3DAVis: Remote Visualisation of 3D Astronomical Data

Mivhaela van Zyl - VZYMIC015
VZYMICO015@myuct.ac.za
Department of Computer Science, University of Cape Town
Cape Town, South Africa

ABSTRACT

This paper focuses on the implementation of the 3DAVis system, the
constructed system is a proof of concept for a hybrid approach to a
server-client rendering system. It was made to be able to render and
facilitate interaction with astronomical data of increasingly larger
sizes in real time and to overcome the challenges of visualising very
large data sets. The final 3DAVis system is made up out of a client
application that runs in a web browser and a server system that
will facilitate file storage and high-resolution image production. As
the amount of data that the client is required to process and render
increases the time the client requires to do so increases in proportion
to the amount of data in a O(n) manner. Also, as the amount of data
cubes that need to be combined by the client increases the time that
is required to perform the combination in creases in an exponential
manner with each additional data cube. The implementation is
promising and can be further developed in the future, however,
the amount of data that the client receives at any time must be
limited to maintain performance. The clients system’s performance
is consistent across interactions and the primary factor that will
affect the speed of user interaction is the time that the server take
to complete its function and communicate the results to the client.

1 INTRODUCTION

Astronomical data presents certain challenges that affect the ap-
proaches we take when developing a system that can visualise this
kind of data [5]. Firstly, there is not a single dominant format which
means attempting to make a generic system would be difficult, a
single format must be selected to base the system on. There is also
the aspect that astronomical data has a low signal to noise ratio as
well as a high dynamic range. It becomes difficult to separate the
data from the noise and to normalise the data to within a range that
can be visualised. Astronomical data uses dimensions in a different
way to typical two and three dimensional spatial datasets, and maps
different data types to axes and correctly mapping these axes is
imperative to accurate visualisation. Possibly the greatest challenge
and the challenge we will be mainly addressing is how to effectively
handle the size of the data that is produced by astronomy recording
instruments. High resolution data often contains millions of data
points and could easily take up the entire storage space of several
hundred home computers.

Systems attempting to addressed this problem have been pro-
posed and developed for example SlicerAstro [13], iDaVIE-v [8],
Frelled [14], Fips [6] and others that touch on real time visualisation

(12] [4] [5] [10].

1.1 Motivation

There is a need within the astronomy community for a system that
can reliably produce and accurately portray data while accommo-
dating the complexities associated with processing and rendering
astronomical data.

The main portion of data processing and visualisation would be
done by a remote server system which would give a wider range of
people access to the data regardless of the computational power of
their local computers. It also reduces the need to transfer the data
between client computers and would remove obstacles from the
scientists path in being able to explore data and study it effectively.

The motivation behind implementing 3DAVis is to address cer-
tain challenges around visualising and interaction with astronom-
ical data cubes in real time, these challenges derive from certain
characteristics of astronomical data. The extremely large size of the
astronomical data cubes which makes it incredibly difficult to ren-
der them in a timely manner even when making use of a dedicated
powerful computer. This also limits how astronomers can work
with the data, they are limited to using these dedicated computers
or attempting to use their own computer which can not render the
entire data cube.

1.2 Research Questions

The key questions for this research pertain to the design and imple-
mentation of visualisation software within the context of astronomy,
these were:

(1) How can the computational overhead of rendering large
amounts of data be offloaded from the client system?

(2) What is the limit for the size of data cubes that are rendered
by the client system before impacting usability?

(3) How can the client and server approaches be combined to fa-
cilitate high-resolution data rendering over a network while
maintaining usability?

(4) How does the hybrid model approach scale in terms of ren-
dering time, transfer latency, and time from user interaction
and feedback over increasingly larger data sets?

1.3 Contributions

During the course of this research a proof of concept system was
implemented in order to test whether it is a feasible model for future
remote visualistion software to be based on. The 3Davis system
is comprised out of a client component and a server component,
this paper will focus on the client component which facilitates user
interaction with the client application as well as the server. The
client is a browser application aimed at presenting information to
the user in either as a realtime rendering within the browser or as
an image transmitted by the server.

1.4 Overview

The current technology present in the field of astronomical data
visualisation and rendering will be discussed in section 2. and how
they deal with the challenges that astronomical data presents. As
well as exploring the various parts that make up such systems and
packages that would potentially be used to implement these these
parts.

Section 3 discusses the various parts that make up the system as
well as the various algorithms will be discussed to showcase the
internal structure. Particular focus will aimed at the front-end or
client side sub-system, discussing its functions and features and
depicting how it contributes to the overall system.

In section 4 the experiments used to test the final system are
formulated, as well as how each experiment or test relates to one of
the research questions. It will also be covering the results obtained
from the experiments.

Within section 5 each set of results will be discussed and eval-
uated in terms of how they performed against their experiment
criteria and how they assist in answering the research questions
1.2.

The conclusions will be derived from the results will be presented
in this section 6.

2 RELATED WORK

The remote visualisation of three dimensional astronomy data has
many parts that require careful consideration taking into account
the nature and challenges presented by astronomical data especially
the size of the data artefact.

The astronomy field conducts their research by observing the
visible universe and collects data through telescopes and satellites.
These data collection methods generate extremely large amounts
amounts of data. Scientists wanting to study the data need to inter-
act with and explore the collected data which is done through the
visualisation of the different parameters contained within the data.
Through the interaction and manipulation of the data scientists are
able to make discoveries and gain insights into our universe.

In this section we will be discussing the various functional
parts that make up the system for the remote rendering of three-
dimensional astronomical data, which will be implemented as a
server-client system. These functional parts include, data visualisa-
tion methods, data rendering, and user interaction with the data.

As well as investigating libraries and packages that would assist
in implementing this proof of concept system.

2.1 Data Visualisation

Data needs to be visualised in order for it to be interacted with in an
intuitive way. There are a multitude of ways in which to represent
and render volume data. Similar techniques for data visualisation
for astronomy are used in the visualisation of medical volume data
because both fields have to contend with how to represent large
amounts of data [3] [7]. The following subsections will elaborate on
different visualisation techniques and their ability to render volume
data.

Volume rendering represents three dimensional data as voxels
which can be translated from data points in the dataset and projects
them into the picture plane [3] and does not directly deal with

surfaces [9]. The colour and opacity is computed for each voxel
and classifies them in terms of what proportion they are of each
object class. It does not require the explicit classification of binary
surfaces to define the data as objects and non objects like in isosur-
faces. Meaning is added to the data through colouring the rendered
points based on a parameter of the data like temperature [1]. This
rendering method produces a model which has a semi transparent
gel appearance and is suited for displaying weak or fuzzy surfaces
which is a much better way of representing astronomical data. This
gives volume rendering the ability to render both the external sur-
faces and the interior three dimensional structures 1 which would
have otherwise gone unnoticed [4] [11].

However, the rendering time grows linearly with the size of the
dataset. We encounter problems when the dataset reaches a size
where the computational overhead for rendering all the voxels in
the scene becomes too great as all the voxels in the scene participate
in the rendering.

2.1.1 Visualisation Libraries.

VIK and VIK js. Standing for The Visualisation Toolkit, is main-
tained by Kitware and is open source under BSD license. It was
created for the purpose of displaying and manipulating scientific
data in a browser. It supports volume rendering, scientific visualisa-
tion and two dimensional plotting. VTK js is VTK’s accompanying
JavaScript library for rendering graphics in a browser and is avail-
able as packages on NPM for easy integration with a JavaScript
framework. VIK js is supported on Google Chrome and Firefox but
not yet on Safari and Microsoft Edge.

OpenGL and WebGL. A three dimensional graphics API based
on OpenGL, made and maintained by Kronos and has an open
source license under the copyright of The Khronos® Group Inc. It
renders three dimensional graphics in a browser by making use of
the HTML 5 canvas element.

2.2 Rendering

Volume rendering of voxel scenes is computationally expensive
and makes it difficult to render large datasets in real time and
have the data be interactive with user input [14] [13] [7]. Real
time interaction with large datasets over the internet is a challenge
because one not only has to account for processing time but also
the latency that comes with transmitting data over the internet.

Remote rendering of data cubes as opposed to visualisation on
local system has to be put into consideration due to the fact that the
data easily exceeds the size of a typical local system’s memory [12].
It would be desirable to do the computing of the data on a remote
system that has sufficient power and capacity and would provide the
wider astronomy community with a low cost visualisation service
[2] as well as reducing the need to transfer data between systems.
The user would request a visualisation of a dataset from the remote
host and the remote host would send the visualisation to the clients
computer [4].

Client Side rendering. Where the client take on the computational
overhead to render the data. The server only sends the data and is
not involved in the rendering and visualisation of the data. This
approach limits the amount of data that the server can send the

Figure 1: Astronomical data visualised using volume rendering shows how the classification and colour coding of the individual
data points uncover emergent data structures that could otherwise not be seen [14]

client and the rendering is limited to the clients computational
power. However, if interaction takes place and the client computer
is not overwhelmed with data interaction should be smooth and
above a framerate threshold.

Server Side rendering. Is where the server renders the visualisa-
tion from the data and then streams the frames to the client. The
server has enough memory and computational power to store and
render large amounts of data. However, with this approach if there
is interaction with the data from the client’s side the interaction has
to be communicated to the server and a new rendering has to be
produced and sent back to the client. This can produce undesirable
latency between interaction and feedback which can be exacerbated
if the bandwidth of the communication network is too little [13].

2.3 Data Interaction

The visualisation of astronomical data creates a need for interaction,
interaction with the data is critical for knowledge discovery. It is
necessary to allow the user to manipulate data to obtain an intuitive
understanding of the data as well as quantitative results [11] [3].

Frelled [14] uses the software Blender that has all the desired
characteristics for smooth and effective interaction because it is
designed to manipulate and edit detailed three dimensional mod-
els and performs better than any current astronomical viewers. It
would also be desirable to include the ability to change visualisa-
tion parameters and dynamic data filtering especially with radio
astronomy data that has many parameters that could be visualised
[4]. This would give the user the ability to intuitively and precisely
navigate through three dimensional data.

An example of an astronomical data viewer is iDaVIE-v [8] which
is used for data cube exploration, makes use of the game engine
Unity to visualise the data cube and allows the user to interact with
the data in an intuitive manner.

2.4 Discussion

In this section various methods pertaining to how to approach the
problem of visualising and interacting with very large astronomical
datasets within a web browser were discussed. The size of the
datasets indicates that they require a dedicated computer to be able
to store, process and render the visualisations. Taking this into
account remote rendering becomes the best option to make the
data accessible to a wider range of individuals.

Certain visualisation techniques are better suited to the nature
of astronomical data, such as volume rendering which is able to
reproduce the fuzzy cloudlike nature of astronomical structures
and can visualise different parameters of a data points. Both VTK
and VTK js packages are developed by the company Kitware and
they use the same coordinate systems. Which allows the client and
server to exchange data without the need for any type of conversion
between them, and helps to simplify the system. They will be used
as the preferred rendering packages for the implementation of the
final system.

How effectively the user can interact with the data is directly
related to how quickly the model can be rendered and re-rendering
while the user is manipulating it from the client side. If the model
cannot be rendered in a timely enough fashion then the framer-
ate the user sees drops to below a usable threshold. The model
becomes unusable because the user must wait for the model to be

Back end

]]
VTK renderer Preprocessed file system
T Front end |
]]
Server O‘-—-—a- Client
WebSockgt

Figure 2: A high level overview of the system and its individ-
ual parts. The back end sub-system is comprised out of the
VTK renderer, preprocessed file system and the server which
connects to the client within the front end sub-system via a
WebsSocket.

re-rendered after every adjustment. This would severely hamper
the user’s ability to extract knowledge. Therefore, rendering data
can be partially done on the client computer during user interaction
and partially done on the server for a more detailed view of the
data.

3 DESIGN AND IMPLEMENTATION

The larger overall system of 3DAVis is comprised out three main
components: client/frontend system, the backend system which
consists of the server and the pre-processed file system. These
separate systems work together implement a hybrid approach to
rendering by performing rendering on the client as well as on the
server. Where the server produces a high resolution visualisation
in the form of a image of the full sized data cube and the client
renders tiles from the file system. These tiles are pieces of the full
sized data cube at a certain resolution level so that they can be
rendered on the client computer without requiring excessive com-
putational power. Interaction with the rendered tiles is performed
on the client subsystem and because the rendering is done on the
client interaction is instantaneous. The success of the system is
determined by how well the individual parts function and interact
with each other.

The server pre-processes full size astronomical data cubes from
FITS to HDF5 for faster data retrieval while also fulfilling requests
from the client. The requests are either for image or volume data,
image data comes from the rendered visualisation of the full sized
data cube, this is done on the server. Whereas volume data comes
from the pre-processed files, the volume data within these files will
be rendered by the client subsystem. While the client assists in
rendering visualisations of the data its main purpose is facilitate
all interaction with the system, allowing the user to view different
astronomical data files as well as perform actions on the data. The
overall effectiveness of the system relies on how well these compo-
nents can work together and produce usable data visualisation for
the user.

3.1 System Overview

By combining server and client rendering and shifting rendering to
both subsystems the full sized data cubes must be pre-process into
different levels of data resolution, these levels are further divided up
into tiles which can be individually requested. These tile are used

by the client to produce a rendering of the data without having to
load the full sized data cube.

The system initiates when the client application is started, the
server and the client subsystems create connection for sending and
receiving data. After this connection is created the client requests
the file names of all the available files on the server, these files
are the full sized data cubes that have been pre-processed and are
stored on the server. The file names are displayed for selection by
the user. When the user requests to view a data file by selecting
it from the list it informs the server and the server renders and
sends an initial high-resolution visualisation of the data cube as
well as the lowest resolution level of the down sampled data, this
level visualises the the whole cube. When the image is received by
the client it is displayed for the user and the volume data is stored
for when it is needed. As the user interacts with the image the
volume data is renderer and the visualisation is shown to the user
for the duration of the interaction. Some examples of the types of
the user interaction is manipulation the view of the data as well as
the cropping planes.

When the interaction ends and a certain amount of time has
passes the camera position and the colour transfer function of the
client renderer are sent to the server so that the server can render
a high resolution recreation of the rendering on the client system.
When the high resolution rendering is then sent to client system
the client rendering is switched back to the high resolution image.
If the data cube is cropped the resolution of the cropped section
needs to be increased by certain factors along the x, y axis and z
axis independently. More tile are required by the client and the
specific resolution level file and the specific tile or tiles within the
file are requested. If multiple tiles are requested by the client each
tile is sent individually and are combined into a single volume
once all of the requested tiles have been received by the client. The
connection between the server and the client is terminated when
the user terminates the client system instance.

3.2 Client

The primary purpose of the client/frontend system is to visualise
the data received form the server in the forms of image and volume
data and to handle and process user interaction with the data. It
was constructed using Vue.js, a frontend JavaScript framework for
the construction of reactive client-side web applications.

The client Subsystem was constructed using the Vue.js javascript
application framework and allows for easy creation of modular
components. Additional packages for functionality can easily be
added with a package manager like NPM, some of the packages that
were used are vtk.js which is used for client-side data visualisation
and is the JavaScript extension of VTK library that is implemented
on the server-side system. The Bootstrap CSS package was used
to improve the overall aesthetic and user experience compared to
default HTML elements. To facilitate the connection between the
client and the server JavaScript WebSocket are used to send and
receive data without having to rely on singular HTTP requests and
responses, allowing the client to make a single request and receive
multiple responses.

The client will primarily receive images of fixed size in the im-
plementation this size is 1080 pixels and 720 pixels and or one to

T T
| pre-process FITS files i
|_into HDF5 format |
| I

1

<«]
IunE P [for each client that connects to server]
'

| sends list of files on the server !

user selects file

sends file name

i
I render high resolution
| visualisation of the full
I sized data cube

h
| fetch the required data
i tiles for initial visualisation

1 send high resolution image

loop / [for each required tile]

| send tile with metadata

m_

display imag

il

reassembles tiles into one data cub

Lo

Il

render the data cube

Wl

looj [user interaction]

I
user initiates interactiont

]

n

display rendered data tile:

Il

user interacts with the rendering

]

interaction involves zooming,
rotating, or adjusting the colour
transfer function of the model

T
interaction timer runs out
i

requests a new high resolution
image with new camera coordinates
and colour transfer function

| render high resolution

! visualisation of the full
| sized data cube

i send high resolution image

user crops the wolume data

I

i

! client determines the level !
| of the file hierarchy and tilg
! ID's that are required for !
| next rendering
|

I

Al

requests tiles

| fetches tiles from file system

|
loop / [for each tile requested]

| sends tile with metadata

|
reassembles tiles into one data cube

Il

render the data cube

A

user interaction continue:

i

I_ﬂ

Figure 3: The hybrid server-client rendering approach the
system implementation is based on and shows how the server
and the client interact with each other while a user is engaged
and performing actions.

two data cubes of a fixed which is 64 by 64 by 64 data points per
axis. These dimensions limit the amount of data that the user will
receive, the dimensions can be increased of decreased and limit the
amount of data the client computer will have to process during its
use.

3.3 Algorithms

3.3.1 Tiling. This is used in order to determine which tiles need
to be requested from the server. Once the volume data has been
cropped the client system determines the highest resolution level
where the cropped selection would fit with one or two data cubes.
It then determines the tile ID’s for the level and then requests them.
This function is called when the data cube is cropped and uses the
X, y, and z planes as input.

cropCube () {
cubeSize = 64

determine the factor of each dimension
factor[x,y,z] = serverCubeDimensions[x,y,z]/clientCubeDimensions[x,y,z]
the factor is what the planes have to be multiplied by to get their
position in the full sized cube's space

convert the crop planes coordinates to coordinates in the full sized
data cube by multiplying the points by their respective factors

store the lowest resolution level of the file sent by the server
xy = xyMaxLevel
z = zMaxLevel

do {

if(z == 1) {
divide the XY level by 2
xy /= 2
reset Z level to max Z level
z = zMaxLevel

}

else {
divide Z level by 20
z /= 2

}

set the level of cube division
xyDivLevel = xyMax/xy
zDivLevel = zMax/z

get the number of cubes that the crop cube covers on each dimension
xNumTiles = Math. ceil (serverCubeDimensions/xyDivLevel)/ cubeSize
yNumTiles = Math. ceil (serverCubeDimensions/xyDivLevel)/ cubeSize
zNumTiles = Math. ceil (serverCubeDimensions/zDivLevel)/ cubeSize

determine in which block the point dimension falls into for each
crop plane for x and y planes

Math. trunc (cropPlane/xyDivLevel)/ cubeSize
for the z planes

Math. trunc (cropPlane/zDivLevel)/ cubeSize

convert the planes to vertices of the cube
form [x1,x2,yl,y2,z1,22] to eight x, y, z coordinates

for each vertex on the cubes as vertex {
let tileID = vertex[x] + 1

if (vertex[y] > 0) {
tileID += (xNumTiles « vertex[y])

}

if (vertex[z] > 0) {
tileID += (vertex[z] « (xNumTiles « yNumTiles))
}
Add tile id to the list of ID's
}

}
while the list of tiles is bigger than 2 or the highest resolution
level has been reached

determine if the two tile are adjacent to each other on the x, y,

or z axis

send the xyDivLevel, zDivLevel and the tile ID's

3.3.2 Tile Combination. This algorithm is used to combine the tiles
from the server on the client system before rendering interactive
volume model. Each data cube that the client requests is send in its
sown independent message from the server so as to not burden the
client with one large piece od data to download at one time. Upon
receiving the data cubes the client system must combine them into a
single data cube so that it may be rendered. It is the same algorithm
used on the server for the same purpose and is implemented with
minor changes to function on the client.

3.4 Data Transfer

The client will make various requests over an active session, the
requests the client will make are for volume and image data. The
server responses to the data from the client by either producing a
rendering according to the specification or sending data tile from a
specific resolution level. The server needs to specify what type of
data is being sent with the message in order for the client system
to distinguish between the responses. This is the data the client
system needs to give back to the user as feedback.

3.4.1 Filelist. The list of file names are sent from the server directly
after the connection between the server and the client is made. The
file names in the list correlate to different full sized astronomical
data cubes that have been preprocessed and stored on the server.
The client does not need to make an explicit request for the file
names.

3.4.2 Volume data. During the user interaction with the volume
data the user has the option to crop the cube in order to take a closer
look at a specific section. When the cube is cropped the vertices
of the cropping box is recorder as well as which resolution level
the the new tiles need to be from and the ID’s of the tiles which
cover the crop selection box. The algorithm used to determine these
values is explained in more depth in the algorithms section. The
crop box vertices are converted into the world coordinates of the
full sized cube before being sent to the server. These coordinates,
the file name that contains the tiles of the desired resolution and
the tile ID’s are sent to the server when the data is cropped.

The server sends the requested tiles as chunks to the client where
each chunk is a data cube of a specified size.

3.4.3 Image Data. The system keeps track when the parameters
such as the camera position of the colour transfer function of the
client visualisation changes. This is used to orient the camera and
colour the model in the server rendering. The data is sent to server
when the user has discontinued their interaction and a new high
resolution visualisation is needed. The server uses the parameters
to recreate what the user sees while they are interacting.

Data representing an image is transferred to the client in a com-
pressed format, the client decompresses the image data.

3.5 User interface

The user Interface of the client system allows the user it access the
functionality and interact with the data located within the server.
It consists out of elements that allow the user to access the data on
the server in the form of files and data cubes, as well as the high

Data cubes

High Resolution Image

Figure 4: The user interface of the client system before the
user has selected a file with a drop down selection element to
allow the user to view and select a file as well as the the other
function the user can perform on the data cube, such as crop
the data cube, reset the page and request a high resolution
image if desired. The rest of the screen is blank.

resolution visualisations produced by the server. Mechanisms to
manipulate the rendering produced by the client such as changing
the colour function so that the volume rendering displays differently
or to manipulate it position relative to the camera. The user interface
and how it appears at various stage of interaction is depicted in
figures 4, 5, 6, and 7.

4 EXPERIMENTS AND RESULTS

In this section the experiential methods for testing the system will
specified as well as the variables each experiment will be testing.
These experiments and results pertain to the performance of the
client system. All experiments were conducted on a computer using
the Ubuntu 20.04 operating system with 16GB RAM, a AMD Ryzen 5
3600 6-Core Processor and a Palit Nvidia Gefore RTX 3070 graphics
card.

4.1 Rendering

This experiment is to test the speed of rendering volume data on
the client computer where the limits of the browser rendering can
be tested and an optimal size for the data cubes can be determined.
The time in which the client computer requires to render a data
cubes will be recorded and the data cubes are tested in increasing
size. A data cube is a three-dimensional objects with an x, y, and
z axis and is comprised out of individual data points. This is to
determine the relationship between the size of of the data cube and
the time required to render the data by the client computer. The
results are shown in table 1 and teh visualisation can be found in

graph 8.

4.2 Data cube combination

These set of experiments tests the speed of the tiling algorithm in
terms of how it performs when combining data cubes of increasing

High Resolution Image

Figure 5: The high resolution visualisation produced by the server of the full sized data cube also located on the server. The
image is displayed when the user stops interacting with the window.

Number of data points | Cube dimensions | Average Time (ms) | Average time (s)
262144 | 64x64x64 468 0.468

2097152 | 128x128x128 1672 1.672

16777216 | 256x256x256 11698 11.6976

134217728 | 512x512x512 89762 89.7618

Table 1: The results from the test to determine the relationship between the size of a data cube and the time that is required to
render it by the client. A visualised depiction of the data can be found by graph 8.

sizes as well as how it perform when combining an increasing
number of data cubes.

This experiment recorded the amount of time it required to com-
bine two data cubes of increasing sizes. Its purpose is to determine
the relationship between the number of cubes being combined and
the time it required by the cube combination algorithm adn there-
fore determining the algorithms performance. All data cubes are
of a uniform size of 64 on each axis. The results for the test can
be found in table 2 and a visualisation of the data can be found in
graph 9.

This experiment recorded the amount of time it took to combine
an increasing amount of data cubes. It records the amount of time
it takes for the cub combination algorithm to combine cubes of
increasing sizes and determine the effect larger data cubes have on
the time of execution of the algorithm. The results for the test can
be found in table 3 and a visualisation of the data can be found in
graph 10.

5 DISCUSSION

The size of the data cube that the client computer can process and
render is dependent on the processing power of the client computer
as the number of data points increase the rendering time for the
data increases in a linear manner. For the client to be able to handle
larger local data cube sizes the processing power of the computer
must be increased.

The rendering time for data cubes on the client system increases
linearly with the amount of data points, where as the data cube
dimensions increase so does the time required to render it. This is
due to no being able to discard any region of the data while render-
ing, each data cube must be processed and rendered and therefore
the execution time for the rendering of the data will have an O(n)
relationship with the rendering time. The largest size the data cube
can handle is determined by the individual client computer’s speci-
fications however limiting the current dimensions of the data cubes
to 64 by 64 by 64 ensures the client computer will be able to ren-
der data cubes in a timely manner by minimising computational

Number of data points

Number of cubes

Dimensions of cubes

Average Time (ms)

Average time (s)

65536 2 | 32x32x32 780.7 0.7807
524288 2 | 64x64x64 5175.7 5.1757
4194304 2 | 128x128x128 40813.4 40.8134

Table 2: The results from the test performed to determine the relationship between the size of the cubes being combined in the
combination algorithm and the time it take for the algorithm to combine them. A visualised depiction of the data can be found
by graph 9.

Number of data points | Number of cubes | Average Time (ms) | Average time (s)
52288 2 5175.7 5.1757

786432 3 9733.9 9.7339

1048576 4 23895.2 23.8952

Table 3: The results from the test performed to determine the relationship between the number of cubes being combined and

the time it take for the algorithm to combine them. A visualised depiction of the data can be found by graph 10.

Figure 6: The volume rendering produced by the browser
on the client computer. The rendering is interactive and the
user can manipulate the volume data by zooming in and out,
rotating around x, y, z axes and manipulating the cropping
area by clicking and dragging the vertices and planes. How
the data is visualised can be manipulate using the widget at
the top right corner of the screen.

overhead for the client system. A data cube with the dimensions
of 64 render on average under half a second while maintaining a
high enough resolution to depict significant structures within the
volume data. Whereas data cubes with dimensions of 128 will have
a higher resolution of the data and depict the structures with more
accuracy the number of data points increased exponentially caus-
ing the rendering on a single 128 by 128 by 128 to be 1.6 seconds
on average, three times the duration of the 64 by 64 by 64 cube.
This time could be decreased with more computational resources
but it cannot be assumed the the user would have access to such
resources. A 32 by 32 by 32 data cube would take less time to render
however it will not have high enough resolution to represent the
structures within the data.

A data cube with 64 by 64 by 64 dimensions requires on average
half a second to render, however, the time for combining the cubes
if there is more than one must be considered and added to the

rendering in order to determine how long the user must wait before
interaction can begin.

When combining data cubes of increasing sizes the time required
to combine data cubes increases linearly with increased number od
data points within the cube. It has the same effect of the time as
rendering the larger data cubes where the time increases in a linear
relationship with the number of data points.

When combining multiple data cubes of the same size the time
each additional cube adds plots the beginning of an exponential
relationship. This is an undesirable result considering the goal of
minimising the waiting time for the user. Therefore, within the
implementation the total number of cubes the algorithm will have
to combine on the client is two. Combing two cubes of 64 by 64
by 64 dimensions requires on average 5 seconds and adding the
rendering time it would produce a visualisation of the data within
6 seconds upon receiving the final data cube. This waiting time
will only effect the user when initially loading the data and when
cropping the cube where cubes are transfer from the server to the
client.

It must be noted that the server and client were executing on the
same local computer where time for data transfer was negligible.
The time for data transfer would be affected by the bandwidth of the
internet connection which can vary depending on the distance from
the server and the network speed. This time for data to be transfer
would add additional waiting time for the user before the system
produces a visualisation. The system could not be judged in terms
of how it would perform with different network bandwidths and
latencies due to the client and server located on the same computer
during testing.

6 CONCLUSIONS

To conclude this paper concerning the remote visualisation of radio
astronomical data using the server client model.

The goal of the research was to implement a proof of concept
system that combines server and client based rendering in order
to overcome the challenges present in rendering astronomy data
mainly the overall size of the data.

High Resolution Image

Use Shadow erdc_rainbow_bright

Figure 7: After the cropping area has bee sufficiently manipulated and the crop button has been selected, the server sends data
cubes of the selected area at a higher resolution level. This is a view of the data from 6 but at a higher resolution level than

before the crop and more detail of the structure can be seen.

104
T
87 .
67 |
=
£
[P}
B f
H
27 |
07 .
| | | | | | |

|
0 0.2 04 06 0.8 1 1.2 1.4

Number of points

Figure 8: The relationship between the size of the cube being
rendered on the client and the time taken by VTK.js to render
it. Tabled results can be found in table 1.

The research questions pertained to the derivation of possible
methods to keep the rendering done by the client system to a
minimum, what the limitations of client side rendering are and at

-10%
T
47 .
37 .
=
£
Q 2 |
g
=
l, .
07 .
| | | | |
0 1 2 3 4

6
Number of points in combined cubes 10

Figure 9: The relationship between the size of the cube being
combined on the client and the time required for them to be
combined. Tabled results can be found in table 1.

what point would it impact the usability of the system. As well as
how the client system would react to receiving larger data cubes.

104

25 7]

2 - .
B

= 150 .
[F]
£
B

1 - .

0.5} .

| | | | |

2 2.5 3 3.5 4

Number of cubes to be combined

Figure 10: The relationship between of the number of cubes
being combined on the client and the time required to com-
bine them. Tabled results can be found in table 3.

The computational overhead for the client was minimised by
limiting the amount of data it would receive and process. This was
considered from the initial planning of the system (Figure 3). The
client would either receive an image of a fixed size or a limited
number of data cubes of a fixed size. In the implementation the
client is limited to combine and render at most two data cubes of
maximum dimension of 64 x 64 x 64, and display and image with
dimensions of 1080 by 720 pixels. Data cube dimensions of 64 were
found to provide sufficient resolution to depict the data with some
detail while rendering at a speed that maintained usability.

It is also important to limit the number of data cubes sent to the
client system due to the time required by the cube combination
algorithm increases in an exponential manner with each additional
data cube. If the client were to combine multiple data cubes it would
increase the waiting time for the user before a visualisation of the
data can be shown.

In terms of scalability performance of the client system would
remain constant across all interactions regardless of the of the size
of the data cube being processed by the server. The waiting time of
the user is affected by change in size of the data cube and the amount
of data cubes sent by the server. This does not take into account the
the time the server requires to perform its functions or the amount
of time it would require to transfer the data over a network. In this
aspect the client system’s performance is dependent on the server’s
performance and the network bandwidth. If the time for server
functions and data transfer increases the client system would have
to wait a longer period of time before receiving its required data
but it would not effect the speed of interaction with the data cube
once it is rendered by the client.

As a proof of concept the system shows promise and with a
sufficiently powerful dedicated server it is more usable in terms of
user interaction than exclusive server side rendering by allowing
the user to interact on the client computer, and does not burden

the client system with rendering full sized data cubes. The imple-
mentation combines the best aspects of both rendering approaches,
combining the computational power of a dedicated server withe
the speed of user interaction of rendering on a local computer.

REFERENCES

[1] Bennett W. Anderson and Robert P. Burton. 1988. Computer graphics curricula:
a survey of PhD granting departments. ACM SIGGRAPH Computer Graphics 22,
2 (apr 1988), 94-98. https://doi.org/10.1145/47824.47825
[2] David G. Barnes and Christopher J. Fluke. 2008. Incorporating interactive three-
dimensional graphics in astronomy research papers. New Astronomy 13, 8 (nov
2008), 599-605. https://doi.org/10.1016/j.newast.2008.03.008 arXiv:0709.2734
[3] H. Fuchs, M. Levoy, and S.M. Pizer. 1989. Interactive visualization of 3D medical
data. Computer 22, 8 (aug 1989), 46-51. https://doi.org/10.1109/2.35199
[4] Amr Hassan and Christopher J. Fluke. 2011. Scientific visualization in astronomy:
Towards the petascale astronomy era. Publications of the Astronomical Society of
Australia 28, 2 (2011), 150-170. https://doi.org/10.1071/AS10031 arXiv:1102.5123
[5] Thomas H. Jarrett, A. Comrie, L. Marchetti, A. Sivitilli, S. Macfarlane, F. Vitello,
U. Becciani, A. R. Taylor, J. M. van der Hulst, P. Serra, Neal Katz, and M. E. Cluver.
2020. Exploring and interrogating astrophysical data in virtual reality. arXiv
(2020). arXiv:2012.10342
Matwey Kornilov and Konstantin Malanchev. 2020. Fips: An OpenGL based FITS
viewer. In Journal of Physics: Conference Series, Vol. 1525. Institute of Physics
Publishing. https://doi.org/10.1088/1742-6596/1525/1/012047
Koojoo Kwon, Eun-Seok Lee, and Byeong-Seok Shin. 2013. GPU-accelerated
3D mipmap for real-time visualization of ultrasound volume data. Computers
in Biology and Medicine 43, 10 (oct 2013), 1382-1389. https://doi.org/10.1016/j.
compbiomed.2013.07.014
[8] Lucia Marchetti, Thomas H. Jarrett, Angus Comrie, Alexander K. Sivitilli, Fabio
Vitello, Ugo Becciani, and A. R. Taylor. 2020. iDaVIE-v: Immersive data vi-
sualisation interactive explorer for volumetric rendering. arXiv (2020), 1-4.
arXiv:2012.11553
[9] M Meifiner, Hanspeter Pfister, R Westermann, and Craig Wittenbrink. 2000.
Volume visualization and volume rendering techniques. (01 2000).
Finian Mwalongo, Michael Krone, Guido Reina, and Thomas Ertl. 2018. Web-based
volume rendering using progressive importance-based data transfer. Vision, Mod-
eling and Visualization, VMV 2018 (2018). https://doi.org/10.2312/vmv.20181264
Ray P. Norris. 1994. The Challenge of Astronomical Visualisation. In Astronom-
ical Data Analysis Software and Systems IIl (Astronomical Society of the Pacific
Conference Series, Vol. 61), D. R. Crabtree, R. J. Hanisch, and J. Barnes (Eds.). 51.
Simon Perkins, Jacques Questiaux, Stephen Finniss, Robin Tyler, Sarah Blyth,
and Michelle M. Kuttel. 2014. Scalable desktop visualisation of very large radio
astronomy data cubes. New Astronomy 30 (jul 2014), 1-7. https://doi.org/10.
1016/j.newast.2013.12.007
D. Punzo, J. M. van der Hulst, J. BT.M. Roerdink, J. C. Fillion-Robin, and L. Yu.
2017. SlicerAstro: A 3-D interactive visual analytics tool for HI data. Astronomy
and Computing 19 (2017), 45-59. https://doi.org/10.1016/j.ascom.2017.03.004
arXiv:1703.06651
R. Taylor. 2015. Frelled: A realtime volumetric data viewer for astronomers.
Astronomy and Computing 13 (2015), 67-79. https://doi.org/10.1016/j.ascom.
2015.10.002 arXiv:1510.03589

[6

7

[10

(1]

[12

(13]

https://doi.org/10.1145/47824.47825
https://doi.org/10.1016/j.newast.2008.03.008
https://arxiv.org/abs/0709.2734
https://doi.org/10.1109/2.35199
https://doi.org/10.1071/AS10031
https://arxiv.org/abs/1102.5123
https://arxiv.org/abs/2012.10342
https://doi.org/10.1088/1742-6596/1525/1/012047
https://doi.org/10.1016/j.compbiomed.2013.07.014
https://doi.org/10.1016/j.compbiomed.2013.07.014
https://arxiv.org/abs/2012.11553
https://doi.org/10.2312/vmv.20181264
https://doi.org/10.1016/j.newast.2013.12.007
https://doi.org/10.1016/j.newast.2013.12.007
https://doi.org/10.1016/j.ascom.2017.03.004
https://arxiv.org/abs/1703.06651
https://doi.org/10.1016/j.ascom.2015.10.002
https://doi.org/10.1016/j.ascom.2015.10.002
https://arxiv.org/abs/1510.03589

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Overview

	2 Related Work
	2.1 Data Visualisation
	2.2 Rendering
	2.3 Data Interaction
	2.4 Discussion

	3 Design and Implementation
	3.1 System Overview
	3.2 Client
	3.3 Algorithms
	3.4 Data Transfer
	3.5 User interface

	4 Experiments and Results
	4.1 Rendering
	4.2 Data cube combination

	5 Discussion
	6 Conclusions
	References

