
3-Dimensional Astronomical Visualisation
Bilal Hasan Aslan

ASLBIL001@myuct.ac.za
University of Cape Town

ABSTRACT
Several applications of astronomical visualization tools demonstrate
the importance of interactive visualization in astronomical data
exploration. The new generation of radio astronomy telescopes, due
to the increased size of the data being captured by them, requires
improved software designs and visualization techniques. This is
required to maintain or enhance contemporary applications’ inter-
active performance and user experience when dealing with large
datasets. This paper presents the development of 3DAVis, a system
that renders astronomical data into a 3-dimensional (3D) visual-
ization, using a client-server hybrid rendering approach. Its goal
of serving as a proof of concept for future 3D astronomical data
visualization tools, where the computationally intensive tasks are
handled by the server and the data exploration and interaction are
handled by the client. Currently, there are no 3D astronomical data
visualization applications which do this that are widely available to
the public. In this paper, using our application, we explore various
techniques and algorithms which could potentially be included
in such future applications and discuss the beneFITS, drawbacks,
bottlenecks, and opportunities associated with each.

CCS CONCEPTS
•Applied computing - Physical sciences and engineering (As-
tronomy);

KEYWORDS
Astronomy, 3D-Visualization, Visualization tools

1 INTRODUCTION
Scientific visualization has been applied in many different branches
of science in an effort to support the knowledge discovery process,
and one of the branches is astronomy. [5] Visualizing data sets that
are gathered by modern telescopes is necessary for astronomers.
Astronomy is a visual science that relies heavily on visualisation and
interpretation of data, as claimed by Rolowsky et al [12]. Without
current visualization tools, astronomers will have a hard time when
observing data sets gathered by the telescopes.

Astronomy is a data-intensive science, and already petabytes
of observational data are stored in archives. [1, 13] Rendering and
interacting with these data sets are very computationally expensive.
One of the most significant challenges astronomers face is trying to
use 3D visualization tools that are incapable of efficiently processing
large amounts of multi-dimensional data.

Some 2D visualization tools can process huge data sets efficiently
and certainly are very useful for astronomers, but compared to static
2D renders, 3D renders will give astronomers a more immersive
and engaging experience, and allows complex astronomical data
sets to be visualized in a way so that it is better understood. It
has recently been discovered that there is a lack of an application
that can deal with large astronomical data cubes in more than

two dimensions. Current 3D visualization tools fail to render these
data sets effectively because these tools are not designed to deal
with the huge data sets that are gigabytes in size. Besides memory
and speed issues, other issues are required to be dealt with when
developing a good modern 3D visualization tool such as being real-
time interactive when rendered, accurate and fast 3D rendering,
and a good user interface.

Another problem with these 2D and 3D visualisation tools is that
a computer must store colossal astronomical data on its hardware
to be able to render. Instead, having a central data storage and
fetching this data from storage to be rendered on the client-side
is a very efficient and effective way store these large amounts big
astronomical data. This server-client design is implemented by
CARTA [4] visualisation tool but CARTA is only capable of 2D
rendering currently.

This project aims to solve scalability, memory, and storage is-
sues when rendering large amounts of astronomical data for 3D
visualization, by using a server-client hybrid rendering approach.

2 BACKGROUND
2.1 Astronomical Data
Space is usually observed as electro-magnetic radiation within some
range of the electromagnetic spectrum. There is a lot to observe
and many wavelengths to observe it in [15]. The Astronomical data
contains a range of wavelength values and the presence or absence
of these wavelengths provides us different information such as
the chemical formation of astronomical objects, velocity of the
astronomical objects, etc. A visualization tool becomes necessary
to understand such data.

Astronomical data is stored in different formats such as FITS,
HDF, or ASDF. Around one billion astronomical data that is gath-
ered by astronomical instruments worldwide are stored in FITS
format. [7] There are already some tools that convert FITS to other
standardized data formats. If another data format needs to be used
in a new modern visualization tool because of its speed, concur-
rency, and other beneFITS, it should not be an issue as long as FITS
files can be converted to such format.

2.1.1 FITS File Format. The Flexible Image Transport System (FITS)
format is a very generic format and is used to represent a large
amount of different data types. There are numerous advantages of
FITS file format, some of which are: it is widely used, it is easily
understood serialization, and it has extensive documentation. [14]
Petabytes of astronomical data are archived in FITS format. [7].

2.1.2 HDF5 File Format. Hierarchical Data Format version 5 (HDF5)
file format is complexly structured, can be used to archive large
data sets, and supports various types of data sets. HDF5 file format
has more capabilities and potentially higher performance over FITS
format. HDF5 datasets with a contiguous layout strategy, nearly



Bilal Hasan Aslan

constant access time to any element in the array and zero overhead
for locating elements in the dataset is assured. [6]

HDF5 file format can stream sections of files across multiple
spindles and has a very high read/write speed. [10] Nowadays, many
astronomers tend to use the HDF5 file format. The Low-Frequency
Array (LOFAR) has been archiving its astronomical data in theHDF5
file format because of its speed advantages. [2] HDF5 file format
also offers storing data in chunked datasets. Chunked datasets
are split into multiple chunks that are all stored separately in the
file. Chunks can then be read and written individually, improving
performance when operating on a subset of the dataset.

2.2 Volume Rendering
Volume rendering is used in scientific visualization to create 2D
projections from a 3D data set. For instance, a series of 2D slice
images of astronomical objects can be assembled to render 3D
volume rendered images using a volume rendering algorithm.

2.2.1 Direct Volume Rendering. Direct Volume rendering is creat-
ing a projected image from multi-dimensional data. Only simple
algorithms and no approximations are applied to the data. This
type of rendering is best suited to visualize astronomical data. Geo-
metric structures are not created in this type of rendering which
results in renders as natural and accurate as possible. Volume ray
casting, splatting and shear warp, are the well-known techniques
used in direct volume rendering. Ray casting is preferred over other
techniques in astronomy because of its higher quality and more
accurate render results.

2.2.2 Volume Ray Casting. Volume ray casting is widely used when
volume rendering scientific data because of its high-quality results.
This technique of rendering also allows parallelization and good
user interactivity. [16] Volume ray casting is an intensive process
and a single general-purpose CPU is not sufficient to achieve inter-
activity or even real-time for large data sets. [9] Certain optimiza-
tion algorithms are used to achieve better speeds like empty space
skipping, early ray termination. Visualizing big multi-dimensional
data sets with the help of a high-end GPU and also using parallel
algorithms may achieve fast render speeds.

3 RELATEDWORK
3.1 KARMA
KARMA is firstly designed to visualize data sets in 2D, slice by
slice. It is widely used by astronomers today. Some packages allow
KARMA to read different astronomical data formats like FITS and
Miriad. This tool lacks a good user interface, even doing small tasks
on this tool may require high technical knowledge. KARMA devel-
opers have introduced a 3D visualization package called KARMA
XRAY. This package was not astronomers’ preference because its
rendering speed limited the tool’s interactiveness and had memory
management problems with big data sets. [3]

3.2 SAO Image DS9
This is another widely used tool by astronomers around the world.
This tool has a better user interface compared to KARMA. SAOIm-
age DS9 supports FITS and many other data formats. [8] This tool
has 2D visualization that renders data sets slice by slice and has

3D visualization that allows users to interact with the 3D render.
However, this tool suffers performance problems when it comes
to rendering 3D visualization because rendering with Graphics
Processing Unit (GPU) acceleration is not supported. [8]

3.3 CARTA
CARTA is a modern 2D visualization tool that offers an user friendly
interface and fast rendering speeds. CARTA functions as a server-
client system where CARTA is installed on a high-end server and
astronomers connect to this server from their typical workstations.
After all the processing on the server is completed, render data
is sent to the client where the render gets processed preferably
by GPU and is displayed to the user. This means having a GPU
on the client’s workstation increases the rendering performance
of this tool. Server-client interaction created a lot of advantages
on this tool and this same type of technique could be used for 3D
visualization.

Astronomers do not always have good access to sufficient com-
putational power or data-storage capacity to deal with large data
sets. Dealing with large data sets effectively and efficiently requires
a higher level of computing knowledge relating to the choice and
use of appropriate data structures, techniques for scheduling, and
so on. Therefore using server-client presents an opportunity to
provide the wider astronomy community with a reliable, efficient
visualization service with potentially lower cost, less administrative
effort, and a reduced need to transfer data. [11, 17]

3.4 VTK
Standing for The Visualisation Toolkit. It is maintained by Kitware
and is open source under BSD license. It was created for the pur-
pose of displaying and manipulating scientific data in a browser. It
supports volume rendering, scientific visualisation and two dimen-
sional plotting. VTK.js is VTK’s accompanying JavaScript library
for rendering graphics in a browser and is available as packages on
NPM for easy integration with a JavaScript framework. VTK.js is
supported on Google Chrome and Firefox but not yet on Safari and
Microsoft Edge. Having VTK as C++ library on server and VTK.js
on client side brings a huge advantage for this project’s purpose
since it will make server and client interaction simpler.

3.5 Requirement Gathering and Analysis
3.6 Requirement Gathering
Throughout the project, we worked with the lead developer of
CARTA, Dr. Angus Comrie. He had a particular interest in 3D
visualisation using the server-client hybrid rendering approach,
which is themainmotive behind our project. The research questions
we wish to answer are:

(1) How can the data be pre-processed using methods such as
mipmapping on the server-side of the system to increase the
speed of data processing and transfer?

(2) Does the graphical rendering library VTK produce the best
results in terms of speed and accuracy when rendering?

(3) How can the client and server approaches be combined to fa-
cilitate high-resolution data rendering over a network while
maintaining usability?



3-Dimensional Astronomical Visualisation

(4) How does network latency between server and client af-
fect when rendering large volumes of data using the hybrid
rendering model?

(5) How does the hybrid model approach scale in terms of ren-
dering time, transfer latency, and time from user interaction
and feedback over increasingly larger data sets?

These research questions suggest that speed and efficiency are
the key aspects to consider when designing and developing the
system. This system needs to provide a smooth experience for a
user whilst dealing with large astronomical data. Figure 1 proposes
an initial sequence diagram on how the system should function at
deployment. This basic system flow was changed and improved to
develop a final product.

Figure 1: Proposed sequence diagram for initial system de-
sign.

3.7 Design Methodology
An incremental prototyping model approach was implemented,
where each team member builds their own prototype for their
section. Once each member’s developed their prototypes, it was
merged and tested again before being deployed. Figure 2 illustrates
this process. The project was split into three independent sections,
one for each team member, which made this the most appropriate
approach since it provided freedom of individual coding.

The serverwas developed using a feature-driven approach, where
each feature was developed one after the other was complete. Once
a feature was completed it was merged into the prototype and
tested for bugs. This made testing process very easy and effective
for determining anomalies in the code.

Figure 2: Incremental prototyping model.

4 BACKEND IMPLEMENTATION
Astronomical data are huge in size. When working with such large
data sets, it is crucial that memory management is prioritized for
scalability as well as obtaining fast process speed for better server
response time. For this reasons, This is why C++ was chosen to
implement the server; it provides good memory management and
is computationally efficient. C++ is also widely utilized in computer
graphics applications, scientific or, otherwise and also web applica-
tions’ servers that require fast response times. One of our primary
motives for this project is to build a proof of concept for CARTA
which is also built in C++ language.

The Server will be using VTK (Visualisation toolkit), which is a
C++ library, for volumetric rendering high resolution data on the
server side and encoding it to JPEG (Joint Photographic Experts
Group) picture format that will be sent to client side. This library
was chosen because it is widely used in scientific volume rendering.

4.1 File Preprocessing
Disk reading is a slow process in computers. Reducing this bottle-
neck created from disk reading will increase the speed of the server
dramatically. FITS file format only provides sequential reading from
disk while HDF5 file format provides parallel reading and chunk-
ing features. Reading data through HDF5 file format will increase
servers’ response speed resulting in a more efficient astronomical
rendering system.

Mipmaps are different levels of low-resolution cubes of the data.
Another way to speed up server performance is by pre-processing
these mipmaps before the server and client renders it. HDF5 file
format can store different datasets in its file format, allowing it
to store pre-processed mipmap datasets. These mipmap datasets
are stored in chunks, each of which contains one cubelet. These
cubelets dimension sizes are 64x64x64 which makes them 1MB in
size. This could be easily changed in the code if different chunk
sizes are required.

Since most of the astronomical data is stored in FITS format,
a Converter is needed to convert FITS files to the desired HDF5
file format. Figure 3 illustrates the process of the converter which
converts a FITS file format into a HDF5 file format.

4.2 Back-end disk reading
To achieve maximum potential reading speeds from a disk, espe-
cially SSD, we need to read data from disk in small blocks such as
512Kb, 1MB and 2MB. An experiment was conducted to test and
analyze what size data will achieve maximum reading speed from
the disk. The system was built to allow cubelet sizes and chunk
sizes to be easily changed, according to the chosen cubelet size
during pre-processing FITS files to HDf5 format.



Bilal Hasan Aslan

Figure 3: FITS to HDF5 Converter sequence diagram.

When the server needs to read from the disk, it will first check the
memory cache and read cubelets that are not cached but required.
All cubelets that are read will have a unique ID representing their
position in the mipmap dataset. These cubelet’s dimensions and
also their content are stored in cache memory. If any cubelet is
requested for rendering again, it is quickly retrieved from cache
memory, which speeds up the server response.

4.2.1 Reconstructing cubelets. While only up to maximum of 4
cubelets are sent to client side for client to render, the server deals
with more than 1000 cubelets. These cubelets needs to be com-
bined together to create one big cube. Right now these cubelets are
combined row by row but for future work these cubes needs to be
combined as a whole to achieve best speed results.

4.2.2 Sending cubelets to client. When the User crops a cube visu-
alization on the client-side, the client requests new cubelets from
the server to render a higher resolution of the cropped section. The
server first checks the memory cache and reads missing cubelets
from the disk. After all cubelets are in memory it is compressed and
sent to clients one by one, as illustrated in figure 4. These cubelets
are decompressed on the client-side, reconstructed to a larger cube,
and then this cube gets rendered.

4.2.3 Rendering new volume from crop coordinates. When the user
crops the cube on the client-side, the client sends crop points to the
server. Once the cube is cropped, the server can render a higher res-
olution of the cropped section. The server calculates new cubelets
needed from these crop points, reads if these cubelets are not cached
already, reconstructs cubelets to get a single large cube, and then
renders this higher resolution cube, as illustrated in figure 5.

4.2.4 Encoding Image. The high-resolution images on the server
side are encoded using VTK library. VTK library uses FFMPEG to

Figure 4: Sending requested cubelets to client.

Figure 5: Rendering new volume from crop coordinates.

encode these images. FFMPEG is a free and open source software
project consisting of a large suite of libraries and programs for
handling video, audio, and other multimedia files and streams. The
image is encoded directly to servers memory and then it is directly
sent to client from the memory (figure 6).

FFMPEG is not the fastest encoder library. FFMPEG is limited to
encoding on CPU whilst Nvidia’s NVENC library can do encoding
on GPU. But VTK does not support NVENC which makes it hard
and time consuming to implement. Due to time constraints I was
not able to implement this library. However results gathered from
testing suggest using NVENC instead of FFMPEG is not going to
results very noticeable performance difference in terms of servers
response speed.



3-Dimensional Astronomical Visualisation

Figure 6: Encoding and sending image.

4.2.5 User choosing a new astronomical file. When a user chooses
a new file to be rendered from the server’s file list, a client sends
the selected file to the server. The server determines which cubelets
need to be read from the disk and sends them to a client. After client
cubelets are sent the server determines which cubelets need to be
read from the disk to produce a higher resolution render. Once the
reading is complete, these cubelets are reconstructed into a single
large cube. This large cube is rendered in volume with the help of
the VTK library. As soon as rendering is complete, the front view
of the rendered volume is encoded to image format and sent to the
client. This process is illustrated in figure 7.

Figure 7: User choosing a new astronomical file.

5 TESTING THE SYSTEM
The aim of this project is to get maximum speed server response
times to client requests. The performance tests were conducted

on different parts of the code to discover bottlenecks. Finding bot-
tlenecks will help further improve the code design. The code was
tested on both HDD (Hard disk drive) and SSD (Solid State Drive:
the speeds were recorded to determine the maximum read speeds
of each. Thereafter, the speed of the reconstruction of cubelets into
one large cube was tested. The rendering speed of the VTK library
was tested on different volume sizes and finally speed of encoding
this volume to image.

The specifications of the laptop used to conduct these tests are
Intel Core i5-7300HQ, GTX 1050 mobile. Benchmark read speeds
for HDD that have been used in testing were 54.3 MB/s for 512K
block reads, 56.0 MB/s for 1MB block reads and 55.5 MB/s for 2M
block reads. Benchmark read speeds for SSD that have been used
in testing were 470 MB/s for 512K block reads, 475 MB/s for 1MB
block reads, and 471 MB/s for 2MB block reads. All these tests were
conducted 10 times and an average of the results was taken. Before
each test system cache was cleaned.

6 RESULTS AND DISCUSSIONS
6.1 Reading astronomical data from disk
Before doing disk reading tests, various sizes of FITS files were
converted to HDF5 files. During conversion, the mipmaps were
chunked in different cubelet sizes. For this testing all 250MB, 500MB,
750MB, 1000MB and 2000MB FITS files were converted to HDF5
Files 3 times, one time chunking in 512K, one time chunking in
1MB and last time chunking in 2MB cubelets.

Figure 8 shows test results when cubelets are read from HDD.
Reading in a block size of 1MB gave the best speed result but the
time difference between other cubelet size reads is unnoticeable.
Let’s take the speed of reading 1000MB file in 1MB cubelets because
the server will be set to render 1000MB data. From benchmark
results, with a speed of 56.0 MB/s, it will take 17.85 seconds to read
this file. The test result for servers’ read speed is 17.89 seconds
(Appendix 1). This means we are using HDD’s reading speed to its
full potential.

Figure 8: Test results for reading server cubelets from HDD.

Figure 9 shows test results when cubelets are read from SSD. The
best reading speed was achieved when reading cubelets in the size
of 1MB. This time reading speed difference of 1MB compared to



Bilal Hasan Aslan

other cubelets sizes was more noticeable. From benchmark results,
SSD reads 475MB/s the block sizes of 1MB. It will take 2.1 seconds to
read 1000MB with a speed of 475 MB/s. The test result for servers’
read speed is 2.6 seconds. This means the server is using SSD’s
reading speed to its full potential. Server reading speed is slower
since the server is calculating cubelets’ coordinates in the file and
allocating memory for it.

If the server runs on SSD, the HDF5 file should be chunked into
1 MB chunks, and datasets should be read in 1MB cubelet sizes to
get the most from the SSD.

Figure 9: Test results for reading server cubelets from SSD.

The servers’ response time when a client requests new cubelets
was tested, on an HDD and SDDmachine. Results for these tests are
shown in figure 10. The tests were done up to a maximum of eight
cubelets, even though a client should be requesting a maximum
of four cubelets. This was done to experiment if eight cubelets
are viable for this system. Reading eight cubelets from HDD took
125 ms, reading four cubelets took 62 ms (appendix 1). 122 ms
will result in slow response speed from the server, making four
cubelets a better option for the system if a file is stored on HDD
on the server-side. Reading eight cubelets from SSD took 27 ms,
and reading four cubelets took 14 ms (Appendix 1). 27 ms is an
acceptable time so if there are no other bottlenecks caused for using
eight cubelets, eight cubelets could be sent to the client to get a
better-resulting to render on the client-side if a file is stored on SSD
on the server-side.

6.2 Reconstructing cubelets to one big cube
Drawback of reading small cubelets to achieve maximum read
speed from the disk is these cubelets needs to be reconstructed
to one big cube for VTK library to be able to do rendering. This
process delays servers response speed to client when sending high
resolution image if new cube needs to rendered.

From figure 11we can see that it takes longer to reconstruct when
we have more cubelets. Let’s focus on reconstructing 1000MB data
because that’s what has been focused on for this project. There is no
huge time difference between when using 2MB cubelets and 1MB
cubelets. The reasoning behind this is cubelets are not always the
desired size. 1MB cubelets dimensions are set to be a maximum of
64x64x64, but when it comes to edges of the data, these cubelets are

Figure 10: Test results for reading client cubelets fromHDD.

getting smaller, so we end up with more cubelets than theoretical
calculations. For 1000MB data, we expect to see 1000 cubelets in
sizes of 1MB, but from the testing results in appendix 3 there are
1125 cubelets, and for 2MB there are 675 cubelets. This is the reason
speed results of 1MB are not twice of 2MB cubelets.

Reconstructing cubelets for 1MB in 1000MB data in testing took
10.6 seconds. This suggests that reconstructing the algorithm that
has been used might bottleneck the server, so a better algorithm
needs to be designed and implemented. The code design chosen for
this part of the system was not optimized enough because of the
time constraint and complexity of this algorithm.

Figure 11: Reconstructing a big cube from small cubelets.

6.3 Rendering with VTK library
Rendering volume is a computationally expensive process. From
the figure 12, the test results provide that rendering time increases
linearly to data size. Rendering 1000MB data in volumetric took
12.3 seconds. This is slower than what was expected but the issue
on the server could not found.

Rendering is only performed once a client establishes a connec-
tion and the user crops the cube. This is unlikely to happen often
and time consumed on the client-side for receiving new cubelets and
rendering them on the client-side should cover some part of it. Users



3-Dimensional Astronomical Visualisation

will be able to still use low-resolution render on the client-side to get
a better camera position, and the server will send high-resolution
images according to the new camera view as soon as rendering is
complete.

This part of the server should not be overlooked. The reasoning
for slow rendering speed must be found in the design and needs to
be optimized.

Figure 12: Volumetric rendering using VTK library.

6.4 Encoding volume render to image
Once the volumetric rendering is done on the server side, the server
sends a high-resolution image to a client. The resolution chosen
for the testing was 1920x1080 to give the user a better experience
in terms of quality. The time taken to encode the images from
volumetric data is constant over all different render sizes, as seen
in figure 13. The average time it took for the server to encode the
image is 71.9 ms (Appendix 5). This is in an acceptable time range,
but further improvement is needed by implementing hardware-
accelerated encoding.

Figure 13: Encoding Image from volumetric render.

7 SCALABILITY
This server is designed to always render data in the initialized
memory size. After sending cubelets to a client to render, the server
scales up a clients’ render dimensions according to initialized size. It
then finds the correct mipmap dataset to render from, reads the data,
and renders it. This allows the server to render any astronomical
data size. Converting bigger astronomical data sizes in FITS format
to HDF5 file format is a slow process. Our converter does not scale
quite well and it is restricted to the PC’s memory size. Also when
converting new HDF5 file format increases the storage size of the
Astronomical data by more than 100%. A better converter design
needs to be implemented if ever this proof of concept needed to be
taken further in development.

8 LIMITATIONS
Despite the beneFITS of adopting an incremental prototypingmodel
approach, there were noticeable constraints. Merging individual
prototypes was time-consuming. Once merged, new bugs and in-
consistencies were introduced into the system and due to time
constraints, these could not be fixed.

9 CONCLUSION
Our proof of concept application, 3DAVis, allows users to interact
with 3-dimensional astronomical data cubes in an intuitive manner
that would otherwise be too large to be stored or rendered on every
PC or transported over a local network in an acceptable amount
of time. This was achieved by a hybrid-rendering technique vastly
unexplored in the widely available 3-dimensional astronomical
data visualization applications, by using a client-server architec-
ture where the computationally expensive tasks are handled by the
server and the data exploration and interaction are handled by the
client. We conclude that future astronomical visualization applica-
tions, which wish to allow the visualization of and interaction with
the large astronomical data cubes currently being produced by mod-
ern radio astronomy telescopes in 3D, should employ a client-server
architecture and a similar hybrid-rendering technique.

Test results showed that some parts of this server design are
bottlenecking other parts of the system. This server design achieved
very high disk reading speeds, acceptable image encoding speeds,
and reconstruction of cubes and rendering of the cube needs to be
investigated further.

Pre-processing increased servers’ response time in some parts of
the system. Complete disk read capacity was reached, and creating
a lower resolution render for the client-side was done beforehand.
Load on the server decreased, extensively improving servers time.

Rendering with the VTK library resulted in very accurate and
good renders, but in terms of speed it did not live up to its potential.
This could be because of a fault in code design and needs to be
investigated further.

Encoding full HD images only took around 70 ms. This speed is
good enough and maintains good usability on the client-side. This
could be improved further using Nvidia’s NVENC library instead
of using the FFMPEG library.

Network latency with the addition of servers response time is
quite high in some parts of the design. Currently, the system is



Bilal Hasan Aslan

usable, however, bottlenecks need to be optimized to get better
usability from the server-client hybrid approach.

Rendering time and sending pictures scale well with this system.
Server always renders required amount of data size not exceeding
initialized memory size usage by scaling up and scaling down the
render.

Several features which were presumed to be included but were
not to due to time constraints were: better FITS to HDF5 converter,
better cubelet reconstruction algorithm, hardware-accelerated en-
coding of images on the GPU.

ACKNOWLEDGMENTS
I sincerely appreciate Prof. Rob Simmonds for being our supervisor
and guiding us throughout the project. I would also like to extend
my deepest gratitude to Dr. Angus Comrie, the lead developer of
CARTA, who assisted in answering our day-to-day questions and
directing us to related educational material to further our under-
standing of topics we were covering.

REFERENCES
[1] James Abello, Panos M Pardalos, and Mauricio GC Resende. 2013. Handbook of

massive data sets. Vol. 4. Springer.
[2] Anastasia Alexov, Pim Schellart, Sander ter Veen, M Van den Akker, L Bähren,

Jean-Mathias Grießmeier, JWT Hessels, JD Mol, GA Renting, J Swinbank, et al.
2012. Status of LOFAR data in HDF5 format. Astronomical Data Analysis Software
and Systems XXI 461 (2012), 283.

[3] David G Barnes, Christopher J Fluke, Paul D Bourke, and Owen T Parry. 2006.
An advanced, three-dimensional plotting library for astronomy. Publications of
the Astronomical Society of Australia 23, 2 (2006), 82–93.

[4] Angus Comrie, Kuo-Song Wang, Shou-Chieh Hsu, Anthony Moraghan, Pamela
Harris, Qi Pang, Adrianna Pińska, Cheng-Chin Chiang, Rob Simmonds, Tien-Hao
Chang, et al. 2021. CARTA: Cube Analysis and Rendering Tool for Astronomy.
Astrophysics Source Code Library (2021), ascl–2103.

[5] Tim Dykes, Amr Hassan, Claudio Gheller, Darren Croton, and Mel Krokos. 2018.
Interactive 3D visualization for theoretical virtual observatories. Monthly Notices
of the Royal Astronomical Society 477, 2 (2018), 1495–1507.

[6] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases. 36–47.

[7] Amr Hassan and Christopher J Fluke. 2011. Scientific visualization in astronomy:
Towards the petascale astronomy era. Publications of the Astronomical Society of
Australia 28, 2 (2011), 150–170.

[8] W A Joye and E Mandel. 2003. New features of SAOImage DS9. In Astronomical
data analysis software and systems XII, Vol. 295. 489.

[9] Jens Kruger and Rüdiger Westermann. 2003. Acceleration techniques for GPU-
based volume rendering. In IEEE Visualization, 2003. VIS 2003. IEEE, 287–292.

[10] Jessica Mink, Robert G Mann, Robert Hanisch, Arnold Rots, Rob Seaman, Tim
Jenness, Brian Thomas, and William O’Mullane. 2014. The past, present and
future of astronomical data formats. arXiv preprint arXiv:1411.0996 (2014).

[11] Peter J Quinn, David G Barnes, Istvan Csabai, Chenzhou Cui, Francoise Genova,
Bob Hanisch, Ajit Kembhavi, Sang Chul Kim, Andrew Lawrence, Oleg Malkov,
et al. 2004. The International Virtual Observatory Alliance: recent technical
developments and the road ahead. In Optimizing scientific return for astronomy
through information technologies, Vol. 5493. International Society for Optics and
Photonics, 137–145.

[12] E Rosolowsky, J Kern, P Federl, J Jacobs, S Loveland, J Taylor, G Sivakoff, and R
Taylor. 2015. The cube analysis and rendering tool for astronomy. Astronomical
Data Analysis Software an Systems XXIV (ADASS XXIV) 495 (2015), 121.

[13] Alexander Szalay and Jim Gray. 2001. The world-wide telescope. Science 293,
5537 (2001), 2037–2040.

[14] Brian Thomas, Tim Jenness, Frossie Economou, Perry Greenfield, Paul Hirst,
David S Berry, Erik Bray, Norman Gray, Demitri Muna, James Turner, et al.
2015. Learning from FITS: Limitations in use in modern astronomical research.
Astronomy and Computing 12 (2015), 133–145.

[15] Ivan Viola and Helwig Hauser. [n.d.]. Interactive visual analysis and exploration
of astrophysical data. ([n. d.]).

[16] Lee Westover. 1989. Interactive volume rendering. In Proceedings of the 1989
Chapel Hill workshop on Volume visualization. 9–16.

[17] Roy Williams and Dave De Young. 2009. The role of the virtual observatory in
the next decade. astro2010, The Astronomy and Astrophysics Decadal Survey 201

(2009).



3-Dimensional Astronomical Visualisation

Appendix 1. Disk reading speed results for client’s cubelets.

Appendix 2. Disk reading speed results for server’s cubelets.

Appendix 3. Test results for reconstruction of the cubelets.

Appendix 4. Rendering speed results on the server side.

Appendix 5. Speed of encoding render to image.


	Abstract
	1 Introduction
	2 Background
	2.1 Astronomical Data
	2.2 Volume Rendering

	3 Related Work
	3.1 KARMA
	3.2 SAO Image DS9
	3.3 CARTA
	3.4 VTK
	3.5 Requirement Gathering and Analysis
	3.6 Requirement Gathering
	3.7 Design Methodology

	4 Backend Implementation
	4.1 File Preprocessing
	4.2 Back-end disk reading

	5 Testing the System
	6 Results and Discussions
	6.1 Reading astronomical data from disk
	6.2 Reconstructing cubelets to one big cube
	6.3 Rendering with VTK library
	6.4 Encoding volume render to image

	7 Scalability
	8 Limitations
	9 Conclusion
	Acknowledgments
	References

