nonclassical form of reasoning which al-
lows for the concepts of typicality, and exceptionality. In the KLM
approach [15] [17], the notation of propositional logic is extended
to include statements of the form 𝛼 |∼ 𝛽 , to be read as “𝛼 typically
implies 𝛽”, the meaning of which is simply that if 𝛼 is true, then it
is likely that 𝛽 is true. The formal way in which the language of
all formulas L over an alphabet in propositional logic changes in
order to support statements of this nature is as follows:

𝐼 𝑓 𝛼, 𝛽 ∈ L, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑎𝑑𝑑 𝛼 |∼ 𝛽 𝑡𝑜 L

Note the specific phrasing “we add”, as 𝛼 and 𝛽 are thus restricted
to being formulas of the propositional form as defined in section 2
of this literature review (we can refer to statements of this form as
classical statements or classical formulas). In using this restrictive
phrasing, it implies there is no nesting of the typical implication
operator (|∼).

It is important to note that defeasible entailment is not unique
(i.e. the information entailed by a knowledge base can differ based
on the defeasible entailment approach used), however the KLM
framework defines a list of properties which must be satisfied by a
defeasible entailment method in order to be considered acceptable,
and it is for this reason that the KLM approach is preferred. An in-
depth overview of the KLM approach and its intricacies is provided
by Kaliski in [14].

5.2 Ranked Interpretations
Before delving into how to reason about a defeasible knowledge
base (a knowledge base containing statements which use the |∼
operator), we must first define a ranked interpretation [8].

Informally, this structure is simply a ranking of all interpretations
in W (the set of all interpretations), in order of typicality, starting
at rank 0 (indicating the most typical interpretations) and ending at
rank n, which will include those interpretations which are the least
typical, but are still plausible), followed by a single infinite rank,
indicating those interpretations which are impossible to occur. In
ranked interpretations, no rank can be empty.

Formally, a ranked interpretation is a function𝑅 : W → N∪{∞},
such that 𝑅(𝐼 ) = 0 for some 𝐼 ∈ W, and for every 𝑟 ∈ N, if 𝑅(𝐼 ) = 𝑟 ,
then for every 𝑗 such that 0 ≤ 𝑗 ≤ 𝑟 , there is an 𝐼 ∈ W for which
𝑅(𝐼 ) = 𝑗 . (Note that the definition in [14] uses slightly different
symbols, e.g. in place of W and 𝐼 . These symbols were changed
in order to be consistent with those introduced in section 2 of this
literature review.)

If a formula 𝛼 is true in all non-infinite ranks of a ranked inter-
pretation R, then we say that R “satisfies” 𝛼 , denoted 𝑟 ⊢ 𝛼 . For
defeasible statements (statements which use the |∼ operator), we
say R satisfies 𝛼 |∼ 𝛽 if in the lowest rank (the most typical rank)
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where 𝛼 holds, 𝛽 also holds. We can construct an ordering on the
set of all possible ranked interpretations for a knowledge base K ,
where 𝑅1 ≤K 𝑅2 if for every interpretation 𝐼 ∈ W, 𝑅1 (𝐼 ) ≤ 𝑅2 (𝐼 ).
There is a unique minimal element 𝑅𝑚 of the ordering ≤K such
that for every other ranked interpretation 𝑅𝑖 in the set of all ranked
interpretations for a given knowledge base, 𝑅𝑚 ≤K 𝑅𝑖 , as shown
in [13].

5.3 The KLM Properties
As mentioned in section 5.1., the KLM approach introduced sev-
eral properties which need to be met by any form of defeasible
entailment [15]. If any given approach to defeasible entailment
satisfies all these properties, then such an approach is referred to
as LM-rational. The extended KLM properties proposed in [17] are
as follows:

(Ref) K p≈ 𝛼 |∼ 𝛼

(RW)
K p≈ 𝛼 |∼ 𝛽, 𝛽 |= 𝛾

K p≈ 𝛼 |∼ 𝛾

(Or)
K p≈ 𝛼 |∼ 𝛾, K p≈ 𝛽 |∼ 𝛾

K p≈ 𝛼 ∨ 𝛽 |∼ 𝛾

(RM)
K p≈ 𝛼 |∼ 𝛾, K p≈ 𝛼 |∼ ¬𝛽

K p≈ 𝛼 ∧ 𝛽 |∼ 𝛾

(LLE)
𝛼 ≡ 𝛽, K p≈ 𝛼 |∼ 𝛾

K p≈ 𝛽 |∼ 𝛾

(And)
K p≈ 𝛼 |∼ 𝛽, K p≈ 𝛼 |∼ 𝛾

K p≈ 𝛼 |∼ 𝛽 ∧ 𝛾

(CM)
K p≈ 𝛼 |∼ 𝛽, K p≈ 𝛼 |∼ 𝛾

K p≈ 𝛼 ∧ 𝛽 |∼ 𝛾

Two methods of defining defeasible entailment that are both LM-
rational are rational closure [17] and lexicographic closure [16], and
two which are not LM-rational [8] are ranked entailment [17] and
relevant closure [7]. The following section will show the definition
of Rational Closure as per [8] and [14].

5.4 Rational Closure
5.4.1 Using the Unique Minimal Ranked Interpretation. As noted in
section 5.2, there is a unique minimal element 𝑅K of the set of all
ranked interpretations for a given knowledge base K . If 𝑅K ⊢ 𝛼 |∼
𝛽 , then this is written K p≈ 𝛼 |∼ 𝛽 , and it is said that K defeasibly
entails 𝛼 |∼ 𝛽 , or that 𝛼 |∼ 𝛽 is in the rational closure of K . Given
that this defeasible entailment relation can be generated from a
ranked interpretation, it is LM-rational, as found by Lehmann and
Magidor in [17].

5.4.2 The Base Ranks Algorithm. In order to algorithmically de-
termine whether or not a formula is in the rational closure of a
knowledge base, we require the base rank algorithm, and the actual
algorithm for checking entailment.

Before showing how the algorithm works, we need to define the
materialisation of a knowledge base K as

−→
K = {𝛼 → 𝛽 : 𝛼 |∼ 𝛽 ∈ K}

This essentially just converts defeasible implication statements into
classical implication statements.

(1) First, we create a sequence ofmaterialisations𝐸0, 𝐸1, ..., 𝐸𝑛−1, 𝐸∞
where 𝐸0 =

−→
K , and each 𝐸𝑖 = {𝛼 → 𝛽 ∈ 𝐸𝑖−1 : 𝐸𝑖−1 |= ¬𝛼}

for 𝑖 > 0. (This essentially means that each 𝐸𝑖 contains only

those statements 𝛼 → 𝛽 in 𝐸𝑖−1 such that 𝛼 can be proven
false according to those statements not in 𝐸𝑖−1). This process
terminates when 𝐸𝑖 = 𝐸𝑖−1 (or if 𝐸𝑖−1 = ∅) and we set n=i-1
and 𝐸∞ = 𝐸𝑛 .

(2) We then create a ranking such that 𝐸𝑛\𝐸𝑛−1 is in the bottom
rank, (call this 𝑅∞) 𝐸𝑛−2\𝐸𝑛−1 is in the next highest rank,
and so on. The ranking becomes such that the classical state-
ments in K are in the bottom rank (the infinite rank), and
statements are more general the higher the rank they are
in. If a statement 𝛼 → 𝛽 is in a rank i, then it is said that
𝛼 → 𝛽 has base rank i. What this means is that in every
ranked interpretation r of 𝐸𝑖 , 𝛼 → 𝛽 will be true in at least
one of the interpretations in the most typical rank of r.

5.4.3 Checking Defeasible Entailment. Input: a knowledge base K
and a defeasible implication statement 𝛼 |∼ 𝛽 .

(1) First, we check if ¬𝛼 is entailed by those statements in the
infinite rank.

(2) We then remove sets of classical implications rank by rank,
starting at the highest rank and working our way down until
we find a rank such that all the statements in that rank and
those remaining do not entail ¬𝛼 (thus, 𝛼 is satisfiable w.r.t.
the set of statements which are in the current rank and the
remaining ranks).

(3) We then check whether or not these remaining statements
entail 𝛼 → 𝛽 .

(4) If we get to the stage where we only have the bottom rank
remaining, and the statements in this rank entail ¬𝛼 then
we can simply conclude that it is the case that K p≈ 𝛼 |∼ 𝛽 .

This algorithm only returns that a statement is defeasibly entailed
by a knowledge base if this is true in terms of the minimal ranked
interpretation for the knowledge base [11].
The following is an example which may better explain how the
entailment check occurs:

If we have a knowledge base

K = {𝑠 → ¬𝑥, 𝑠 → 𝑐, 𝑡 → 𝑥, 𝑡 → 𝑠, 𝑓 → 𝑠}

which has been ranked according to the Base Ranks algorithm as
follows:

𝑅𝑎𝑛𝑘 0 𝑠 → ¬𝑥 , 𝑠 → 𝑐

𝑅𝑎𝑛𝑘 1 𝑡 → 𝑥

𝑅𝑎𝑛𝑘 ∞ 𝑡 → 𝑠 , 𝑓 → 𝑠

Figure 1: Base Ranking of Knowledge base K

And we wish to investigate whether or not the statement 𝑡 |∼ 𝑥 is
entailed by the knowledge base:

(1) We check if ¬𝑡 is entailed by
−→
K . It is not, so we throw away

the top rank.
(2) We then check if ¬𝑡 is entailed by the remaining statements

in ranks 1 and∞. We see that this is not the case, so we check
whether 𝑡 → 𝑥 is entailed by the remaining statements. We
see this is true, so we conclude 𝑡 |∼ 𝑥 is entailed by K .
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5.5 Defeasible Reasoning Implementations
It should be obvious that the algorithm for determining whether or
not a defeasible statement is in the rational closure of a knowledge
base simply reduces to several classical entailment checks, which
itself reduces to several classical satisfiability checks, as discussed
in section 3.2.

Although much research has been done in terms of optimising
classical satisfiability solving, as discussed in section 3, there cur-
rently exists no defeasible satisfiability solver which can determine
whether or not a defeasible statement is in the rational closure of
a given defeasible knowledge base. It is for this reason that there
has also been no attempt to optimise a program implementation of
rational closure, as there exists no program implementation of it in
the first place.

Some work has been done which looks at implementing the
ability to reason defeasibly in the context of description logics,
such as in [24], but the lack of a similar implementation in the
propositional case appears as a large gap in the literature regard-
ing nonmonotonic reasoning, as well as opens up the opportunity
for an investigation into the scalability of established LM-rational
defeasible entailment algorithms such as Rational Closure [17] and
Lexicographic Closure [16].

6 CONCLUSIONS
This review began with an introduction to the concepts of proposi-
tional logic as defined in [3], as well as the notions of entailment,
and satisfiability. We then presented classical reasoning and how
it is simply not expressive enough to model human thought. We
then introduced the concept of defeasible reasoning and how this
approach is more expressive than propositional logic, given its sup-
port for the notions of typicality and exceptionality. We then laid
out the KLM Approach [15] [17], and discussed the KLM properties
and the concept of LM-rationality. We then provided an overview of
rational closure [17], and an algorithm for determining the rational
closure of a knowledge base, as presented in [8]. We concluded by
pointing out the lack of program implementations of defeasible SAT
solvers, and the opportunity that this presents (namely, the ability
to investigate and improve the scalability of defeasible entailment
algorithms).
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