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ABSTRACT

Recent releases of more affordable and widely available VR
equipment is allowing more users than ever to experience
virtual reality in the commercial, educational, health and
gaming sectors. VR experiences are still prone to inducing
Simulator Sickness in its users. As VR becomes more widely
adopted it is crucial that we learn and develop methods to
reduce this SS. In this review, we look at different travel
techniques in VR and how their controls can be implemented
by using a typology outlined by Boletsis and Cedergen. We
also look at how these techniques and controls have an affect
on SS and compare what travel techniques will be useful in
which situations.

Following this, we take a deeper dive into SS itself and theories
behind its existence. We show that SS can be caused not only
by the technology itself but it can be influenced greatly by
individual differences such as gender and age. Finally, we will
look at current methods to prevent Simulator Sickness. While
this review shows there has been significant research into SS
and how to reduce it there is still more research to be done and
SS still plagues many VR experiences.
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INTRODUCTION

Virtual Reality(VR) is a method by which users have the
ability to immerse themselves in a virtual environment. It is
used in autism intervention [30][38], education[21], military
training[6] and gaming, most of which require a user to
move around the virtual environment, whether it be long or
short distances. Locomotion in the VR setting, therefore,
is a crucial aspect to a VR experience. Locomotion in VR
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simulates locomotion in the real world. Users can navigate
a virtual environment by walking, running, driving, and
even flying. These different locomotive methods could
be implemented using a variety of methods as outlined by
Boletsis’ and Cedergen’s locomotion technique typology
[10][11]. Each technique presents its own advantages and
disadvantages. These techniques can be implemented using
hardware or software controls.

In implementing locomotion into VR experiences users
often experience symptoms such as nausea, headaches
and more[64][22]. These symptoms are caused by what
researchers have titled Simulator Sickness(SS), a subset of
motion sickness. This is because symptoms of SS closely
resemble those of motion sickness. There are many factors
that cause SS each contributing to the severity of SS. Thus
it is important research be done to remove SS from VR
experiences.

Though VR technology has advanced greatly simulator sick-
ness is still an ongoing problem. SS plagues many VR ex-
periences and could be a stumbling block in VRs success.
With more advanced VR headsets becoming more widely and
cheaply available, it is crucial that the issue of SS be tackled so
users have the best possible VR experience so VR can flourish
as an emerging technology.

LOCOMOTION

Locomotion refers to movement or the ability to move from
one place to another, and is essential to VR. Within a virtual
environment, to complete tasks and navigate the virtual envi-
ronment, there are a variety of techniques to navigate from
point A to point B, known as travel techniques. Factors like
environment size, path complexity and whether the virtual
environment is an indoors environment or not[1] all contribute
towards which travel technique is chosen to be used in a given
virtual environment. Travel techniques can be sub-categorised
into how their controls are implemented.

Locomotion Controls

Before analysing the possible techniques of travel in virtual
reality, we must understand that such techniques require users
to control them. User controls can implemented using in many
different ways, either hardware based or software based. This
is shown using Boletsis’ and Cedergen’s locomotion technique
typology (Figure 1.1)[10][11]. Each type of user control im-
plementation can provide advantages or disadvantages based
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Figure 1. Boletsis’ and Cedergen’s Locomotion Technique Typology

on the virtual environment you find yourself in. We will be
looking at the leaves of the typology tree. The following table
describes the leaves of the typology tree, and are the control
implementations we will interest ourselves with.

1. Motion-based: This locomotion technique is continuous,
meaning you experience the movement from point A to
point B. Physical movement in reality translates into move-
ment within the virtual environment.

2. Room-scale-based: This locomotion technique is the same
as the above mentioned motion-based with a key difference.
The user interaction is constrained by the size of the physical
environment they find themselves in.

3. Controller-based: This technique is continuous and requires
a user to use a hardware controller (E.g. JoyStick, Steering
wheel) to navigate a virtual environment. This control im-
plementation is not limited by any physical constraints as
the user remains in place while navigating the virtual envi-
ronment, only having to use the controller and potentially
head movement.

4. Teleportation-based: This technique is a non-continuous
method, meaning a user moves from point A and appears at
point B, rather than experiencing movement from point A
to point B, like one would in a real world setting.

Choosing a control implementation depends will affect which
locomotion technique one chooses to use, and vice versa. We
will now delve into the different locomotion techniques used
in VR.

Locomotion Techniques

Walking

Walking in VR can be implemented using any of the control
implementations mentioned above. Choosing a controls
implementation for walking would be based on factors like
physical constraints in the real world and the size of the
virtual environment. Real-Walking(RW), a motion-based
technique, allows a user to navigate an environment by
walking around in the real world. This allows faster traversal
of a simulated environment and results in fewer collisions
with virtual objects in comparison to a controller-based
technique like a Moving-Where-Looking (MWL) or a
Moving-Where-Pointing(MWP) technique[65]. These
motion-based techniques allow a user to walk in the real world
to enable movement in the virtual environment. These walking

techniques can utilize re-positioning systems like a linear
treadmill, motorized floor tiles or a human sized hamster ball
[45], or a free-walking experience can be used where a user is
able to walk around a room to enable movement in the virtual
environment, without any form of limit on where they can
walk (Disregarding the size of the room).

We should also consider a proxy-gesture control imple-
mentation, where one uses gestures to navigate the virtual
environment. A common proxy gesture technique is the
Walking-In-Place technique[14] which is cheaper and more
convenient than RW[45] as one is not in need of any hardware.
This technique requires a gesture of one marching on the
spot thus emulating the action of walking which results in
movement in the real world. Other such gestures are foot
tapping, and arm swinging, or fist clenching.

Though walking controls can be implemented in a variety of
ways, developers must be aware that each method might be
prone SS. A study which tried to analyze methods to enhance
the immersion and minimize the SS of users, while focused
on walking, showed that the WIP method resulted in lower SS
levels that that of a gamepad or a hand-gesture based move-
ment implementation[40]. Another study linked higher SS
to complex virtual environments as a complex environment
requires lots of physical maneuvering for successful naviga-
tion[64]. The results suggest that proxy-gestures would be
ideal in navigating complex environments in VR in compari-
son to RW.

Teleportation

Teleportation is a locomotion technique in which a user is
transferred from point A to point B non-continuously. Tele-
portation comes with restrictions such as how far one can
teleport. In the Point-And-Teleport technique(PAT) a user is
required to point at a location in a virtual environment(point
B) using a gesture or a hardware controller[13] following
which they will be teleported to point B. The PAT showed
increased traversal times and increased number of collisions
in obstructed environments[13]. This makes sense as another
study has shown PAT to be useful when a user must traverse
long distances[12]. This shows that PAT may be more suited
to unobstructed environments and may be a useful technique
to use in large spaces with few obstructing objects. Further-
more, studies have shown PAT did not improve on simulator
sickness is comparison to the WIP technique, but remained
higher than the joystick technique. Teleportation is generally



known to transfer you instantaneously, but studies have shown
that using animations while being transferred, known as the
Jumper Metaphor which makes it look more like a continu-
ous method of travel, can increase user satisfaction and make
user feel better at completing tasks[12]. Another teleportation
technique, known as Arc-Teleportation (AT) can be used. It
is similar to PAT but it shows an avatar at point B to show
the user their final destination. The AT technique has been
shown to reduce simulator sickness in comparison to a free-
motion technique while the sense of presence in the virtual
environment decreased for AT[28].

Flight

Flying in VR can be used for many travel methods like air-
planes, helicopters and even a super hero like human-flying
and often takes on a controller-based locomotion technique.
Virtual Reality Flight Simulators (VRFS) are even used by
companies like Airbus Group Innovations to help train trainee
pilots [24] as well as the military to train helicopter pilots[6].
Oberhauser, in 2017, compiled a list of categories of how one
can interact with a VRFS[46]:

1. Fully Virtual Virtual Collision Detection: In this way of
interacting there are no physical controls. Rather a fully
virtual collision detection system is implemented, meaning
that the software itself detects when one interacts with ob-
jects in the virtual environment[4]. A downside is that this
method does not provide haptic feedback making it harder
for a user to use the VFRS.

2. Simple Haptic Feedback: In this way of interacting a user
has minimal haptic feedback. This slightly improves usabil-
ity of a VFRS.

3. Advanced Haptic Feedback: In this way of interacting a
user is provided with a hardware version of the simulator
environemnt. Thus when touching controls, they do so in
the real world too. This makes the VR experience way more
real to the user but has a downside in that the VR experience
becomes more expensive and less flexible, as when the VR
environment is changed the hardware needs to be change
too, to the exact degree the VR environment is changed.

Thus from above we can see that as you generate a more
advanced and complicated haptic feedback system, the less
flexible the VR experience becomes.

Research results show that the airplanes are harder to con-
trol with VR, with studies showing button hit rates as low as
77%|5] with the deviations of heading direction, altitude and
runway alignment all larger than that of a classic hardware
flight simulator(CHFS)[47]. Thus, using a VRFS results in
pilots needing more time to handle control elements of the
airplane. This same study also showed that flight SS was sig-
nificantly higher than that of a CHFS as shown by the factors
of SS. The same study showed that, importantly, after an ac-
climatization phase, pilots were able to complete flights safely
and reliably.

Another VRFS that was used to train helicopter pilots was

the Fused Reality(FR) system [6], a high fidelity helicopter
flight simulator. It was used to train Navy pilots. This allows

them to practice tasks like hover position control during rescue
missions, helicopter in flight refueling procedures and hoist
control and cargo hook release.

Driving

One of the most common forms of transportation in the real
world is driving, whether it be in the form of a personal car,
taxi, bus, or even construction vehicles. Just like the other lo-
comotion methods mentioned above driving controls are often
implemented using a controller-based technique. Driving in
VR raises an obvious question. Can VR be used as a training
mechanism for drivers?

It has been shown that younger users find virtual reality driv-
ing simulators(VRDS) more comfortable and usable[58].The
same study showed that there is a direct correlation between
comfort and the amount of simulator sickness one experi-
ences[58]. This shows us that to potentially reduce simulator
sickness in a driving virtual environment one may look to
increase comfort for users, older and younger. Other studies
have shown users to have an immense sense of presence in a
virtual reality driving system where they were placed in a real
car, and with a VR headset immersing the user in the VRDS
meanwhile there was an experienced ghost driver (someone
driving for them) to make the experience sound and feel more
realistic[23]. Thus, natural sound and feel could contribute to
immersion in a VRDS. This is known as congruence between
the physical and virtual world. With this immersion and a pro-
fessional driving imitating the actions of the user they are able
to practice difficult/dangerous scenarios in a safe environment
and thus develop ones driving skills in a safe environment,
even though the virtual scenarios could be dangerous.

VRDS have been shown to increase driver adaptability to a
virtual environment[66]. This was shown by getting drivers to
do multiple laps around a circuit and used performance data
to show that drivers quickly became more comfortable in a
virtual environment and went back to their general driving
tendencies, as they would in a real world environment.

There are also fields studying autonomous driving[62] and
anxiety management[37] using VRDS.

SIMULATOR SICKNESS

Simulator sickness(SS), also known as cybersickness[9], is
often experienced during a virtual reality experience for a
variety of different reasons. SS resembles motion sickness in
its symptoms. SS occurs when ones visual system perceives
motion, meanwhile the vestibular system indicates that the
body is not moving. There is much research being done on the
causes of SS which will be discussed below. Older research
has suggested three main theories explaining the reason why
humans experience SS.

Theories of Simulator Sickness
The causes for simulator sickness are not entirely known, nor
confirmed. The following theories have been proposed.

1. Sensory Conflict Theory
2. Postural Instability Theory
3. Poison Theory



The Sensory Conflict Theory was created at a time when there
was no understanding of motion sickness’s mechanisms. It
suggests that sensory theory can be modelled mathematically
thus stating that if stimuli from the outside environment are
being perceived differently by different senses, motion sick-
ness will ensue and symptoms will occur[48]. the Postural
Instability Theory, as shown by the paper *An Ecological The-
ory of Motion Sickness and Postural Instability’[54], states
that an animal experiences motion sickness in situations in
which they do not know how to maintain postural stability.
This theory also claims that sensory conflict does not exist,
and stands in direct contradiction of the first theory. The final
theory, Poison Theory, rather than explaining why SS takes
place from a physical point of view, it explains why it happens
from an evolutionary point of view. It is based on the idea that
SS provides similar symptoms to that of ingesting poison, thus
if an incorrectly perceived environment could have been due
to effect of poison in the past, symptoms could show[67].

Measuring Simulator Sickness

In doing VR research it is essential there be a way to
measure SS of a VR experience. If there were no way to
measure SS we would develop VR applications which could
have potential negative affects on its users which is simply
unethical. Measuring SS can come in two forms: Subjective
and Objective.

Earlier research has made the use of questionnaires, a
subjective measure of participants SS. [?]The question arises,
is there a more objective and accurate way to measure SS? In
this section we will analyze existing methods, both subjective
and objective, to measure SS.

Subjective

In 1968 research led to the Pensacola Motion Sickness Ques-
tionnaire(MSQ) being developed[31]. The MSQ did not do
any form of factor analysis and therefore it did not take into
account the different factors of motion sickness[35] and for
this reason it is not an accurate measure and therefore not used
in measuring motion sickness nowadays.

The Simulator Sickness Questionnaire(SSQ), developed
by Kennedy et al. in 1993[55], is the most common tool
for measuring simulator sickness[26]. One of the main
aims of the paper was "to provide a more valid index of
overall simulator sickness severity as distinguished from
motion sickness". It does this by asking a user to score there
symptoms, of which there are 16 symptoms to score, on a
scale from 0-3. The symptoms are broken down into three
categories: (a) Oculomotor, (b) Disorientation, and (c)Nausea,
though the participant doing the questionnaire is not always
aware of this. Finally, after evaluating the questionnaire,
the SSQ provides an overall score to describe a level of
SS a participant experiences. One must consider that VR
technology has changed dramatically over the last 20 years,
thus it is important to revisit whether this is still a useful
measure of SS[7]. A more recent study done in 2020 indicates
that the SSQ does not have such validity in comparison to new
SS measuring methods, and cannot detect subtle changes in

SS between VR environments like the newer methods can[60].
One should also note that the SSQ was developed using an

entirely male sample, where we already know women are
susceptible to SS[2][22][8], thus the SSQ may not be accurate.
The SSQ was also developed using a flight simulation[55],
thus limiting its scope and testing to only one VR experience.

The SSQ was developed to measure sickness in simulations
rather than VR[55] but has been used for most studies.
More recently, a measure of SS was developed with the
intention of measuring sickness in VR, rather than any
general simulation, known as the Virtual Reality Symptom
Questionnaire(VRSQ)[3]. There is a problem in that when
the questionnaire was developed the participants were
watching a video rather than directly interacting with a virtual
environment. This brings us to question the validity of the
VSRQ in interactive VR experiences. Though some studies
have used the VSRQ to measure SS, it has not be widely
used. The VSRQ differs from the SSQ as it tends to focus
on eye-strain[3] and is rather composed of two components
rather than three: Oculomotor and disorientation. In the
development of VSRQ, it was shown that nausua contributed
less than the other two factors[34], and thus nausua was left
out as a factor. The VSRQ sees VR Sickness as a subset of
SS, thus this questionnaire was developed.

Objective

Though the SSQ is more widely used, it is based on the opin-
ion on the participants and participant report back and can
therefore be inaccurate. This begs the question, is there a more
accurate/precise way we could measure SS? The idea of using
physiology to determine a measure for SS has been suggested
in older research[16]. Some studies have even used physiologi-
cal measures like blink rate and heart rate to determine SS[35].
This could be extended further to see if other physiological
measures indicate severity of SS.

Causes

Individual Differences

We now know from research that there individual differences
play a role in whether a person will experience SS, more
specifically the severity of SS. Results from multiple stud-
ies have shown females to be more susceptible to SS than
men[2][22][8]. Another contributing factor to simulator sick-
ness is age which Park et al. suggest may be due to an older
persons slower visual processing[27][49]. A more recent study
has challenged this idea and has shown that younger people
experience SS more than the older[57]. These direct con-
tradictions indicate more research is necessary to come to a
scientifically valid conclusion.

Latency

Translating movement from the real world into movement in
a virtual environment is a difficult task. Latency, the time
difference between a users actions in real life reflecting in
the virtual world, if high enough can contribute towards SS.
Latency is caused by either the hardware not being able to cope
with the developed software, like an head mounted display, or
poorly designed and badly optimised software. An older study
showed increased latency is directly correlated with increased



SS[19] and other studies have show that increased latency
specifically affects disorientation rather than inducing nausea,
the nausea factor of SS[63]. Interestingly though, we can look
into latency and find that it is the frequency of latency that
affects SS, not its amplitude[36]. The study that showed this
even had participants pull of out the experiment early from the
SS effects on them.

Flicker

Flicker, shown by older research, has been clearly cited as a
main cause of simulator sickness[53][43]. Though hardware
has improved and flicker is not as big an issue as it once was,
it can affect individuals differently[53], thus caution must be
taken in which hardware is used for VR applications.

Field of View(FOV)

The field of view is the range of the virtual environment that
one can see when immersed in a VR experience. Thus, it is
the maximum visual angle of a VR device. We can change the
FOV through either the hardware or the virtual environment
itself. To reduce the FOV has been shown to reduce SS. We can
do this by distancing a user from the display or by changing
the size of the VR display[61].

Exposure Time

Research from as early as 1994[39] has shown that with in-
creased exposure time to a VE, symptoms tend to get more
severe. This research was further backed up by research done
in 1995[52] and 2000[33]. Though this research is old it is
very important and suggests that when designing a VR ex-
perience, one should keep task completion limited to certain
lengths of time, especially if there are other factors contribut-
ing towards VR sickness, all confounding on one another.
More recently we have been guided as to how long these tasks
should take. Exposure time in VR from times between 1 - 7
minutes tend not to induce SS, and are thus optimal times for
task completion [42]

Realism

There has been little research done on the affects of realism
on SS. A recent study from 2018[50], contrary to what one
would think, shows that high realism actually causes greater
levels of simulator sickness.

Prevention Methods

It is important that in developing VR applications that devel-
opers ensure they try and reduce SS as much as they can. In
this section we will discuss current methods, and emerging
methods, on how one can prevent SS in a VR application.

Rest-Frames

The rest frame hypothesis, as proposed by Prothero [51], states
that a person uses a reference frame, a coordinate system, to
orientations, spaces and positions. The idea is that a person
chooses a rest-frame, a frame that will remain stationairy and
essential ground the user in the virtual environment, and uses
the reference frame to instantly reduce SS. In one study a
virtual nose was used as a rest frame and showed a significant
reduction is SS[69] and other studies have shown rest frames
to reduce SS [15] by exposing undergraduate students to a rest
frame condition and a non rest frame condition. There is some

research contradicting this with participants stating that the
rest frame caused more chaos and confusion[25] indicating
that potentially more research is necessary to accurately show
that rest-frames reduce SS.

Motion Platforms

According to Sensory Conflict Theory, the main driver of SS
is the direct contradiction between the visual and vestibular
systems[48]. Thus, one could infer that by tricking the vestibu-
lar system into experience what the visual system experiences,
one could reduce SS. A study by A.K.T.Ng et al looked into
this idea [44]. They used stationary, visual-vestibular syn-
chronous, and self referenced set ups to test all three conditions.
The synchronous condition resulted in a lower overall SSQ
total in comparison to the other stationary and self-referenced
set ups, with an increased amount of joyfulness and lowered
amount of misery reported by the participants.

Adaption

It has been found that with repeated exposure to a motion sick-
ness inducing environment that motion sickness can decrease
[32][68][29]. It therefore stands to reason that we could test
this for SS in VR as SS is simply a subset of motion sickness.
This was proven to be true in a study from 2013 [20] where
participants, the lag group, were given a 10 minute acclima-
tization period in a driving simulator. This group showed
lower scores in their SS questionnaires. This indicates that
there might be a necessity for VR applications to come with
compulsory 10 minute acclimatization application within the
major VR application.

Natural Preventions

Not all SS prevention methods are hardware and software
based. Humans have to the power to reduce SS by controlling
room airflow [17] and controlling breathing [56].

Visual Techniques

As discussed earlier, reducing FOV can reduce SS. This has
been shown in many studies [41][18][59]. Therefore in devel-
oping VR applications one needs to find a balance between
between a wide FOV for immersion without making users
experience SS.

CONCLUSION

In this literature review we looked extensively into VR
travel methods catergorized as per Boletsis’ and Cedergen’s
locomotion technique typology [10][11]. We then sought
how certain travel methods in certain VR experiences, such
as complex versus simple environments, may induce SS.
Following this we looked into the definition of SS and the
theories as to how it is induced. Finally, we looked at the
causes and preventions of SS.

It is clear that after extensive review of the literature there is
still much research to be done in all the above fields. Individual
factors have been shown to contribute hugely towards how a
person experiences SS and well as the technology a person
uses. Not only individual differences, but the VR technology
itself contributes greatly towards SS and thus there is more to
studied as to how we can decrease SS through these channels.



Many of the studies analyzed above had contradicting studies
proving opposite results [27][49][57].

In conclusion, with these study contradictions there is place
for more research to be done into the prevention techniques of
SSin VR.
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