
CS/IT Honours
Final Paper 2021

Title: Scalable Defeasible Reasoning

Author: Aidan Bailey

Project Abbreviation: SCADR

Supervisor(s): Tommie Meyer

Category Min Max Chosen
Requirement Analysis and Design 0 20 0
Theoretical Analysis 0 25 10
Experiment Design and Execution 0 20 5
System Development and Implementation 0 20 15
Results, Findings and Conclusions 10 20 15
Aim Formulation and Background Work 10 15 15
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Scalable Defeasible Reasoning
Aidan Bailey

University of Cape Town
Cape Town, South Africa
BLYAID001@myuct.ac.za

ABSTRACT
Knowledge Representation and Reasoning (KRR) is an approach
to Artificial Intelligence (AI) in which a system is given informa-
tion about the world (a Knowledge Base), with which it is able to
draw conclusions through automated reasoning (entailment check-
ing). The classical forms of reasoning are monotonic, in that by
adding new information to a Knowledge Base, possible inferences
cannot be retracted, only introduced. This is problematic, as when
more information is added to a Knowledge Base, there is an in-
creasing chance that a contradiction will be introduced, rendering
classical forms of reasoning unreliable. Defeasible reasoning is a
non-classical, non-monotonic form of reasoning, enabling systems
to more reliably reason with Knowledge Bases containing contra-
dictions, a process more akin to everyday human-based reasoning.
Currently, no programming framework exists that explicitly sup-
ports defeasible entailment checking for Propositional Logic. We
aim to implement and investigate the scalability of defeasible en-
tailment algorithms. We also aim to implement a Knowledge Base
generation tool to be used for testing the implementations.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, satisfiability solving

1 INTRODUCTION
There are two main approaches to Artificial Intelligence (AI): Ma-
chine Learning (ML) and Knowledge Representation and Reasoning
(KRR) [2]. Our research focuses on the latter. Knowledge Represen-
tation refers to the use of formal notation to express information
about the world. Reasoning is the notion of drawing inferences
from this information, with the key idea being to automate the
process. Logics [1] is an umbrella term for the various Knowledge
Representation and Reasoning subtypes, each utilizing differing
syntax and semantics allowing for different kinds of logical rela-
tionships to be easily expressed. We will be focusing on one such
type that represents propositional logical relationships (e.g., “the
Earth is round”), known as Propositional Logic [1].

Propositional Logic [1] is monotonic, meaning that when new
information is gathered, any previously possible inferences cannot
be retracted, even if the new information introduces contradictions.
This propends to the notion that Propositional Logic requires com-
plete knowledge (propositions that are certainly true) in order to
reason reliably. This is clearly not a “common-sense” approach to

reasoning [3], as humans often (if not always) reason without com-
plete knowledge. Thus, using Propositional Logic limits our ability
to model human reasoning as the rational mind is not monotonic
in nature.

For example, if a human has never encountered flightless birds,
“all birds fly” would be a reasonable classical proposition. When
they are told that “penguins are birds” and that “penguins do not
fly”, a contradiction is apparent, The monotonic mind would infer
that “penguins do not exist”, an undesired conclusion showcasing
the unreliability of reasoning when under the assumption that one
is working with complete knowledge. If the human instead made
an initial defeasible proposition that “all birds typically fly”, the
non-monotonic mind would conclude that penguins represent an
exception to this and thus, would retract any inferences derived
from it when reasoning with penguins, ultimately leading to more
reliable conclusions.

Wemake use of an extension of Propositional Logic where typical
logical relations are allowed.

2 BACKGROUND
2.1 Propositional Logic
2.1.1 Syntax. The syntax of the Propositional Logic language L
consists of propositional atoms and Boolean connectives. Atoms
represent natural language propositions and are often denoted
using abbreviations of their respective propositions (e.g., “Is a Dog”
could be isDog, dog, d, . . .) or using Greek characters (e.g., 𝛼 ,𝛽 ,𝛾 . . .).
Boolean connectives represent logical relations among the atoms.
There are five basic connectives in L as described by the table
below.

Symbol Name Operand Type
¬ Negation Unary
∧ Conjunction Binary
∨ Disjunction Binary
→ Implication Binary
↔ Equivalence Binary

The combination of atoms and connective produce propositional
formulas. Thus, the grammar of L can be defined recursively for a
finite set of atoms P as follows:

• If 𝛼 is an atom in P, 𝛼 is a formula of L.
• If 𝛼 and 𝛽 are formulas ofL, then so are (¬𝛼), (𝛼∧𝛽), (𝛼∨𝛽),

(𝛼 → 𝛽) and (𝛼 ↔ 𝛽).

2.1.2 Semantics. A propositional formula is evaluated using a
propositional interpretation. An interpretation is a function I :
P → {T , F }, where P is a finite set of atoms, T is a truth-value of
true and F is a truth-value of false. Once a interpretation has been
applied, the formula is evaluated based on its Boolean connectives

Aidan Bailey

with the resounding truth-value being the result. If 𝐼 (𝛼) is true
for some formula 𝛼 , then I satisfies 𝛼 , denoted I ⊩ 𝛼 , and I is
referred to as a model of 𝛼 . If 𝛼 has at least one model, 𝛼 is said to
be satisfiable. If 𝛼 has no models, 𝛼 is unsatisfiable and contains a
contradiction. The set containing all models of 𝛼 is denoted𝑀𝑜𝑑 (𝛼).
A propositional knowledge base is a finite set of formulas. For some
knowledge base K and interpretation I, I(K) is true if ∀𝛼 ∈ K ,
I ⊩ 𝛼 .

If some formula 𝛼 is true for every model ofK (i.e., if𝑀𝑜𝑑 (K) ⊆
𝑀𝑜𝑑 (𝛼)), thenK entails 𝛼 , writtenK |= 𝛼 . Owing to the monotonic
nature of propositional entailment, if K contains even a single con-
tradiction,𝑀𝑜𝑑 (K) will be empty and thus, K will entail anything.

2.2 KLM Approach to Defeasible Reasoning
2.2.1 KLM-framework. Defeasible reasoning is a form of reasoning
which allows one to reason about knowledge bases which contain
seemingly contradictory information, and allows for exceptions to
general assertions. The KLM-approach [10, 12] provides a frame-
work that introduces the defeasible implication in order to deal
with statements such as “𝛼 typically implies 𝛽”, written formally
as “𝛼 |∼ 𝛽”, meaning if 𝛼 is true, then this is typically enough
information to believe 𝛽 is also true. A detailed overview of this
approach is provided by Kaliski in [9]. It is important to note that
the defeasible implication represents a relationship between two
propositional formulas and is not an extension to L, i.e., formulas
such as “𝛼 |∼ 𝛽 |∼ 𝛾”, “𝛼 |∼ (𝛽 |∼ 𝛾)” and “𝛼 ∧ (𝛽 |∼ 𝛾)” are not
allowed.

2.2.2 Defeasible Entailment. The notion of defeasible entailment,
denoted p≈, is not unique, i.e., there are many acceptable ways to
infer information from a defeasible knowledge base (a knowledge
base containing statements of the form 𝛼 |∼ 𝛽). The KLM approach
suggests that any defeasible entailment method should adheres
to several rationality properties proposed by Lehmann and Mag-
nidor [12]. Giovanni et al. [8] proposed LM-rational as a term to
describe any defeasible entailment procedure that satisfies all of
these properties.

The rationality properties, defined by [9], for all knowledge bases
K and propositional formulas 𝛼, 𝛽,𝛾 as follows:

(Ref) K |≈ 𝛼 |∼ 𝛼 (And) K |≈𝛼 |∼𝛽,K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(LLE) K |≈𝛼↔𝛽,K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾 (Or) K |≈𝛼 |∼𝛾,K |≈𝛽 |∼𝛾

K |≈𝛼∨𝛽 |∼𝛾
(RW) K |≈𝛼→𝛽,K |≈𝛾 |∼𝛼

K |≈𝛾 |∼𝛽 (CM) K |≈𝛼 |∼𝛾,K |≈𝛼 |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

Rational Closure [12] and Lexicographic Closure [11] are two
approaches to defeasible reasoning which are LM-rational, with
Relevant Closure [4] and Ranked Entailment [12] are two which are
not [5]. This paper will focus on the first two.

2.3 Defeasible Entailment
Rational Closure is the most conservative form of defeasible entail-
ment (i.e., it infers very little from a defeasible knowledge base),
and can be defined both semantically and algorithmically, as laid
out in [5].

2.3.1 Semantic Definition. A ranked interpretation is simply a rank-
ing of all interpretations in W (the set of all possible interpreta-
tions), in order of typicality, starting at rank 0 (indicating the most
typical interpretations) and ending at rank n, (the least typical, but
are still plausible interpretations), followed by a single infinite rank
(impossible interpretations). A ranked interpretation cannot con-
tain empty ranks. Formally, a ranked interpretation is a function
R : W → N ∪ {∞}, such that R(I) = 0 for some I ∈ W, and
for every 𝑟 ∈ N, if R(I) = 𝑟 , then for every 𝑗 such that 0 ≤ 𝑗 ≤ 𝑟 ,
there is an I ∈ W for which R(I) = 𝑗 .

R satisfies a formula 𝛼 if 𝛼 is true in all non-infinite ranks of a
ranked interpretation R, denoted 𝑟 ⊩ 𝛼 . For defeasible statements
(statements which use the |∼ operator), we say R satisfies 𝛼 |∼ 𝛽

if in the lowest rank (the most typical rank) where 𝛼 holds, 𝛽 also
holds.

We can construct an ordering on the set of all possible ranked
interpretations for a knowledge base K , where R1 ≤K R2 if for
every interpretation I ∈ W, R1 (I) ≤ R2 (I). There is a unique
minimal element R𝑚 of the ordering ≤K such that for every other
ranked interpretationR𝑖 in the set of all ranked interpretations for a
given knowledge base, R𝑚 ≤K R𝑖 , as shown in [7]. If R𝑚 ⊩ 𝛼 |∼ 𝛽 ,
then we say K defeasibly entails 𝛼 |∼ 𝛽 (denoted K p≈ 𝛼 |∼ 𝛽).

2.3.2 Base Rank Algorithm. Before showing the algorithm, we
define the materialisation of a knowledge base K as

−→
K = {𝛼 → 𝛽 : 𝛼 |∼ 𝛽 ∈ K}

and E as a finite set of formulas.

(1) 𝑖 = 0
(2) E𝑖 =

−→
K

(3) E𝑖+1 = {𝛼 → 𝛽 ∈ E𝑖 |E𝑖 |= ¬𝛼}
(4) if E𝑖+1 . E𝑖 :

(a) R𝑖 = E𝑖 \ E𝑖+1
(b) 𝑖 = 𝑖 + 1
(c) go to (3)

(5) R∞ = E𝑖
(6) 𝑛 = 𝑖

(7) Return (R0, . . .R𝑛−1,R∞, 𝑛)

2.3.3 Defeasible Entailment Checking. Given a knowledge base K ,
the result from Base Rank (R0, . . .R𝑛−1,R∞, 𝑛), and some defeasi-
ble implication query 𝛼 |∼ 𝛽 .

(1) 𝑖 = 0
(2) R =

⋃𝑗<𝑛
𝑖=0 R 𝑗

(3) if R ∪ R∞ |= ¬𝛼 :
(a) return R ∪ R∞ |= 𝛼 → 𝛽

(4) R = R \ R𝑖

(5) if R ≡ ∅
(a) return R∞ |= 𝛼 → 𝛽

(6) 𝑖 = 𝑖 + 1
(7) go to (3)

This algorithm only returns true if the query is defeasibly entailed
in terms of the minimal ranked interpretation for the knowledge
base [6].

Scalable Defeasible Reasoning

2.3.4 Example. Given the knowledge base K = {𝑏 |∼ 𝑓 , 𝑝 →
𝑏, 𝑝 |∼ ¬𝑓 , 𝑅 → 𝑏, 𝑏 |∼ 𝑤}, we will use Rational Closure to check if
K |≈ 𝑝 → 𝑏.

The result of Base Rank for K is:

0 𝑏 → 𝑓 , 𝑏 → 𝑤

1 𝑝 → ¬𝑓
∞ 𝑝 → 𝑏, 𝑅 → 𝑏

We start by checking whether R ∪ R∞ |= ¬𝑝 . This is the case
as there is no model 𝑢 of

−→
K such that 𝑢 ⊩ 𝑝 . Because of this, we

remove the most preferred rank from R, i.e., R0, producing:

0 𝑏 → 𝑓 , 𝑏 → 𝑤

1 𝑝 → ¬𝑓
∞ 𝑝 → 𝑏, 𝑅 → 𝑏

We check again whether R ∪ R∞ |= ¬𝑝 and find that it does not.
We now check whether R |= 𝑝 → 𝑏 which it clearly does since
𝑝 → 𝑏 is a formula within R∞. Thus, according to Rational Closure,
K |≈ 𝑝 |∼ 𝑏.

3 AIMS AND EXPERIMENT DESIGN
3.1 Aims
The primary aims of this paper are twofold.

Firstly, to develop a knowledge base generation tool that can be
used for knowledge base creation and parameterized generation
processes, as well as allow for future expansions of other knowledge
base generation methodologies and new types of propositional
formulas, connectives and operators. Efforts will also be made to
allow for the easy integration of the knowledge base generation
tool into a larger framework, or simply to be used with ease from
the command-line.

Secondly, to investigate and design methodologies for parame-
terized knowledge base generation and identify the extent to which
the parameters identified are useful in the testing of scalability and
robustness with respect to two propositional defeasible reasoning
implementations and their optimizations, them being Rational Clo-
sure, presented in Hamilton’s paper, and Lexicographic Closure,
presented in Park’s paper.

3.2 Experiment Design
Firstly, a knowledge base generation tool will be developed. At-
tempts will be made to maximize inheritance and polymorphism,
allowing for easy future expansion. The success of the knowledge
base generation tool will be judged qualitatively, whereby the ease
of expansion and integration will be analysed through the system
structure and comments from Hamilton and Park will be used to
analyse the ease of use of the knowledge base generation tool while
testing.

Secondly, methodologies for parameterized knowledge base gen-
eration will be designed and implemented. Four parameters for
certain will be implemented, i.e., the total number of defeasible
ranks, the total number of defeasible statements, the distribution of
the defeasible statements among the defeasible ranks, and whether

or not the knowledge base should contain classical statements. Af-
ter Hamilton and Park have completed their testing and analysis
using the knowledge base generation tool, a qualitative analysis be
performed on their findings, identifying which parameters led to
the identification of interesting aspects of their implementations
and optimizations, and hence, which were useful.

4 KNOWLEDGE BASE GENERATION
4.1 Simple Implication Knowledge Bases
A knowledge base that results in two defeasible ranks can be easily
expressed using three simple implications.

K = {b → a, a |∼ c, b |∼ ¬c}
For the purpose of generating more ranks, we can encapsulate the
structure of this knowledge base using a graph, i.e.,

a b

where the arrow represents the three statements found in K ,
and will be referred to as a directed clash relation from b to a. Since
only the fact this results in an additional rank is of concern, for rank
generation purposes c atom need only be a new atom introduced
into the knowledge base. Thus, antecedent a has a maximum clash
path of depth 1, and b a of depth 1, depicting their residing rank. It
should be noted, b → a can be replaced with b |∼ a, and the same
structure will hold. We can therefore represent a knowledge with
two ranks using the graph

a b c

which could resolve to the knowledge base

K = {b → a, a |∼ d, b |∼ ¬d, c → b, b |∼ e, c |∼ ¬e}
which after Base Rank will result in three ranks.

If we wish to add statements to a defeasible rank, we can sim-
ply add a new defeasible statement directed to one of that ranks
antecedent. For example, adding the defeasible statement f |∼ c to
K will result in the statement f |∼ c being added to the rank 2.

We can express this using the graph

a b c f

where the dotted arrow represents a directed defeasible relation
from f to c. Antecedents that have outgoing defeasible relations
transitively assume their consequent’s position in clash paths, hence
f has maximum clash path depth of 2.

4.2 Defeasible Clash Graphs
4.2.1 Definition. A defeasible clash graph (DCG) is defined as the
ordered 3-tuple

G = (A, C,D)
where A is a set of antecedent nodes, C is a set of directed clash
relations and D is a set of directed defeasible relations.

Aidan Bailey

For example, consider the DCG G1 = (A, C,D) where A =

{𝑎0, 𝑎1, 𝑎2, 𝑎3}, C = {(𝑎1, 𝑎0), (𝑎2, 𝑎1)} and D = {(𝑎2, 𝑎0), (𝑎3, 𝑎1)}.

𝑎0 𝑎1

𝑎3

𝑎2

G1 = {{𝑎0, 𝑎1, 𝑎2, 𝑎3}, {(𝑎1, 𝑎0), (𝑎2, 𝑎1)}, {(𝑎2, 𝑎0), (𝑎3, 𝑎1)}}

Wewill refer to the first and second element of a directed relation
as the antecedent and the consequent of the relation respectively.
An antecedents may be involved in many clash path of which its
maximum clash path depth depicts its resulting defeasible rank. For
example, 𝑎2 is part of a 0 depth clash path owing to its defeasible
relation with 𝑎0, and a clash path of depth 2 owing to its clash
relation with 𝑎1, hence 𝑎2 has a maximum clash path depth of 2,
signifying its defeasible rank postion. Cyclical clash path’s force all
their members, as well as the ones they associate towards, to the
infinite rank.

4.2.2 Conversion to Knowledge Base. DCGs represent the under-
lying conflict structure among antecedents in a knowledge base
rather than the actual formulas present in the knowledge base it-
self. What follows is a description of how knowledge bases can be
generated from DCGs.

A defeasible relation represents a simple directed association
from an antecedent to a consequent and is added directly as a single
defeasible implication into the knowledge base. A clash relation
represents both a directed association, which can be either classical
or defeasible, and a pair of defeasible associations between the
antecedent and the consequent that form a contradiction and as
such, three additional formulas are added to the knowledge base:

(1) A defeasible/classical implication associating the antecedent
atom with the consequent atom.

(2) A defeasible implication associating the antecedent atom
with a new contradiction atom.

(3) A defeasible implication associating the consequent atom
with the negation of the new contradiction atom.

The DCGKB algorithm (see algorithm 1) converts a DCG into a
knowledge base containing either classical and defeasible impli-
cations, or just defeasible implications. It’s important to note, the
classical formula 𝛼 → 𝛽 is equivalent to the defeasible formula
¬(𝛼 → 𝛽) |∼ ⊥.

As an example, considerG1 as defined above, with𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦
set to true. Using the DCGKB algorithm, the following knowledge
base is produced:

K1 = {𝑎1 |∼ 𝑎0, 𝑎1 |∼ 𝛾0, 𝑎0 |∼ ¬𝛾0,
𝑎2 |∼ 𝑎1, 𝑎2 |∼ 𝛾1, 𝑎1 |∼ ¬𝛾1,
𝑎3 |∼ 𝑎1,
𝑎2 |∼ 𝑎0}

Algorithm 1 DCGKB

1: INPUT: A defeasible clash graph (A, C,D) and a defeasible
only Boolean 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦

2: OUTPUT: A defeasible knowledge base K
3: K := ∅
4: 𝑖 := 0
5: for all (𝛼, 𝛽) ∈ C do
6: if 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 then
7: K := K ∪ {𝛼 |∼ 𝛽}
8: else
9: K := K ∪ {𝛼 → 𝛽}
10: K := K ∪ {𝛼 |∼ 𝛾𝑖 }
11: K := K ∪ {𝛽 |∼ ¬𝛾𝑖 }
12: 𝑖 := 𝑖 + 1
13: for all (𝛼, 𝛽) ∈ D do
14: 𝐾 := 𝐾 ∪ {𝛼 |∼ 𝛽}
15: return K

4.2.3 DCG Simplication. Defeasible clash graphs containing defea-
sible relations can be simplified to only containing clash relations.
While this inherently loses information about the initial graph, it
retains an antecedent’s position in clash paths and simplifies the
process of predicting antecedent ranks. The SimplifyDCG algorithm
(see algorithm 2) performs this operation.

First, Warshall’s algorithm is computed on the digraph (A,D),
and the transitive defeasible relations are extracted. Clash relations
are then added associating antecedents with the consequents of
any clash relation of a consequent that the antecedent was a direct
or transitive antecedent of. When applying SimplifyDCG to G1, the

Algorithm 2 SimplifyDCG

1: INPUT: A defeasible clash graph (A, C0,D)
2: OUTPUT: A simple defeasible clash graph (A, C1, ∅)
3: D := Warshall(D)
4: C1 := C0
5: for all (𝛼, 𝛽) ∈ D do
6: for all (𝛾, 𝛿) ∈ C0 do
7: if 𝛾 = 𝛽 then
8: C1 := C1 ∪ (𝛼, 𝛿)
9: return (A, C1, ∅)

following DDG is produced:

𝑎0 𝑎1

𝑎3

𝑎2

G2

4.2.4 Predicting Antecedent Rankings. In order to predict the result-
ing defeasible rank of each antecedent, the CompatibilityClosure

Scalable Defeasible Reasoning

(see algorithm 3) can be used, wherein a variation of the Floyd-
Warshall algorithm is implemented in order to find an antecedent’s
longest clash path.

Algorithm 3 CompatibilityClosure

1: INPUT: A simple defeasible clash graph (A, C)
2: OUTPUT: A compatibility set 𝐸
3: Compatibility matrixM := |𝐴| × |𝐴| −∞ matrix
4: for all (𝛼, 𝛽) ∈ C do
5: M[𝛼] [𝛽] := 1
6: for all 𝑘 ∈ A do
7: for all 𝑗 ∈ A do
8: for all 𝑖 ∈ A do
9: if M[𝑗] [𝑘] = ∞ then
10: M[𝑗] [𝑖] = ∞
11: else if M[𝑖] [𝑘] > 0 andM[∥] [|] ≠ −∞ then
12: M[𝑗] [𝑖] = max(M[𝑗] [𝑖],M[𝑖] [𝑘] +

M[𝑘] [𝑗])
13: if 𝑗 = 𝑖 andM[𝑗] [𝑖] ≠ −∞ then
14: M[𝑗] [𝑖] := ∞
15: 𝐸 := ∅
16: for all 𝛼 ∈ A do
17: 𝐸 := 𝐸 ∪ (𝛼,max(M[𝛼], 0))
18: return 𝐸

For G2, the compatibility matrix M would be


−∞ −∞ −∞ −∞
1 −∞ −∞ −∞
2 1 −∞ −∞
1 −∞ −∞ −∞


and thus, the compatibility set𝐸 = {(𝑎0, 0), (𝑎1, 1), (𝑎2, 2), (𝑎3, 1)}.
If the knowledge base K1 built from G1 is ranked, the following

ranked interpretation is produced:

0 𝑎0 |∼ ¬𝛾0
1 𝑎1 |∼ 𝛾0, 𝑎1 |∼ ¬𝛾1
2 𝑎2 |∼ 𝛾1
∞ 𝑎2 → 𝑎0, 𝑎1 → 𝑎0, 𝑎3 → 𝑎1, 𝑎2 → 𝑎1

As can be seen from above, each antecedent’s rank corresponds
to their predicted defeasible rank found in the compatibility matrix.

4.3 Parameterized Generation
For the initial parameterized generation of knowledge bases, three
parameters were taken into account, i.e., the defeasible ranks count,
the total number of defeasible statements, and whether the knowl-
edge base should only contain defeasible statements. In order to
accommodate these, a special case of DCGs is constructed and then
converted to a knowledge base.

4.3.1 Chain DCGs. Chain DCGs are categorized as DCGs where
there is a single linear chain of clash relations, of which singular
defeasible implications branch on to.

For example, the DCG

G3 = {{𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5},
{(𝑎1, 𝑎0), (𝑎2, 𝑎1)},
{(𝑎5, 𝑎0), (𝑎4, 𝑎0), (𝑎3, 𝑎1)}}

is a Chain DCG, and has the graphical form:

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4𝑎5

G3

Using Chain DCGs for knowledge base generation with clas-
sical statements forces a lower bound of 2 statements per rank.
The reason for this is exemplified by the simple chain DCG, G4 =
{{𝛼0, 𝛼1, 𝛼2}, {(𝛼1, 𝛼0), (𝛼2, 𝛼1)}, ∅}.

𝛼0

𝛼1

𝛼2

G4

If we apply DCGKB with 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 set to false G4, and
then Base Rank to the result, the following result is produced

0 𝑎0 |∼ 𝛾0
1 𝑎1 |∼ ¬𝛾0, 𝑎1 |∼ 𝛾1
2 𝑎2 |∼ ¬𝛾1
∞ 𝑎1 → 𝑎0, 𝑎2 → 𝑎2

As can be seen, rank 1 contains 2 formulas. As such, each defea-
sible rank is forced to have 2 formulas for the sake of reliability.
Processing through DCGKB with 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 set to true adds
an additional formula to each defeasible rank, for a lower bound of
3 per rank.

Aidan Bailey

4.3.2 Statement Distributions. Five distributionswere implemented,
i.e., uniform, exponential, normal, inverted-exponential and inverted-
normal, for distributing defeasible statements over ranks and pro-
viding knowledge bases adhering to different shapes.

Cumulative distribution functions are used to calculate the state-
ments to be placed in a specific rank. Each cumulative distribution
was fit so the 𝑦 axis correlated to the total number of statements
in the defeasible ranks, with the 𝑥 axis corresponding to the total
number at that rank. To find how many statements to were to be
added to a specific rank, the previous defeasible rank’s total value
was subtracted from the current defeasible rank’s total. In order to
optimize the process, the subtraction equation was simplified.

The distribution functions used are described as follows, where
𝑥 is the current rank, 𝑠 is the total number of defeasible statements,
and 𝑟 is the total number of defeasible ranks:

Uniform(𝑠, 𝑟, 𝑥) = 𝑠

𝑟

Exponential(𝑠, 𝑟, 𝑥) = 𝑠 ((1 − 𝑒−𝑥
5
𝑟) − (1 − 𝑒−(𝑥−1)

5
𝑟))

= 𝑠 (𝑒−
5(𝑥−1)

𝑟
+1 − 𝑒−

𝑥5
𝑟)

Normal(𝑠, 𝑟, 𝑥) = 𝑠
(√︃𝜋

2 erf(−
4
2 + 8𝑥

2𝑟) +
√︃

𝜋
2

√
2
√
𝜋

−√︃
𝜋
2 erf(−

4
2 + 8(𝑥−1)

2𝑟) +
√︃

𝜋
2

√
2
√
𝜋

)
= 𝑠

(
erf(4𝑥𝑟 − 2) − erf(4(𝑥−1)𝑟 − 2)

2

)
InvertedNormal(𝑠, 𝑟, 𝑥) =

{
Normal(𝑠, 𝑟, 𝑥 + 𝑟+1

2) if 𝑥 < 𝑟+1
2

Normal(𝑠, 𝑟, 𝑥 − 𝑟+1
2) otherwise

InvertedExponential(𝑠, 𝑟, 𝑥) = 𝑠

(
𝑒−

5((𝑟+1−𝑥)−1)
𝑟

+1 − 𝑒−
(𝑟−𝑥)5

𝑟

)

4.3.3 Basic Knowledge Base Generation. The RankedGenerate al-
gorithm (see algorithm 4) generates a knowledge base according
to a total number of defeasible ranks, a total number of defeasi-
ble statements, a use only defeasible Boolean, and a distribution
function.

For example, given the parameters 𝑟 = 3, 𝑠 = 9 and 𝑑 = 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚,
RankedGenerate produces the following chain DCG

G5 = {{𝛼0, 𝛼1, 𝛼2, 𝛿0,0, 𝛿0,1, 𝛿1,0, 𝛿1,1, 𝛿2,0, 𝛿2,1},
{(𝛼1, 𝛼0), (𝛼2, 𝛼1)},
{(𝛿0,0, 𝛼0), (𝛿0,1, 𝛼0), (𝛿1,0, 𝛼1), (𝛿2,0, 𝛼2), (𝛿2,1, 𝛼2)}}

with the graphical representation

Algorithm 4 RankedGenerate
1: INPUT: A number of defeasible ranks 𝑟 , total number of defea-

sible statements 𝑠 , use only defeasible Boolean 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦
and a distribution function 𝑑

2: OUTPUT: A defeasible knowledge base K
3: A := ∅
4: C := ∅
5: D := ∅
6: if 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 then
7: 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 := 3
8: else
9: 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 := 2
10: 𝑗 := 0
11: while 𝑗 < 𝑟 do
12: A := A ∪ {𝛼 𝑗 }
13: if 𝑗 > 0 then
14: if defeasibleOnly then
15: D := D ∪ {(𝛼 𝑗 , 𝛼 𝑗−1)}
16: else
17: C := C ∪ {(𝛼 𝑗 , 𝛼 𝑗−1)}
18: if r = 1 then
19: 𝑖 := 0
20: else if 𝑗 = 𝑟 − 1 then
21: 𝑖 := 1
22: else
23: 𝑖 := 2
24: while 𝑖 < max(d(𝑠, 𝑟, 𝑗 + 1), 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑) do
25: A := A ∪ {𝛿 𝑗,𝑖 }
26: D := D ∪ {(𝛿 𝑗,𝑖 , 𝛼 𝑗)}
27: 𝑖 := 𝑖 + 1
28: 𝑗 := 𝑗 + 1
29: K := DCGKB((A, C,D), 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦)
30: return K

𝛼0

𝛼1

𝛼2

𝛿0,0 𝛿0,1

𝛿1,0

𝛿2,0 𝛿2,1

G5

Scalable Defeasible Reasoning

producing the knowledge base

K5 = {𝛼1 → 𝛼0, 𝛼1 |∼ ¬𝛾0, 𝛼0 |∼ 𝛾0,
𝛼2 → 𝛼1, 𝛼2 |∼ ¬𝛾1, 𝛼2 |∼ 𝛾1,
𝛿0,0 |∼ 𝛼0, 𝛿0,1 |∼ 𝛼0,
𝛿1,0 |∼ 𝛼1,
𝛿2,0 |∼ 𝛼2, 𝛿2,1 |∼ 𝛼2}

and the ranking of K5

0 𝛿0,0 |∼ 𝛼0, 𝛿0,1 |∼ 𝛼0, 𝛼0 |∼ 𝛾0
1 𝛿1,0 |∼ 𝛼1, 𝛼1 |∼ ¬𝛾0, 𝛼1 |∼ 𝛾1
2 𝛿2,0 |∼ 𝛼2, 𝛿2,1 |∼ 𝛼2, 𝛼2 |∼ ¬𝛾1
∞ 𝛼1 → 𝛼0, 𝛼2 → 𝛼1

4.3.4 Conservative Knowledge Base Generation. If 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦
is set to false, the lower-bound of the number of defeasible state-
ments per rank can be reduced to 1 if a conservative method of
knowledge base conversion is used. If only defeasible statements
are generated, this bound raises to 2. This can be accomplished by
using a single atom for clash relations, rather than generating a
new one each time. The ChainDCGKB algorithm (see algorithm 5)
uses this tactic to produce a knowledge base from a Chain DCG.
If we apply ChainDCGKB to G4, we get the following knowledge

Algorithm 5 ChainDCGKB

1: INPUT: A chain defeasible clash graph (A, C,D) and defeasi-
ble only Boolean 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦

2: OUTPUT: A defeasible knowledge base K
3: K := ∅
4: 𝑗 := 0
5: B := A \ {𝛼 | (𝛼, 𝛽) ∈ D}
6: (𝛼0, . . . , 𝛼 |B |−1) := TopologicalSort(B, C)
7: while 𝑗 < |B| do
8: if 𝑗 > 0 then
9: if 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 then
10: K := K ∪ {𝛼 𝑗 |∼ 𝛼 𝑗+1}
11: else
12: K := K ∪ {𝛼 𝑗 → 𝛼 𝑗+1}
13: if 𝑗 + 1%2 = 0 then
14: K := K ∪ {𝛼 𝑗 |∼ 𝛾}
15: else
16: K := K ∪ {𝛼 𝑗 |∼ ¬𝛾}
17: 𝑗 := 𝑗 + 1
18: for all (𝛼, 𝛽) ∈ D do
19: 𝐾 := 𝐾 ∪ {𝛼 |∼ 𝛽}
20: return K

base

K ′
4 = {𝛼0 |∼ 𝛾,

𝛼1 → 𝛼0, 𝛼1 |∼ ¬𝛾
𝛼2 → 𝛼1, 𝛼2 |∼ 𝛾}

leading to the ranked knowledge base

0 𝛼0 |∼ 𝛾
1 𝛼1 |∼ ¬𝛾
2 𝛼2 |∼ 𝛾
∞ 𝛼1 → 𝛼0, 𝛼2 → 𝛼1

Thus, the ConservativeRankedGenerate algorithm (see algo-
rithm 6) makes use of this method.

Algorithm 6 ConservativeRankedGenerate
1: INPUT: A number of ranks 𝑟 , total number of statements
𝑠 , defeasible only Boolean 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦 and a distribution
function 𝑑

2: OUTPUT: A defeasible knowledge base K
3: A := ∅
4: C := ∅
5: D := ∅
6: if defeasibleOnly then
7: 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 := 2
8: else
9: 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 := 1
10: 𝑗 := 0
11: while 𝑗 < 𝑟 do
12: A := A ∪ {𝛼 𝑗 }
13: if 𝑗 > 0 then
14: C := C ∪ {(𝛼 𝑗 , 𝛼 𝑗−1)}
15: if 𝑟 = 1 or 𝑗 = 0 then
16: 𝑖 := 1
17: else
18: 𝑖 := 2
19: while 𝑖 < max(d(𝑠, 𝑟, 𝑗 + 1), 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑) do
20: A := A ∪ {𝛿 𝑗,𝑖 }
21: D := D ∪ {(𝛿 𝑗,𝑖 , 𝛼 𝑗)}
22: 𝑖 := 𝑖 + 1
23: 𝑗 := 𝑗 + 1
24: K := ConservativeDCGKB((A, C,D), 𝑑𝑒 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑂𝑛𝑙𝑦)
25: return K

5 DESIGN AND IMPLEMENTATION
The knowledge base generation tool (KBGT) is a system for knowl-
edge base ranking, storage, creation, and generation.

5.1 Environment
The system was developed using Scala 2.13.6. Scala provides a good
balance between the imperative and functional paradigms which
compliments a propositional logic implementation, allowing for
concise and robust data-structures to be developed, along with
declarative function sequences that promote compiler optimization.
Scala compiles to JVM bytecode, allowing for the easy integration
and usage of KBGT functionality in JVM based projects. This also
allows good levels of portability.

5.2 Architecture
KBGT is composed of two core modules. The logic library contains
classical and defeasible propositional logic types and functionality

Aidan Bailey

The generation library contains knowledge base generation related
types and functionality.

5.2.1 Class descriptions. Class descriptions for both modules can
be found in appendix A.

5.2.2 Data-structures. Classical formulas are stored as recursively
constructed trees, which are space efficient. Since the focus of KBGT
is on knowledge base manipulation, new classical formulas are con-
stantly constructed, meaning the fact these trees are immutable is
ideal, as they are stored, operated upon, and moved around effi-
ciently. Defeasible formulas store a 2-tuple of these trees, i.e., the
antecedent and consequent of the defeasible implication, and is
also immutable. Both classical and defeasible formulas can there-
fore be easily processed through recursive methods that parse their
respective trees. All knowledge bases inherit from the mutable Set
type, which has an effectively constant time for all used operations.
This allows formulas to be quickly added and removed, as well as
retain the typical set properties of a knowledge base and extend
typical knowledge base functionality through inherited methods.
The ranked knowledge base utilizes a ListBuffer for the storage of
defeasible ranks. This is one of the most efficient mutable sequen-
tial data structures in Scala and appends and removes elements in
constant time.

5.2.3 UML Diagram. While it is tricky to design UML diagrams
for Scala based projects, an attempt can be found in appendix B.

5.3 Features
5.3.1 TweetyProject Integration. The TweetyProject [13] is a col-
lection of Java libraries pertaining to various forms of KRR logics.
KBGT integrates the TweetyProject’s propositional logic library.
This provides access to the TweetyProject’s data-structures, for
which conversion methods are provided by KBGT from KBGT
propositional logic data-structures to their respective TweetyPro-
ject counterparts. This is particularly attractive, since along with
many other mathematical optimizations for SAT-solving, the Tweet-
yProject provides an interface to the Sat4j satisfiability solver, the
fastest openly available Java based SAT-solver. This means all SAT-
solver based problems such as satisfiability solving and classical
entailment is done using top-class procedures. A system integrating
KBGT can also make use of any KBGT data-structure directly as
its TweetyProject counterpart, meaning any system that already
uses the TweetyProject as a basis could seamlessly integrate with
KBGT. For example, a ClassicalFormula can be easily converted into
a TweetyProject PlFormula, a ClassicalKnowledgeBase to a PlBe-
liefSet, and a RankedKnowledgeBase to a ArrayList[PlBeliefSet].

5.3.2 Parsing/Exporting. KBGTmakes use of TweetyProject’s propo-
sitional parser in order to read and write its various knowledge
base types to json files. For ClassicalKnowledgeBases, a simple json
array containing the parse strings of each ClassicalFormula is writ-
ten. DefeasibleKnowledgeBases are written similarly, using a “~>”
to represent a defeasible implication. It should be noted that one
can first materialize a DefeasibleKnowledgeBase and then write it
to a file in order to have pure propositional implications instead.
RankedKnowledgeBases are written as a nested json arrays, each
representing a rank, the last of which being the infinite rank.

5.3.3 Agnostic Boolean Operators. Boolean operators are stored as
Scala Enumerations. It is through these enumerations that an oper-
ator’s notation, parse notation, and ClassicalFormulas’ PlFormula
counterpart are defined. Since KBGT SAT-solving is purely based
on TweetyProject’s data-structures, i.e., PlFormula and PlBeliefSet,
the addition of operators is simple, as one would need only define a
new value in the enumeration, add the notations and then define a
PlFormula that is logically equivalent to the new operator. New con-
nectives can also easily be defined, though it requires adding them
inheriting from ClassicalFormula along with defining operators
using the above instructions.

5.3.4 Command-line Interface. KBGThas an implemented command-
line interface. A user can either execute generationmethods directly
using command-line arguments and have the resounding knowl-
edge base either output to the screen or written to a specified file,
or take part in an interactive knowledge base creation process. The
interactive process involves the iterative manipulation of a single
knowledge base. Users are able to add and remove formulas man-
ually, read in knowledge base files (classical, defeasible, mixed or
ranked), write statements from the current knowledge base to a
file (also classical, defeasible, mixed or ranked), generate a new
knowledge base using the methods previously described in this
paper, and finally, view the result of base ranking the knowledge
base.

6 ANALYSIS
Five parameters were established, i.e., the total number of defeasi-
ble statements, the defeasible rank count, the distribution of the
defeasible statements over the defeasible ranks, whether conserva-
tive generation should be used, and if the knowledge base should
contain defeasible statements only. Knowledge bases generated
only contained simple implications of the form 𝛼 → 𝛽 , 𝛼 |∼ 𝛽 , and
𝛼 |∼ ¬𝛽 , where 𝛼 and 𝛽 are propositional atoms.

6.1 Knowledge Base Generation Tool
6.1.1 Ease of expansion. KBGTmakes heavy use of inheritance and
as such, new types of propositional formulas and knowledge bases
can be introduced with readily available inherited functionality.

In KBGT, propositional connectives are decoupled from their re-
spective Boolean operators. This means additional operators can be
implemented seamlessly. Along with this, new n-arity connectives
can also be added, along with their respective Boolean operators.

The strong distinction between KBGT’s data-structures and the
knowledge base generation methods allows for the addition of
new knowledge base generation methods whilst utilizing the same
data-structures.

6.1.2 Ease of integration. All knowledge base generation methods
present in KBGT are static, meaning their use by systems that
integrate KBGT is unobstructed by instance requirements.

All propositional data-structures in KBGT can be easily con-
verted into TweetyProject’s propositional logic data-structures,
meaning that any reasoning system that heavily relies on Tweet-
yProject can be easy use of KBGT’s methods and data-structures.

6.1.3 Ease of use. There are two paths to accessing KBGT’s knowl-
edge base generation facilities. Either the generation is executing

Scalable Defeasible Reasoning

directly through the command-line with the generation parameters
taken in as command-line arguments with the generated knowl-
edge base being output to terminal or json file, or through an in-
teractive REPL that allows the user to generate new knowledge
bases, load/write knowledge bases to and from files, manipulate
knowledge bases through the addition and subtraction of defeasi-
ble/classical propositional formulas, and view the Base Rank of the
current state of the knowledge base.

The fact that KBGT uses a typical json format means that a
knowledge bases produce and written to a files do not necessarily
have to be parsed by KBGT, but rather by a system that integrates
the TweetyProject’s propositional logic parser.

6.2 Rational Closure Testing
For Rational Closure, defeasible only knowledge bases using con-
servative generation were tested upon.

Two sets of tests were done for each optimization.

(1) The number of defeasible statements set to 2 with the num-
ber of ranks varied between 10, 50 and 100.

(2) The number of defeasible ranks set to 50, total number
of defeasible statements set to 500, and the distribution
function varied between uniform, exponential and normal.

For each of these sets, five different query sets were used.

(1) A set of queries whose antecedents all differ from one an-
other.

(2) A set of queries which all have the same antecedent.
(3) A set of queries whose antecedents are half unique, and are

half repeated.
(4) A set of queries whose antecedents all become consistent

with the knowledge base after all but the final rank have
been removed.

(5) A set of queries whose antecedents all become consistent
with knowledge base after the first rank has been removed.

6.2.1 Defeasible Rank Count. The testing process for Rational Clo-
sure revealed that queries whose antecedents became compatible
with the knowledge base in the final rank were computed quicker
by the naive Rational Closure implementation for knowledge bases
with less ranks, but that those queries which become compatible
with the knowledge base in the first rank did not change with vary-
ing numbers of ranks. This suggests that it is not the number of
defeasible ranks which directly impacts the performance of the
entailment-checking aspect of the Rational Closure algorithm, but
instead it is the rank number at which queries’ antecedents become
compatible with the knowledge base which is the stronger determi-
nant of the performance of this algorithm. This is a useful insight
provided by the defeasible rank count parameter and thus depicts
its usefulness.

6.2.2 Defeasible Statement Count. Increasing the total number of
defeasible statements did not affect the operation of Rational Clo-
sure, which points to the aspect that the same entailment-checking
operation is performed no matter the number of statements. This
is a useful insight gained from varying the defeasible statement
count.

6.2.3 Distribution Function. As stated above, the number of state-
ments per rank does not effect the operation of Rational Closure,
which means the distribution function is not a useful parameter for
testing, but it could be a useful parameter for analysis.

6.2.4 Defeasible Only. Defeasible only was always true for the
Rational Closure evaluation and as such the usefulness of defeasible
only parameter cannot be spoken for.

6.2.5 Conservative Generation. Conservative generation was only
ever utilized and therefore the usefulness of the regular generation
compared to conservative generation cannot be spoken for.

6.3 Lexicographic Closure Testing
For Lexicographic Closure, separate tests were conducted for both
defeasible only knowledge bases and knowledge bases containing
both defeasible and classical statements.

For knowledge bases containing both classical and defeasible
statements, a normal distribution was selected with 200 total de-
feasible statements and 49 defeasible ranks where queries were
selected from the knowledge base going up in multiples of their
index.

For defeasible only knowledge bases, 50 defeasible ranks with
200 total defeasible statements were kept constant, with the dis-
tribution varying between uniform, normal, and inverse-normal.
Every defeasible statement within the knowledge base was queried
for these tests.

6.3.1 Defeasible Rank Count. The defeasible rank count remained
static and thus the usefulness of this parameter for testing Lex-
icographic Closure cannot be identified explicitly. However, the
defeasible rank count was used to verify the approximate time-
complexity of the Binary and Ternary search optimizations, so it
was useful in playing a role in the analysis.

6.3.2 Defeasible Statement Count. If the distribution function and
number of defeasible ranks stays the same, increasing the defeasible
statement count extends Lexicographic Closure’s execution time.
This means the total defeasible statement count is a useful parame-
ter, as it points to the aspect of Lexicographic Closure that more
populated defeasible ranks leads to a more expensive refinement
process.

6.3.3 Distribution Function. Similarly to analysis found about, the
number of defeasible statements per rank greatly impacted the
testing owing to the rank refinement process becoming much more
expensive the more statements were present within the rank. It
took 13 statements within a rank to cause the implementation to
run out of JVM heap space.

6.3.4 Defeasible Only. It was found that Lexicographic Closure
can process knowledge bases containing defeasible and classical
statements faster than a knowledge base containing only defeasible
statements but with the same total number of statements and ranks.
So being able to select between defeasible only generation and a
mixed generation is a useful parameter, since it helped identify that
the distribution between defeasible ranks and the infinite rank is
performance factor for Lexicographic Closure

Aidan Bailey

6.3.5 Conservative Generation. Only conservative generation was
utilized, so the usefulness of the conservative generation parameter
cannot be spoken for.

7 RELATEDWORK
Kraus, Lehmann, and Magidor [10] introduced the preferential
approach to defeasible reasoning including the addition of the “typ-
ically” |∼ KLM-style defeasible implication and the KLM properties.
Lehmann and Magnidor [12] introduced the Base Rank and Ra-
tional Closure algorithms for defeasible propositional entailment.
Lehmann [11] introduced the Lexicographic Closure algorithm for
defeasible propositional entailment.

8 CONCLUSIONS
The goal behind this paper was to investigate knowledge base
generationmethods and assess their viability with regards to testing
the scalability and robustness of practical implementations of the
Rational Closure and Lexicographic Closure defeasible entailment
implementations and their optimizations.

The knowledge base generation tool developed (KBGT) was
found useful by Hamilton and Park when testing and analysing
their respective implementations. The fact a Jar could be presented
and knowledge bases could be generated immediately through
program arguments and written to a file which they could parse
into their implementations made using KBGT simple and efficient.
KBGT has also been shown to be a tool ready for expansions. This
is shown through the ease at which different types of knowledge
bases, propositional formulas, connectives, operators, and notations
can be introduced. KBGT has been shown to be easily integrable,
through the choice of a JVM based language, static generation
methods, and easy conversion into widely used TweetyProject data-
structures.

Five parameters were established for testing, i.e., the total num-
ber of defeasible statements, the total number of defeasible ranks,
the distribution of the defeasible statements, whether or not the
knowledge base should be defeasible statements only, and whether
or not conservative generation should be used.

For all testing, conservative generation was used as it simply
reduced the number of atoms in the knowledge base, while reduc-
ing the minimum number of defeasible statements per rank, thus
pointing to it being a useless parameter.

The total number of defeasible ranks provided useful insights
for both the Lexicographic and Rational Closure implementations.
For Rational Closure, defeasible rank count was found to not affect
the execution with the more important factor being which rank the
defeasible query was compatible with. For Lexicographic Closure,
the defeasible rank count provided a means of testing the approxi-
mate time complexity of the implementation and optimisations. It
can be argued then that the total number of defeasible ranks is a
useful parameter.

Differing the total number of defeasible statements again showed
no difference in the execution of Rational Closure, while for Lexico-
graphic Closure it was found to drastically increase the execution
time owing to the refinement process. This shows that the total
number of defeasible statements can be a useful parameter for the
right algorithms.

Much like differing the total number of defeasible statements,
changing the distribution function had no effect on the operation of
Rational Closure and is as such not useful in that regard. For Lexico-
graphic Closure, differing distributions once again put tremendous
strain on the refinement process, showing it to be a useful parameter
for the right algorithm.

Only defeasible only knowledge bases were used in the testing
of Rational Closure so its usefulness cannot be spoken for. For
Lexicographic Closure, it was found that if the total number of
statements remained static, Lexicographic Closure would operate
faster if a larger portion of the statements were found in the classical
rank, showing the defeasible only parameter to be useful.

9 FUTUREWORK
No forms of non-determinstic, pseudo-random styles of defeasible
knowledge base generation were investigated in this paper and as
such are left open to further investigation.

The methods of resolving defeasible clash graphs to defeasi-
ble knowledge bases outlined in this paper only result in simple
implications while it may be possible to generate more compli-
cated propositional and defeasible formulas, utilizing the clash path
lengths in different ways to predict a formula’s defeasible rank.
More complex formulas are particularly pertinent to Lexicographic
Closure, wherein during the testing, a maximum of 1 statement
was removed every time on the rank where the antecedent was
compatibility.

Moving KBGT to Scala3 would allow the Operator type to take
in the arity of the Operator extending it using the new Tuple trait.
This would allow the getPlFormula method to also be inherited.
RankedKnowledgeBases store propositional formulas in their re-
spective defeasible/classical forms. This is so that attempts can be
made in the future to add and subtract statements from a Ranked-
KnowledgeBase without needing to repeat the entire Base Rank
procedure. Optimizations for the Base Rank algorithm should be ex-
plored as this was a timely process for knowledge bases containing
over 100 ranks.

REFERENCES
[1] Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition.

Springer, 2012.
[2] Zied Bouraoui, Antoine Cornuéjols, Thierry Denœux, Sebastien Destercke, Didier

Dubois, Romain Guillaume, João Marques-Silva, Jérôme Mengin, Henri Prade,
Steven Schockaert, Mathieu Serrurier, and Christel Vrain. From shallow to deep
interactions between knowledge representation, reasoning and machine learning
(kay r. amel group), 12 2019.

[3] G. Casini, T. Meyer, K. Moodley, and I. Varzinczak. Towards practical defeasible
reasoning for description logics. Jul 2013.

[4] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. Relevant
closure: A new form of defeasible reasoning for description logics. In Eduardo
Fermé and João Leite, editors, Logics in Artificial Intelligence, pages 92–106, Cham,
2014. Springer International Publishing.

[5] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. Taking defeasible entail-
ment beyond rational closure. In Francesco Calimeri, Nicola Leone, and Marco
Manna, editors, Logics in Artificial Intelligence - 16th European Conference, JELIA
2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in
Computer Science, pages 182–197. Springer, 2019.

[6] Michael Freund. Preferential reasoning in the perspective of poole default logic.
Artificial Intelligence, 98(1):209–235, 1998.

[7] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. Seman-
tic characterization of rational closure: From propositional logic to description
logics. Artif. Intell., 226:1–33, 2015.

[8] Ivan Varzinczak Giovanni Casini, Thomas Meyer. Defeasible entailment: from
rational closure to lexicographic closure and beyond. In 17th International

Scalable Defeasible Reasoning

Workshop on Non-Monotonic Reasoning (NMR), pages 109–118, Arizona, USA, 10
2018.

[9] Adam Kaliski. An overview of klm-style defeasible entailment. Master’s thesis,
Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700,
2020.

[10] Sarit Kraus, Daniel Lehmann, andMenachemMagidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Artificial intelligence, 44(1-2):167–207,
1990.

[11] Daniel Lehmann. Another perspective on default reasoning. Annals of Mathe-
matics and Artificial Intelligence, 15(1):61–82, Mar 1995.

[12] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial Intelligence, 55(1):1–60, 1992.

[13] Matthias Thimm. Tweety: A comprehensive collection of java libraries for logical
aspects of artificial intelligence and knowledge representation. In Fourteenth
International Conference on the Principles of Knowledge Representation and Rea-
soning, 2014.

Appendix

Appendix A

Logic Class Descriptions

• The Formula class is an abstract type containing functionality shared by all propositional
formulas.

• The ClassicalFormula class is the classical sub-type of a propositional formula.

• The Atom class is sub-type of a classical formula, representing a propositional atom.

• The BinCon class is sub-type of a classical formula, representing a propositional binary con-
nective.

• The UnCon class is sub-type of a classical formula, representing a propositional unary connec-
tive.

• The Const class is sub-type of a classical formula, representing a propositional constant.

• The DefeasibleFormula class is the defeasible sub-type of a propositional formula.

• The Operator enumeration is a super-type for propositional logic operators.

• The BinOp enumeration is an operator sub-type for binary operators.

• The UnOp enumeration is an operator sub-type for unary operators.

• The Constant enumeration is a symbol enumeration for Tautology and Contradiction con-
stants.

• The KnowledgeBase class is an abstract type containing functionality shared by all proposi-
tional knowledge bases.

• The ClassicalKnowledgeBase class is a classical sub-type of a propositional knowledge base,
containing only classical propositional formulas.

• The DefeasibleKnowledgeBase class is a defeasible sub-type of a propositional knowledge base,
containing only defeasible propositional formulas.

• The MixedKnowledgeBase class is a mixed sub-type of a propositional knowledge base, con-
taining both defeasible and classical propositional formulas.

• The RankedKnowledgeBase class is a ranked interpretation of a mixed propositional knowledge
base.

• The Parser class is a parser for propositional formulas.

1

Generation Class Descriptions

• The AtomGenerator class is used to generate new atoms given a set of already in-use atoms.

• The DistributionFunction class is a collection of distribution functions.

• The Relation class contains the types of relation used within defeasible clash graphs.

• The ClashRelation class is a clash sub-type of relation.

• The DefeasibleRelation class is the defeasible sub-type of relation.

• The DCG class is the defeasible clash graph type.

• The SimpleDCG class is the simple defeasible clash graph type and inherits from the DCG
class.

• The KBGenerator class is a collection of methods used to generate knowledge bases using
defeasible clash graphs.

2

