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ABSTRACT
Knowledge representation and reasoning is a subset of artificial
intelligence wherein varieties of basic logical principles harnessed
by humans are formalised. This is usually done through collating
information into a knowledge base with which a system can infer
conclusions. While it’s possible to represent many logical conclu-
sions successfully within the classical variant of this field, there
exists a critical flaw in that of its monotonicity. That is, as more in-
formation is collected, it becomes increasingly likely a contradiction
is introduced. Classical reasoning algorithms do not have the scope
to effectively deal with contradictions and as such, fail horribly
when presented with them. In order to account for this, nonmono-
tonic reasoning is currently a prolific area of study, wherein logical
systems are constructed such that information can be retracted
from the knowledge base in the case of a contradiction, detailing
a rational way of reasoning around it. This provides a style of
logical reasoning much more akin to that of humans as we are
constantly evaluating exceptions to otherwise rational conclusions.
In the project, we plan to implement a variety of algorithms derived
from one such nonmonontic framework, as well as implement a
knowledge base generation tool with which testing data can be
generated to assist with the algorithms’ development and prove
their correctness.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Com-
puting methodologies → Nonmonotonic, default reasoning
and belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, boolean satisfiability solving

1 INTRODUCTION
The problem of logical reasoning is at its core one of philosophy
and work has been done within the field in order to formulize it
[22]. This has lead to the understanding that the notion of logical
entailment can be effectively reduced to the problem of boolean
satisfiability. Luckily, this is an NP-complete problem and a well
studied section of computation [34]. Propositional logic is a type of
classical reasoning which defines syntax and semantics with respect
to boolean satisfiability, offering succinct and intuitive ways of
representing logical propositions, e.g, “all birds fly” can be written
as 𝑏𝑖𝑟𝑑 → 𝑓 𝑙𝑖𝑒𝑠 . The simplicity of proposositional logic has led to
it being the basis of many other variants of logical reasoning [2].
While propositional logic is monotonic, it encapsulates the qualities
of decidability and expressiveness making it a good candidate on
which nonmonotonic theory can be built upon [19].

With propositional logic in hand, a framework for defeasible
reasoning that uses propositional logic at it’s core will be inves-
tigated, first conceived by Kraus, Lehmann and Magnidor (KLM)
in their 1998 paper entitled Nonmonotonic Reasoning, Preferential
Models and Cumulative Logics [19]. For the project, two defeasi-
ble entailment algorithms based on the KLM approach are to be
implemented, along with a tool for generating testing data. The
first of these algorithms, rational closure, was defined by Lehmann
and Magnidor in their 1992 paper “What does a conditional knowl-
edge base entail?” [21]; and the second, lexicographic closure, was
published by Lehmann in the 1995 paper “Another perspective
on Default Reasoning” [20]. Only rational closure will be investi-
gated in this review as it represents a good example of KLM-style
defeasible entailment.

After this work has been investigated, the boolean satisifiability
problem (SAT) will be briefly outlined as well as the basics of a
tools used to solve SAT (sat-solvers).

2 PROPOSITIONAL LOGIC
2.1 Motivation
A proposition can be defined as a claim made with regards to to the
world inhabited (e.g., ’one plus one equals two’, ’Earth is farther
from the sun than Venus’) [2]. Intuitively, a proposition can be
resolved to a boolean value based on its accuracy.

This encaptulates the essence of propositional logic, wherein
English propositions are abstracted to symbolic formulas and logi-
cal entailment is reduced to boolean satisfiability [22]. Propositional
logic constructs these symbolic representations (formulas) through
combining propositional atoms using binary connectives. Reason-
ing procedures are then defined with respect to these formulas.

Propositional logic can also be viewed as an alternative nomen-
clature for the philosophical field of truth-function logic (when
under the assumption that all sentences are propositions) [22]. It
follows then that the purpose of propositional logic is to represent
the fundamental way in which humans can arrive at logical conclu-
sions. Owing to this, proposositional logic is used as a foundation
to many other variants of logical reasoning. The semantics and
syntax of propositional logic will now be outlined formally.

2.2 Syntax
The propositional language L generated by a finite set of proposi-
tional atoms P describes a set of propositional formulas. A proposi-
tional formula is defined inductively as either a single atom or a
set of formulas combined using propositional connectives.

An atom encodes a propositional statement and is represented
as either a lower case greek letter (e.g., 𝛼 , 𝛽 , 𝛾 . . . ) or an abbreviation
of the statement it represents (e.g, 𝑏𝑖𝑟𝑑 , 𝑏, 𝑓 𝑙𝑖𝑒𝑠 , 𝑓 , 𝑆𝑝𝑎𝑟𝑟𝑜𝑤 . . . ).
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Each atom in P has an associated truth value which will be denoted
using 𝑇 for true and 𝐹 for false.

Each propositional connective symbolizes a different logical re-
lation (boolean operator). There are 16 different connectives in
propositional logic. We will however restrict this to the classical
propositional connectives [19]. These connectives are defined in
the table below:

Symbol Name Type
¬ Negation Unary
∧ Conjunction Binary
∨ Disjunction Binary
→ Implication Binary
↔ Equivalence Binary

So the propositional language L generated by a finite set of
atoms P can be defined inductively as the set of formulas where for
some 𝑝 ∈ P and 𝛼, 𝛽 ∈ L, {𝑝, ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽, 𝛼 ↔ 𝛽}
are also formulas in L, along with two additional symbols, top ⊤
- a tautology (statement that is always true) - and bottom ⊥ - a
contradiction (a statement that is always false) [18]. Thus we are
now able to desribe the syntax of propositional but we have yet
to explore the process of logical entailment using these formulas.
This will be investigated through the semantics of propositional
logic as summarized by Kaliski [18].

2.3 Semantics
A formula can be evaluated using a mapping, known as a valuation,
that associates each atom with a boolean truth value. A valuation 𝑢
is formally defined as a function such that 𝑢 : 𝑃 ↦→ {𝑇, 𝐹 }. We say
the valutation 𝑢 = {𝑝𝑞} assigns atom 𝑝 a truth value of true and
atom 𝑞 a truth value of false. We formally say 𝑢 satisfies 𝑝 (denoted
𝑢 ⊩ 𝑝) since 𝑝 is true under 𝑢. The set of all possible valuations a
formula can take is denoted withU. When P = {𝑝, 𝑞},U takes the
form {𝑝𝑞, 𝑝𝑞, 𝑝𝑞, 𝑝𝑞} as this signifies each possible combination of
truth values for the atoms in P.

This notion of satisfaction extends to formulas as well since
the boolean operator connectives take in a number of operends
and return singular boolean results. To provide meaning to such
operators, we use truth tables [22] which stipulate both the truth
values of the atoms (left) and the resulting evalutations of some
formula(s) (right). The table below depicts this for each connective:

𝑝 𝑞 ¬𝑝 𝑝 ∧ 𝑞 𝑝 ∨ 𝑞 𝑝 → 𝑞 𝑝 ↔ 𝑞

F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

Any valuation 𝑢 that satisfies some formula 𝛼 ∈ L is said to be
a model of that formula. The set of all models of 𝛼 is denoted by 𝛼 .
If 𝛼 contains at least one model, then 𝛼 is satisfiable. If 𝛼 is empty,
𝛼 is unsatisfiable (a contradiction). If 𝛼 = U, then 𝛼 as a tautology
as it is true for every possible valuation. For example, 𝑝 ∧ ¬𝑝 is a
contradiction while 𝑝 ∨ ¬𝑝 is a tautology.

The previous notions define the basics of model theory [2] in
which we will go into futher detail. For some formulas 𝛼, 𝛽 ∈ L,
𝛽 is a logically entailed by 𝛼 , written 𝛼 |= 𝛽 , iff ∀𝑢 ∈ U such that
𝑢 ⊩ 𝛼 , then 𝑢 ⊩ 𝛽 . This can also be described in set notation, i.e.,
𝛼 ⊆ 𝛽 . We can now say 𝛼 and 𝛽 are logically equivalent, written
𝛼 ≡ 𝛽 , iff 𝛼 |= 𝛽 and 𝛽 |= 𝛼 , i.e., iff 𝛼 ⊆ 𝛽 and 𝛽 ⊆ 𝛼 .

We now focus our attention on finite sets of propositional for-
mulas known as knowledge bases. For some knowledge base K , a
valuation 𝑢 satisfies K , written 𝑢 ⊩ K , iff ∀𝛼 ∈ K , 𝑢 ⊩ 𝛼 . The
models of K , denoted by K̂ , is the set containing the models of
every formula within K . Logical entailment and equivalence with
regards to knowledge bases is defined in an analogous manner to
formulas, so it will be gone over briefly. For some knowledge bases
K1,K2:K2 is a logically entailed byK1 iff K̂1 ⊆ K̂2; and is logically
equivalent to K2 iff K̂1 = K̂2. It is said that some formula 𝛽 ∈ L is
logically entailed by K iff ∀𝛼 ∈ K , 𝛼 |= 𝛽 .

Logical entailment has thus been defined with respect to propo-
sitional logic and as such, the notion of defeasible reasoning will
now be investigated.

3 DEFEASIBLE REASONING
3.1 Motivation
Classical reasoning systems, such as proposositional logic, are un-
able to accurately depict real-life human logical reasoning owing
to their monotonicity. This is explained by McDermott and Doyle
[24] through the assertion we are always working with incomplete
knowledge and thus perception and “common sense” are utilized
by humans to make up for it by temporarily dismissing commonly
held beliefs when presented with new contradictory information.

Propositional logic assumes each proposition contained in knowl-
edge base is absolute and thus, conclusions entailed by adding
propositions to the knowledge base are never retracted. For ex-
ample, the propositions “birds fly”, “penguins are birds”, “penguins
don’t fly” all represent well founded propositions brought on by
the world we inhabit and can be encoded using the propositional
knowledge baseK = {𝑏 → 𝑓 , 𝑝 → 𝑏, 𝑝 → ¬𝑓 }. When attempts are
made to reason with K , we find it has no models. This is because
K entails that penguins fly and penguins don’t fly, a contradiction.
Thus this knowledge base has been rendered useless other than
exemplifying the problem brought on by monotonicity.

Nonmonotonic systems offer a solution to this and as such many
different systems for nonmonotonic reasoning have already been
constructed [29]. The KLM framework for defeasible reasoning [19]
defines a preferential approach to building defeasible systems using
a combination of conditional logic [10] and a variant of preferential
logic [30] as its foundation. It has been found that the defeasible
reasoning algorithms produced by this approach are both inherently
computable and at least as efficient as classical reasoning algorithms
[20], making it an attractive choice for practical defeasible reasoning
tools.

3.2 A Preferential Approach
As stated before, the KLM approach employs a preferential approach
to defeasible reasoning which in turn has a basis in propositional
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logic [30]. Consequence relations, denoted by |∼, are used to ex-
press defeasible implication. For instance, 𝑏𝑖𝑟𝑑 |∼ 𝑓 𝑙𝑖𝑒𝑠 reads as
“birds typically fly”. It is important to note this does not represent a
new propositional connective, but rather a pairing of propositional
formulas.

The semantics of KLM-style defeasible entailment require ranked
interpretation to be defined [12]. Ranked interpretations refer to
a set of valuations (referred to as states) with some partial order
applied to the states such that the most preferred states are found
at the bottom and the least preferred states are found at the top.

We can define a ranked interpretation more formally as the
function R : U ↦→ N ∪ {∞} such that R(𝑢) = 0 for some 𝑢 ∈ U,
and ∀𝑖 ∈ N if R(𝑣) = 𝑖 then ∀𝑗 ∈ N such that 0 ≤ 𝑗 < 𝑖 , there
∃𝑢 ∈ U for which R(𝑢) = 𝑗 [12]. The symbol ≺ denotes the
ordering of the states in R.

With this formalization, we define [[𝛼]]P as the set of all states
𝑠 ∈ R such that 𝑠 ⊩ 𝛼 . A state 𝑠 is said to be minimal with respect
to R if there exists no state 𝑠 ′ ∈ R such that 𝑠 ′ ≺ 𝑠 . The set of all
minimum states in R is described with min≺ (P).

A ranked interpretation R satisfies some defeasible implication
𝛼 |∼ 𝛽 if for any 𝑠 ∈ [[𝛼]]R ∩min≺ (P), 𝑠 ⊩ 𝛽 as well. R would then
be described as a ranked model of 𝛼 |∼ 𝛽 . When considering the
knowledge base from the prior example, 𝑝 |∼ ¬𝑓 would be satisfied
by the ranked interpretation depicted in the table below since the
minimum state for 𝑝 , i.e., 𝑝𝑏𝑓 , satisfies ¬𝑓 .

2 𝑝𝑏𝑓

1 𝑝𝑏𝑓 𝑝𝑏𝑓

0 𝑝𝑏𝑓 𝑝𝑏𝑓 𝑝𝑏𝑓

We can even check classical propositional satisfaction using this
method. That is for some 𝛼 ∈ L, R satisfies 𝛼 if R ⊩ ¬𝛼 |∼ ⊥ [12].
This, along with the example above, shows us this preferencial ap-
proach is more expressive than propositional logic (an unsurprising
conclusion).

Ranked preferential entailment functions analogously to its propo-
sitional counterpart. For a knowledge base K and a defeasible im-
plication 𝛼 |∼ 𝛽 , K |≈R 𝛼 |∼ 𝛽 iff for every ranked interpretation
R such that R ⊩ K , R ⊩ 𝛼 |∼ 𝛽 . This implies ranked entailment
is still monotonic, and thus we move our attention to the idea of
defeasible entailment [18].

3.3 KLM-Style Defeasible Entailment
Unlike propositional logic, there is no fixed way to go about de-
feasible entailment in the KLM approach to defeasible reasoning.
Rather, we agree the goal is to find whether a defeasible implication
is entailed by a knowledge base using a method that adheres to sev-
eral rationality properties proposed by Lehmann and Magnidor [21].
Giovanni et al. [12] proposed LM-rational as a term to describe any
defeasible entailment procedure that satisfies all of these properties.

The rationality properties, defined by [18], for all knowledge
bases K and propositional formulas 𝛼, 𝛽,𝛾 as follows:

The first defeasible entailment algorithm for the KLM approach
also proposed by Lehmann and Magnidor [21] will now be defined.

(Ref) K |≈ 𝛼 |∼ 𝛼 And K |≈𝛼 |∼𝛽,K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(LLE) K |≈𝛼↔𝛽,K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾 Or K |≈𝛼 |∼𝛾,K |≈𝛽 |∼𝛾

K |≈𝛼∨𝛽 |∼𝛾
(RW) K |≈𝛼→𝛽,K |≈𝛾 |∼𝛼

K |≈𝛾 |∼𝛽 (CM) K |≈𝛼 |∼𝛾,K |≈𝛼 |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

3.4 Rational Closure
Rational closure is an LM-rational method of defeasible entailment.
In order to define it, we must first gain an idea of minimal ranked
entailment [18]. This involves defining a partial order for all ranked
models of a knowledge base K , denoted with ⪯K . This follows the
same principle of ranked interpretations, i.e., the lower the ranked
model, the more likely it is (and vice versa). Giordano et al. [11]
found there exists a minimum ranked model within this ordering.
It is around finding this minimum ranked model that the rational
closure of a knowledge base K is based [12]. This is because for K
to entail some defeasible implication, the minimum ranked model
must satisfy it.

Before detailing the the initial step of rational closure, we must
first know the relationship between a knowledge baseK and itsma-

terial counterpart
−→
K . This is quite simple as

−→
K is identical toK , just

with all defeasible implications replaced with material implications,
e.g., 𝑏𝑖𝑟𝑑 |∼ 𝑓 𝑙𝑖𝑒𝑠 is replaced with 𝑏𝑖𝑟𝑑 → 𝑓 𝑙𝑖𝑒𝑠 .

Now, the initial step of applying rational closure to a knowledge
base K is to perform the BaseRank algorithm on K . This can be
defined in a similar manner to a ranked interpretation, as BaseRank
maps each formula in

−→
K to a rank inN ∪ {∞} which represents an

exceptional subset of K . The set of all such exceptional subsets is
denoted EK

𝑛 . BaseRank is used to find the minimum ranked model.
An overview of BaseRank can be described by first separating

K into its classical and defeasible components, denoted with 𝐾𝐶
and K𝐷 respectively.

−−→
K𝐷 is placed in EK

0 while 𝐾𝐶 is kept aside.
For each 𝛼 → 𝛽 ∈ EK

0 , we check whether EK
0 ∪ 𝐾𝐶 |= ¬𝛼 . If this

is the case, the antecedent 𝛼 is exceptional and all formulas within
EK

0 that have 𝛼 as an antecedent are copied to EK
1 . After each

antecedent has been checked, rank RK
0 is assigned the formulas

E𝐾0 \EK
1 and we repeat the process for the next subset, i.e., EK

1 .
When a subset is reached in which there are no formulas requiring
demotion, we have reached the end of the iteration and we add a
final rank R𝐾∞ to house 𝐾𝐶 .

With R𝐾 in hand, we can find out whether K entails some de-
feasible query 𝛼 |∼ 𝛽 using the RationalClosure algorithm. Rational-
Closure boils defeasible entailment checking down to the classical
propositional entailment that was outlined earlier in the review. It
returns true iff K |≈ 𝛼 |∼ 𝛽 , i.e., iff 𝛼 |∼ 𝛽 is in the rational closure
of K [9].

A overview for RationalClosure will now be described. Given
a knowledge base K , the result from BaseRank R𝐾 , and some
defeasible implication query 𝛼 |∼ 𝛽 .

(1) We check if
−→
K entails ¬𝛼 .

(2) If it doesn’t, 𝛼 is compatible with K and the result will be
based on whether

−→
K entails 𝛼 → 𝛽 .

(3) If it does, 𝛼 is incompatible with K and the most preferred
rank is retracted from RK , the resulting knowledge base
we’ll refer to as K ′.
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- If RK′
is an empty set, K ̸|≈ 𝛼 |∼ 𝛽 .

- If RK ′ contains at least one rank, we return to (1) with
K ′.

In order to finalize this investigation into KLM-style defeasible
entailment, rational closure will be exhibited using an extension
of the birds and penguins example from before. For this extension,
we’ll add the statements “Robins are birds” (𝑅 → 𝑏), and “birds typi-
cally have wings” (𝑏 |∼ 𝑤 ). We capture all this with the knowledge
base K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 , 𝑅 → 𝑏, 𝑏 |∼ 𝑤}.

When applying BaseRank to this knowledge base, 𝐾𝐶 = {𝑝 →
𝑏, 𝑅 → 𝑏} and 𝐾𝐷 = {𝑏 → 𝑓 , 𝑝 → ¬𝑓 , 𝑏 → 𝑤}. The only excep-
tional antecedent when ranking is 𝑝 and is found in EK

0 . The result
of BaseRank RK is:

∞ 𝑝 → 𝑏, 𝑅 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓 , 𝑏 → 𝑤

We will now use RationalClosure to see if K defeasibly entails
the query 𝑝 → ¬𝑓 , or “penguins don’t fly”. We start by checking
whether

−→
K |= ¬𝑝 . This is the case as there is no model 𝑢 of

−→
K such

that 𝑢 ⊩ 𝑝 . Because of this, we remove the most preferred rank
from RK , i.e., RK

0 , producing:

∞ 𝑝 → 𝑏, 𝑅 → 𝑏

1 𝑝 → ¬𝑓

We check again whether
−→
K |= ¬𝑝 and find that it does not

since there exists a model 𝑢 of
−→
K such that 𝑢 ⊩ 𝑝 , e.g, {𝑝𝑏𝑟 𝑓 }. We

now check whether
−→
K entails 𝑝 → ¬𝑓 which it clearly does since

𝑝 → ¬𝑓 is a formula within
−→
K and as such, any model of

−→
K is also

a model of 𝑝 → ¬𝑓 . We can therefore assert K |≈ 𝑝 → ¬𝑓 and
with that, the investigation into KLM-style defeasible entailment is
concluded.

4 SAT-SOLVERS
4.1 The Problem of Boolean Satisifiability
The problem of boolean satisfiability (SAT ) is one of generic com-
binatorial reasoning [14]. It represents the decision whether there
exists some interpretation which satisfies a given boolean formula.
It has been proven to be NP-complete [4] and while it relates fun-
damentally to the field of automated theorem-proving, it can also
be found in the logical reasoning procedures for knowledge rep-
resentation and reasoning, as well as a variety of other important
problems such as software testing [33] and hardware verification
[32] (to name only a few).

This shows SAT to be a very important problem that requires
an efficient solution. Boolean satisfiability solvers (sat-solvers [14])
attempt to solve SAT efficiently with many different optimisations
[15, 28]. There is an international competition in order to find the
best sat-solvers [17].

4.2 Sat-solver Basics
Generally, sat-solvers deal with propositional formulas written in
conjunctive normal form (CNF) [26]. This describes the language
made up of clauses joined with ∧ connectives. Clauses are con-
structed from atomic literals (the literals for atom 𝑝 are {𝑝,¬𝑝})
and ∨ connectives. Algorithms exist that allow easy conversion
from a propostional formula to CNF. We can assign an atom true
(𝑇 ) or false (𝐹 ). An example of a propositional formula in CNF is
(𝑝 ∨𝑞) ∧ (𝑝 ∨¬𝑞). If we assign 𝑝 to true, we get (𝑇 ∨𝑞) ∧ (𝑇 ∨¬𝑞).

There are two main types of sat-solver algorithms [14]. The
first of which, complete algorithms, either find a solution which
satisifes the formula, or prove that the formula is unsatisfiable.
The second type, incomplete algorithms, take a non-deterministic
approach, often employing methods such as stochastic local search
[16] to search through all possible atomic assignments in order to
find a solution to the formula. Both types have their pros and cons.
Complete algorithms deterministically return either a solution to
the formula or a proof that it is unsatisfiable, but are regularly
quite slow. Incomplete algorithms can implement a vast array of
optimisations to improve their search efficiency, but how long they
will take to terminate is never known for sure (along with the fact
they provide little explanation for their findings). Because of this,
incomplete algorithms are generally used when unsatisfiability is
not expected (e.g., [27]).

4.3 Basic Sat-solving in Propositional Logic
By definition, satsolving speaks directly to the satisfiability of propo-
sitional formulas and can be formulised as such. That is, given some
formula 𝛼 ∈ L, if there exists a valuation 𝑢 ∈ U such that 𝑢 ⊩ 𝛼 ,
i.e., 𝛼 ≠ ∅, then 𝛼 is satisfiable.

An obvious way of assertaining this in practice consitutes an
incomplete algorithm that implements brute force search. That is,
for some formula𝛼 ∈ L, each valuation𝑢 ∈ U is tested individually.
This can be very time-consuming and inefficient.

One alternative to brute force, defined in [2], is a semantic
tableaux based complete algorithm. A tableau is constructed by
decomposing a formula into sets of atomic literals. The construc-
tion is complete when no further decomposition is possible. A
clash, i.e., when both literals for an atom are found within the same
subset, represents a contradiction and thus the initial formula is
found to be unsatisfiable. The completed tableau acts as a proof for
the formula’s satisfiability. Other kinds of tableaux algorithms for
propositional logic can be found in [7].

4.4 DPLL
The DPLL published by Davis, Logemann, and Loveland in 1960 [5]
(based on a preliminary algorithm by Davis and Putnam [6]) is a his-
toric sat-solver algorithm on which which many other sat-solvers
are based (e.g., [8], [31]). Silva and Shakallah [23] and Bayardo
and Schrag [1] proposed changes to DPLL which greatly improved
its proficiency. This lead to further sat-solvers being constructed
around it (e.g., [25], [13]) which expanded the optimisations on
various aspects of DPLL. It’s clear from this that DPLL is regarded
as a very influential sat-solver and for this reason its basic operation
will be outlined.



Scalable Defeasible Reasoning Literature Review

DPLL at its core is a backtracking algorithm. It takes in a propo-
sitional formula in CNF 𝛼 (actually a set of clauses but this makes
more sense for an explanation), returning true if 𝛼 is satisfiable
and false if 𝛼 is unsatisfiable. The algorithm starts by executing
a branching procedure, i.e., some atom in 𝛼 is assigned a random
truth value. We continue branching until we find an assignment
that satisifes 𝛼 (in which case we return true), or 𝛼 is false (in which
case we backtrack). Backtracking involves retracting the most re-
cent branching assignment and branching again with a different
assignment (unless there are no new assignments to branch to, in
which we backtrack again). If there exists no new branches to be
taken and we can’t backtrack any further, 𝛼 is unsatisfiable and
false is returned.

We’ll exhibit this algorithm with a simple example. Given

(𝑎 ∨ ¬𝑏) ∧ (¬𝑎 ∨ 𝑏)
we execute DPLL:

1 Branch: 𝑎 := 𝑇
(𝑇 ∨ ¬𝑏) ∧ (𝐹 ∨ 𝑏)

2 Branch: 𝑏 := 𝐹
(𝑇 ∨ 𝐹 ) ∧ (𝐹 ∨ 𝐹 ) (unsatisfied)

3 Backtrack: 𝑏 := 𝐹
(𝑇 ∨ ¬𝑏) ∧ (𝐹 ∨ 𝑏)

4 Branch: 𝑏 := 𝑇
(𝑇 ∨ 𝐹 ) ∧ (𝐹 ∨𝑇 ) (satisfied!)

5 Return: true
It’s clear to see there are many optimisations that can be applied

to DPLL [26], but it still provides a good framework for sat-solving
that has stood the test of time. CaDiCaL [3], a sat-solver with a
DPLL foundation, was a top performer in the recent 2020 SAT
competition affiliated with “23rd International Conference on Theory
and Applications of Satisfiability Testing”. Not bad for a 60 year old
algorithm. And with that, the brief investigation into sat-solvers is
concluded.

5 CONCLUSIONS
In this review, the syntax and semantics relating to propositional
logic was outlined. It was shown that introducing contradictory
information into a knowledge base renders classical propositional
entailment useless owing to its monotonicity.

It was found that the KLM approach to defeasible reasoning
offers a solution to this based on preferential logic. KLM-style de-
feasible reasoning does not conform to a single method of defeasible
entailment. The KLM approach was also shown to be more expres-
sive than that of propositional logic owing to its preferential base.
Each step of the rational closure algorithm was outlined and shown
to effectively deal with the problem that classical proposositional
logic initially struggled with. It was found that since rational closure
reduces defeasible entailment to classical propositional entailment,
it can be implemented very efficiently with sat-solvers.

Finally, we investigated the basics of sat-solvers, identifying the
importance of the SAT problem, its relation to propositional logic,
and a brief description of an important historical sat-solver DPLL.
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