

Generating Natural Language isiZulu Text from Mathematical

Expressions

Shannon Smith
 Department of Computer Science

 University of Cape Town

May 2020

ABSTRACT

There is a lack of mathematical verbalisation, specifically in

isiZulu, for the visually impaired. The problem can be solved by

generating natural language descriptions of math expressions, so

they can be used as input for existing text-to-speech systems.

Current realisation tools do not apply to isiZulu because of the

language’s agglutinative morphology and lack of resources. We

discuss the approaches to natural language generation and see that

the most appropriate realisation method for isiZulu is grammar-

infused templates. Previous work done in developing a controlled

natural language of isiZulu shows it can be accomplished through

verbalisation patterns and a context-free grammar for the verb.

Previous work in verbalising mathematical have used template

and grammar-based approaches and translated the ambiguous

LaTeX expressions into a less ambiguous MathML format.

However, there is still room for improvement for LaTeX to

MathML translation.

KEYWORDS

Natural language generation, Controlled natural language, Niger-

Congo B languages, isiZulu, Verbalisation of Mathematics.

INTRODUCTION

There is a global effort to improve the availability of online

textbooks for visually impaired learners. In South Africa, there are

already systems in place to generate text-to-speech in most of the

home languages. The South African Centre for Digital Language

Resources (SADiLaR)1 researches and develops all aspects of

natural language processing – automatic speech recognition, text-

to-speech systems, grammar, and spell checking and much more.

However, there is a gap in the verbalisation of mathematical

expressions in South African languages. Text-to-speech systems

can convert text into synthesized speech, but they can only read

plain text and not mathematical formulae. Natural language

generation (NLG) is critical in the solution to this problem. The

mathematical formulae can first be translated into fluent text

descriptions, which is then fed into a text-to-speech system, that

visually impaired students can hear. NLG is a subfield of

computer linguistics and artificial intelligence [4], that maps some

input data to natural language text. This input data depends on the

application, but some possible inputs include images, graphs,

signals, ontologies, or numeric data [1]. It is used for a range of

systems, the most common include generating reports: weather

reports, financial reports, sports reports, news reports; dialogue

systems; summarisation of text; and language translation. These

systems all have different underlying methods/architecture, as

their input can vary immensely but their overall purpose is the

same: the automation of translating data into understandable text

for human reading. The underlying methods are language

dependent and must accommodate for the fact that languages have

different linguistic structures. Existing NLG frameworks and tools

are suited to Indo-European languages and fall short for handling

other languages with different grammar structures.

The biggest issue for developing applications for South African

languages is the lack of resources, like corpora. IsiZulu is one of

South Africa’s 11 official languages, it is a Niger-Congo B

language, in the group of Nguni languages. The first isiZulu

grammar was published by Grout (1859) and then much later the

first dictionary by Colenso (1905) [15]. Niger-Congo languages

share a lot of their linguistic structure, meaning the languages

closely resemble one another. Although isiZulu is spoken by

majority of SA (23% of the population), it is under-resourced in

software applications [2] and there is much to be done to improve

resources for isiZulu students. Currently there are no systems in

place to translate mathematical formulae into isiZulu natural

language text.

Therefore, the goal is to successfully bridge this gap for visually

impaired isiZulu learners, so their math literacy can be improved.

This can be done by building an NLG system that generates

understandable text descriptions of mathematical expressions in

the isiZulu language. There is a massive repository of LaTeX

mathematical formulas on Wikipedia that can be cleaned and used

as input for our NLG system.

This review discusses the morphology of isiZulu and proposes

which of the NLG designs will be most suited to its complex

grammar, specifically geared towards the translation of math

expressions. The paper documents what has been done before in

natural language generation in isiZulu and verbalisation of

mathematical expressions, and assesses their strengths and

weaknesses, so we may address any gaps.

1For more on SADiLaR: https://sadilar.org/

1 BASICS OF ISIZULU GRAMMAR

The morphology of isiZulu is rich and complex - the reason for its

complexity is the agglutinative nature of Niger-Congo B

languages [2]. Unlike Indo-European languages, which express

the tense, negation etc. in separate components, agglutinative

languages use prefixes and suffixes. In its simplest form, the

structure of an isiZulu sentence is subject-verb-object. In the next

two sections, we will briefly outline the noun classes and the

complex verb structure.

1.1 The Noun Class

Like other Nguni languages, each noun belongs to a noun class. In

isiZulu, there are a total of 17 noun classes, with a single and

plural form in each class. The noun class is what dictates the

agreement between the words in a sentence. The structure of a

noun consists of a prefix and a stem. The prefix denotes if the

noun is single or plural, and which noun class it is attached to.

Sometimes a prefix has a pre-prefix (also called an augment).

1.2 The Complex Verb

The isiZulu verb structure consists of a core called the verb root

(VR), which is extended with prefixes and suffixes. The prefixes

reflect subject and object concords, tense/aspect, mood, and

negation. IsiZulu verbs are very complex in that they have five

different tenses: remote past, recent past, present, immediate

future, remote future. On top of the prefixes, there are also

suffixes that represent stative, applicative, reciprocal, and passive

verbs. Finally, the verb ends with a final vowel depending on

negation [11]. The complex verb structure with all its affixes is

shown in (1).

(1) <NEG> <SC> <T/A> <MD> <OC> <VR> <Extension><FV>

Where, NEG=negative, SC=subject concord, T/A=tense/aspect,

MD=mood, OC=object concord, VR=verb root, FV=final vowel.

2 DESIGNING A NATURAL LANGUAGE

GENERATION SYSTEM

(Gatt and Krahmer, 2018) discusses three approaches to NLG

architecture: Modular, Planning-based, and Other Stochastic

approaches. A modular architecture is a system designed so that

the individual modules perform their own clear-cut tasks [1]. The

planning-based approach is more unified across the tasks. The

stochastic approach requires a sufficient data resource to build the

statistical models, which a low-resource language like isiZulu

does not have. All three architectures roughly follow the same 6

tasks: Content determination, text structuring, sentence

aggregation, lexicalisation, referring expression generation (REG)

and realisation.

A traditional modular architecture is (Dale and Reiter’s, 1997)

pipelined approach (see figure 1.). There are three stages, that

each perform their own specific tasks [4]:

1. Text planning → Content determination and text structuring (or

discourse planning).

2. Sentence planning → Sentence aggregation, lexicalisation and

REG.

3. Linguistic Realisation → Realisation.

Figure 1: The Pipeline Architecture of a Natural Language

Generation System (Reiter and Dale, 1997)

Our project will involve developing the sentence planner and the

linguistic realiser of the pipeline. The primary task of the text

planning stage is content determination, that is, deciding what

information we want to convey from the given data. This is

dependent on the application and is mostly filtering or

summarizing, however, this task is not needed for this project.

The content for our NLG is determined by the mathematical

expression, so no filtering is necessary.

The sentence planner takes the output of the text planner, ‘what to

say’, and decides how to order these words into a structured

sentence, ‘how to say’. The first task is sentence aggregation, the

phase in which sentences are made more natural sounding by

removing any redundancy, and similar subjects are grouped

together into one sentence. Next is the lexicalisation task, where

the system can decide on sentence variation. For example, in the

context of math verbalisation, there are several ways to word an

expression: 𝑎2 + 𝑏2 = 𝑐2. This can be worded as “ 𝑎 to the power

of 2 plus 𝑏 to the power of 2 equals 𝑐 to the power of 2” or “The

sum of 𝑎 squared and 𝑏 squared equals 𝑐 squared”. It depends on

the domain of the system whether sentence variation is important

or not. The final task of the sentence planner is REG, this is where

the system identifies the domain entities (also called domain

concepts) and decides on which words/phrases it will use to

represent these entities.

Linguistic realisation is the final step of generating a

grammatically correct and complete sentence after the choosing

the appropriate words and phrases. This entails filling in any gaps

that were not present in the input, such as adding articles,

prepositions, auxiliary verbs, and punctuation. The realiser

ensures agreement of nouns, verbs, and tenses, by following some

form of morphological rules. The set of tasks performed during

sentence planning and realisation is called ‘tactical generation’.

There are many approaches to realisation [1]:

1. Templates

2. Grammar-based systems

3. Statistical approaches

4. Grammar-Infused Templates

Data
Text

Planner
Text Plan

Sentence
Planner

Sentence
Plan

Linguistic
Realiser

Surface
text

2.1 Templates

This is an early technique of filling in the slots of a predefined

sentence with data entries [1]. An example of a template for a

basic addition equation is:

<$OP1 plus $OP2 equals $OP3>, where OP1, OP2 and OP3 can

be substituted for any operand. It can generate a sentence such as,

“Two plus three equals five”.

In this approach, lexicalisation becomes obsolete, instead the

content determination task will choose an appropriate template.

There may be template alternatives to choose from, to simulate

language variation. There are many advantages to templates if the

application’s domain of inputs is small and syntax variation is not

needed. They are much easier to understand, faster to construct

and yield similar performances to more complex models [6]. They

also have a predetermined quality that is decided on by the

developer, avoiding any grammatically incorrect outputs.

However, this approach is not appropriate if linguistic variation is

important or if the domain is large – as the time of constructing

these templates by hand is significantly increased [1]. It is also

language dependent. For languages like English, templates are a

sufficient solution, but for more complex morphologies, templates

do not suffice [9].

2.2 Grammar-based Systems

These systems construct sentences based on the grammar rules of

the natural language being used. These grammars are usually

restricted in some way to make them easier to develop – full

natural language grammars are usually under-resourced and

complex. Grammar-based systems require a great deal of detail

specific to the language, therefore, they do not work well as

“plug-and-play” modules [1]. This issue has prompted the use of

realisation engines that give users morphology APIs. There are

several of these programming tools for defining natural language

grammars, like Grammatical Framework (GF) and SimpleNLG.

GF is a popular open source grammar engine for multilingual

grammar applications (it supports around 30 languages), using

functional programming. It needs a grammar library as a resource,

so it will not work for under resourced languages like isiZulu [14].

Another issue for modelling isiZulu with the GF engine is that GF

can only handle grammatical structures similar to English, hence,

there has not been any implementations of isiZulu grammar using

GF.

SimpleNLG is an NLG realisation engine based on the

architecture in figure 2. It has a Java API, is well documented and

was originally developed for English. The benefits of using

SimpleNLG is that it is now portable for other languages and

allows simple implementation of linguistic operations [12].

SimpleNLG is not applicable to Niger-Congo B languages, as its

encoding was made to suit Indo-European languages (like

English).

Although grammar-based systems may be more challenging to

develop, they have a few advantages over templates. The

advantages of using these realisation engines is that they are

domain independent and the quality of the output is higher than

templates [1]. Maintainability and making changes to the system

is also significantly easier, templates require being rewritten to

handle any change [6]. The short-comings of these realisation

engines are that they are not suited for languages not structurally

similar to English; and they require a corpus of the grammar’s

rules, which may not be available for low-resourced languages,

like isiZulu.

2.3 Statistical Approaches

NLG can also be accomplished by training a statistical model

using machine learning. A stochastic approach during realisation

is very promising for future NLG development [1]. NLG was not

a popular approach in the past as the techniques are

computationally expensive (text alternatives are generated in full

before the stochastic model selects it) and the output grammar was

not good quality [18]. (Gatt and Krahmer, 2018) describes two

approaches to statistical methods, (1) A set of grammar rules

generate a variety of text alternatives, then a single text is chosen

as the optimal realisation by a statistical model. (2) Instead of

being introduced at a later stage, a statistical model is involved

during the generation decisions, hence, removing unnecessary

generation of alternatives. The advantage of (2) is that it is not as

computationally expensive as (1). The (1) approach is seen in the

HALOGEN/NITROGEN systems (Langkilde and Knight), relying

on statistical knowledge from a corpus in the form of n-grams.

(Belz, 2008) developed a system, pCRU, that uses the (2)

approach, to generate weather reports. The pCRU system uses

context-free grammars (CFG) to formalise the language, then

generates the most statistically likely derivation of a sentence,

based on some corpus. The statistical model drives which

generation rules of the CFG are expanded, making sure the

optimal text is derived. Belz evaluated her system against

traditional-handcrafted pipelined systems, and HALOGEN-style

systems. Belz concluded that there is an improvement in

development time and reusability for pCRU. There was also

evidence that probabilistic generation is more efficient than the n-

gram techniques used post-selection in HALOGEN-style systems.

However, the disadvantage of both stochastic methods is that they

rely on corpus-based statistical information. Therefore, to use

these statistical methods, we need a comprehensive data resource

(such as a corpus), which is not applicable for isiZulu.

2.4 Grammar-infused Templates

The leading approach to NLG is the use of templates with perhaps

a few simple rules for template selection. For example, an English

system needs a rule to select a template with the article ‘an’

instead of ‘a’ if the object noun starts with a vowel. However, as

the complexity of a language increases, it becomes infeasible to

use this method – isiZulu has 17 noun classes each with their own

pre-fix and the verb conjugation needs to agree with both the

subject and the object in the sentence, meaning there would have

to be a rule for how each class effects the verb. One solution is to

attach the language’s grammar rules to the templates.

We now see that there are two kinds of templates – the traditional

templates that have predefined words and fill-in slots; and

templates that use a natural language grammar on top of the

templates (introduced as grammar-infused templates [17]). This

can improve the grammar quality of the generated text and enable

more flexibility without needing to use a complete grammar-based

realiser like GF. Grammar-infused templates are useful when

modularity is needed, as they allow for detachable grammars and

the grammar can be reused across domains. This is significant

when developing for low-resourced languages, like isiZulu, as

existing grammar rules are scarce and need to be reused.

(Mahlaza and Keet, 2019) developed a model for the various ways

templates and grammar rules can be combined, based on their

relationship. There are two types of relationships, embedding and

attachment (either partial attachment or compulsory attachment).

A grammar rule is embedded if the grammar rule is deleted when

the template is deleted; a grammar rule is attached if it remains

after a template is deleted. Partial attachment means grammar

rules are only attached to certain templates; compulsory

attachment means there must be at least one rule attached to each

template. An example of embedded and partial attachment is seen

in section 3.2, (Keet and Khumalo, 2017).

These hybrid systems enable the NLG system to use complex

grammar rules where it is needed and simpler, less expensive

templates where it is not [6]. This combines the benefits of both

approaches – templates are simple to construct but lack the ability

to handle complex grammars; full grammar systems are expensive

to develop but can accommodate for grammar complexity.

3 CONTROLLED NATURAL LANGUAGE OF

ISIZULU

The biggest challenges we face in developing a CNL for isiZulu is

that the language is under-resourced, under-researched and has a

complex morphology. The complexity of the isiZulu morphology

makes it difficult to present it as a controlled natural language

(CNL) for the NLG system [2]. The agglutinative nature of the

noun class and verb does not allow for implementation with

existing verbalisation tools. In this section we will detail how

isiZulu can be formalised as CNL so that an NLG system can use

it. Previous works done in this field are evaluated and discussed in

the context of what methods will/will not be suited to isiZulu.

3.1 Ontology Verbalisation

A CNL is a subset of a natural language that has restricted

grammar or vocabulary. It is a way to formalise and

unambiguously represent a language so a machine can understand

it. An ontology provides a way to do this – it formalises

knowledge as “concepts” and models the relationships between

these concepts. Ontology verbalisation is used in NLG to generate

text from these knowledge bases and aims to be domain

independent. Web Ontology Language (OWL) and other Semantic

Web logic-based languages are becoming the preferred syntax for

NLG systems, due to their tool infrastructure [10]. For example, a

popular CNL using OWL ontologies, in English, is Attempto

Controlled English (ACE) (Fuchs et al., 2010). It is a restricted

subset of the English language that can be automatically and

unambiguously represented by first-order logic.

3.2 Developing Grammar Rules for Agglutinating

Languages

Previous works done for generating text in Niger-Congo

languages have used pattern-based methods for verbalising

ontologies and a Context-Free Grammar (CFG) to represent the

verb, in isiZulu [2][9][11][19], Runyankore [14] and isiXhosa

[5][21].

(Keet and Khumalo, 2017) showed that due to the elaborate rules

of the noun classes and verb conjugation, using templates on their

own would not be feasible and a more detailed grammar-based

system is needed [2]. They approached the problem of

knowledge-to-text in isiZulu with verbalisation patterns. The

verbaliser uses a grammar-infused template, with embedded rules

for agreement between words and partially attached rules for noun

pluralisation [19]. The patterns verbalise universal quantification

(“For all”/”each”), existential quantification (“at least one”),

conjugation (“and”), subsumption (“is a”) and negation (“not”)

[9]. The logic foundation used for isiZulu was OWL 2 EL (A

W3C standard of OWL 2) – even simple verbalisation using OWL

2 EL requires a grammar engine for isiZulu’s complex grammar

[9]. They only accommodated for one of the five tenses (present

tense), but this should be enough for generating math descriptions.

In [11] the isiZulu verb is represented as a CFG and their

production rules cover subject and object concords, negation,

present tense, aspect, and mood. To evaluate the grammar quality

and understandability of the verbalisation patterns, a survey was

conducted on 32 isiZulu speakers. The participants indicated that

their outputs were mostly ‘grammatical and acceptable’ for

simpler sentences, but ‘grammatical and ambiguous’ for more

complex sentences. They concluded that the ambiguity could be

from the participant’s varying dialects. Overall, the results

revealed that the generated text was grammatically correct, though

sometimes tricky to understand. The grammar rules developed by

(Keet and Khumalo, 2017) are limited but applicable to a variety

of domains.

(Byamugisha, Keet and DeRenzi, 2016) developed a verbalisation

pattern for Runyankore (A Niger-Congo language spoken in

Uganda), by bootstrapping from the existing isiZulu patterns [14].

Because they are from the same family of languages, they have

similar structures – the verb and noun class affect sentences in the

same way. Therefore, the isiZulu verbalisation patterns could act

as a base for Runyankore. This bootstrapping approach greatly

reduces time for developing grammar systems and helps under-

resourced languages like Runyankore.

(Mahlaza and Keet, 2019) took advantage of the linguistic

similarity between isiXhosa and isiZulu’s grammar. They

developed CFG rules to generate verbs for weather reports in both

isiZulu and isiXhosa (the two languages shared 42 of the rules).

Since they concentrated on verbs only, they were able to cover

more than one tense, including past, present and future. The

evaluation of their CFG showed that the syntax and semantics of

the generated strings were mostly correct for both languages. A

corpus was developed, however, their corpus is specific to a

weather domain and does not apply to mathematics.

3.3 Corpora

There is a small isiZulu Definite Clause Grammar (DCG) and

parts-of-speech (POS) tagger, Ukwabelana (Spiegler et al, 2010)

[15]. The DCG does not cover the same complexity of the verb

that [11] does, but covers more POS. The Ukwabelana is an open-

source isiZulu corpus that contains 100 000 word-types

(morphologically labeled words) and 30 000 POS tagged

sentences, from the isiZulu Bible. It is the most comprehensive

corpus available but it’s outdated and has limitations. The Human

language technologies (HLT) project is currently working on a

corpus for African Languages.

4 VERBALISATION OF MATHEMATICS

4.1 The Syntax and Semantics of Mathematical

Expressions

Mathematics has its own specific, scientific language, that is a

subset of a natural language. Just like any natural languages, the

linguistics are tricky to formalise – sentences can be phrased in

many ways and they may contain ambiguity. This section

addresses the challenges in verbalising mathematical expressions

and what solutions are possible.

Currently there exists thousands of LaTeX formatted math

formulae on Wikipedia, (over 350 000) that can be translated into

text descriptions. Below is an example of a LaTeX formatted

formula [12]:

\gamma =\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}
Which represents this expression:

𝛾 =
1

√1 −
𝑣2

𝑐2

Blind people can already access these mathematical expressions

but listening to the LaTeX format is inefficient for several reasons

[13]. It requires some knowledge in LaTeX, it is slow to listen to,

it sounds unnatural, and is error-prone due to its typographical

nature. The typographical language of LaTeX leaves ambiguity

for some expressions, like 𝑓^ {-1}.

𝑓^ {-1} can be read as:

(1) the variable 𝑓 to the power of -1.

(2) the inverse of function 𝑓.

These LaTeX formatted formulae can be extracted, translated into

a less ambiguous format, and inputted into an NLG system to

produce a more natural sounding text description. A way to

unambiguously represent the presentation and semantics of

mathematics is through Mathematical Markup Language

(MathML), a W3C standard format. MathML is an XML

application for describing mathematical expressions - more

specifically, the semantics of the expression are handled by

Content MathML (CMML). There are a few LaTeX to MathML

translators, like LaTeXML (Miller, 2007) and SnuggleTex. Below

is an example of a LaTeX to MathML conversion by LaTeXML

that solves the ambiguity of the inverse function problem. Where

(1) is the inverse function and (2) is the exponent of -1; ci tags are

variables and cn tags are numbers.

(1) <math> (2) <math>
 <apply> <apply>
 <inverse/> <power/>
 <ci> f </ci> <ci> f </ci>
 </apply> <cn> -1 </cn>
</math> </apply>

</math>

(Stamerjohanns et al, 2009) conducted a comparison study on five

different LaTeX to MathML convertors. The features that were

tested included: documentation, coverage, percentage of

incomplete conversion, percentage of errors, percentage of

successful conversion, and quality. Out of the 5 convertors,

LaTeXML scored well in the coverage category, with the highest

rate of successful conversions (89%), and the third lowest

percentage of errors (35%). It also had a higher scoring quality of

the resulting output and had an advantage of ease of use.

There is also the issue of ambiguity in the precedence of

expressions, when reading the expression out loud.

𝑥 +
𝑦

𝑧
 is read aloud as “x plus y over z”. To a listener, this could

be interpreted as
𝑥+𝑦

𝑧
. (Mazzei et al, 2019) suggested a solution of

vocalising brackets, “x plus open parenthesis y divided by z close

parenthesis”. (Ferres and Sep´ulveda, 2011) suggested pauses

instead of brackets. As well as being ambiguous, sentences can

also be phrased differently. As described in section 2, during the

lexicalisation task the NLG system handles the choice between

alternative words. The same applies to mathematical expressions,

“a quarter” is synonymous with “one over four”.

For the NLG system we will need an isiZulu lexicon with all the

vocabulary for math verbalisation. As far as we know there is not

such a lexicon available, so we need to compile one ourselves.

The largest corpus available is Ukwabelana, which is not

applicable to mathematics since it is sourced from Biblical stories.

Phrases like “a quarter”, “a logarithmic function”, “x cubed”, “the

integral of” and “the square root of” are examples of what is not

in the Ukwabelana and needs to be translated into isiZulu.

4.2 Natural Language Generation of

Mathematical Expressions

There has been work done in mathematical verbalisation using the

NLG realisation approaches discussed in section 2 for Spanish

[12] and Italian [13].

(Ferres and Sep´ ulveda, 2011) approached the problem of math

verbalisation in Spanish, with a template-based system, called

MathAcc. When deciding on the wording of the templates, they

surveyed a group of 60 people, asking them to describe

expressions that were given to them from several mathematical

categories. (Ferres and Sep´ ulveda, 2011) then chose their

template’s wording based on the most popular response in each

category. They cleaned the LaTeX formulae from Wikipedia into

a CMML format, with the tool SnuggleTex. There were some

shortcomings, they could only verbalise formulae for which there

is a LaTeX to CMML translation. There was failure to translate

some works (like the binomial coefficient), so they only generated

descriptions for around 66% of Wikipedia’s formulae. Of the

generated test outputs, roughly 10% were incorrect. Their findings

concluded that a better translation of LaTeX to CMML or another

format completely, would have yielded better results. One fault

with the paper is that they never evaluated their results with

visually impaired users, and instead used automated evaluation.

(Mazzei et al, 2019) used a grammar-based system to generate

Italian descriptions of math expressions, using SimpleNLG

(described in section 2.2) for the realisation engine. They

translated the LaTeX formulae into CMML using LaTeXML.

They organized the expressions as following: treat all numbers

and variables as nouns, and all operators as verbs.

• Relational operators as copula sentences (“a is equal to

b”)

• Algebraic operators as declarative sentences (“a plus

b”).

• Logical operators as conjunctions (“a or b”),

• Elementary operators (“The sine of”), sequence (“The

limit of”), calculus (“The integral of”) as noun phrases.

• Pairs and conditional sets as reduced relatives (“The

point x and y”).

SimpleNLG already has a basic Italian vocabulary but it does not

include specialised mathematical terms. They fixed this by

appending their own constructed lexicon for mathematics to the

existing lexicon. To test the generated text’s understandability,

they created a survey of 25 questions – for each question, an audio

description of an expression was played, and the participant was

required to input a corresponding LaTeX representation. The

participants were visually impaired and had knowledge in

mathematics. The test measured their understandability based on

the exact match or similarity between the expected answer and the

participant’s answer. The simple expressions mostly held exact

matches, but more complex expressions were slightly

misunderstood. Their evaluation determined that 71% of simple

expressions were precisely understood, meaning participants had a

fairly good understanding.

DISCUSSION

This review discussed the pipeline architecture proposed by

(Reiter and Dale, 1997) and the numerous ways to implement the

linguistic realisation stage. Templates are suitable when there is

no need for linguistic variation and the domain is small.

Grammar-based systems rely on a languages grammar rules for

surface realisation - it is time-consuming and requires sufficient

data to develop but has the trade-off of a better quality of

generated text. Statistical approaches use a statistical model to

optimally generate text, by relying on a data resource like corpora.

Grammar-infused templates are templates that have grammar

rules encoded into them, they work well for low-resourced

languages as it enables grammar detachability. However, not all

these approaches to realisation are applicable to isiZulu for two

reasons:

(1) IsiZulu has a morphologically complex grammar.

It is the noun classes and complex verb that restricts how the

grammar can be implemented - grammar engines, like GF and

SimpleNLG were encoded for Indo-European languages, which

cannot handle the complexity of isiZulu’s grammar. Therefore,

none of the grammar tools are applicable to this project. Using

templates on their own will not suffice.

 (2) isiZulu is an under-resourced language.

Without data sources like corpora, statistical approaches cannot be

used. The Ukwabelana corpus is the largest isiZulu corpus

available but is limited in its applicability to certain domains.

Table 1: Articles are compared in relation to their ability to

support our work, isiZulu text generation.

Table 1 summarises the discussed article’s frameworks and NLG

methods, and states whether their methods suit the generation of

isiZulu text.

Author/Year Methods/Frameworks Suitability for isiZulu

Keet and

Khumalo

(2017) [2]

A grammar-infused template

approach using verbalisation

patterns with OWL

ontologies.

Yes. These grammar rules are

available for use and can be

extended for mathematical terms.

A. Belz (2008)

[18]

A statistical method for

realisation.

No. A statistical approach

requires a sufficient data resource.

Ferres and

Sepúlveda

(2011) [12]

A template-based approach. No. The template approach is not

feasible for isiZulu’s rich

morphology.

Mazzei, et al

(2019) [13]

A grammar-based system,

using a SimpleNLG

realisation engine.

No. Grammar engines are not

suited to isiZulu’s grammar.

Spiegler et al

(2010) [15]

An IsiZulu POS tagger and

small DCG.

Yes. The corpus can be a starting

point, but needs mathematical

terms appended.

Grammar-infused templates can accommodate for isiZulu’s

grammar, (Keet and Khumalo, 2017) generated isiZulu text using

verbalisation patterns and a CFG to represent the verb. The

generated text was understandable for simple sentence

construction but became ambiguous for more complex sentences.

However, the ambiguity was a consequence of varying dialects.

The grammar rules are available for use but are limited to one

tense (present tense). (Mahlaza and Keet, 2019) developed more

than one tense for the verb, but this is not necessary for

verbalising mathematical expressions, as they are conventionally

written in present tense. A useful technique for developing low-

resourced languages is bootstrapping, where instead of starting

development from scratch, existing patterns can be tailored to fit

other languages with similar linguistics.

Overall, there have been several successful attempts at verbalising

mathematical expressions for the visually impaired. There is

ambiguity in how mathematical expressions are formatted in

LaTeX, which is an issue for generating a comprehensive

description. This can be fixed by converting the LaTeX

expressions into a MathML format. However, there is still room

for improvement in translating from LaTeX to MathML, as some

LaTeX files did not translate. When comparing (Ferres and Sep´

ulveda, 2011) and (Mazzei et al, 2019) we need to consider that

their evaluation methods were different: (Ferres and Sep´ ulveda,

2011) used automated evaluation on their generated text, to check

grammatical correctness and coverage, but did not involve end-

users. (Mazzei et al, 2019) concentrated more on

understandability for end-users, rather than just coverage. They

played audio clips of the text to check how well participants

understood. Their percentage of correct output is lower than

(Ferres and Sep´ ulveda, 2011), however, (Mazzei et al, 2019)

involved visually impaired people, which are the real end-users,

deeming their results more meaningful. The results indicate for

both papers that simple expressions were understandable but

complex expressions were ambiguous and need improvement.

(Mazzei et al, 2019) used a method of categorizing the

mathematical expressions as noun phrases, declarative and such,

this approach will be useful to our project, as the sentence

components need to be well defined as POS for the grammar rules

to construct them. (Mazzei et al, 2019) appended mathematical

terms to an existing lexicon, which is another method we could

use for isiZulu, to reduce development time.

CONCLUSIONS

There has been ample research in the general field of NLG and in

generating Niger Congo languages, such as isiZulu, isiXhosa and

Runyankore. Most traditional NLG methods fail for these

agglutinating languages, but they can be successfully modelled

through verbalisation patterns with OWL ontologies and using a

CFG for generating the verb. All the existing isiZulu grammar

rules displayed good results in understandability during evaluation

tests. The grammar rules have been used for a variety of

applications, namely weather bulletins, but there has been no

research done on verbalising mathematics for isiZulu.

Low-resourced languages are challenging to develop for software

applications, so any grammar rules that are developed should be

reusable across many types of domains. Grammar-infused

templates cater for this reusability, by allowing grammar

detachability.

Data sources for isiZulu are scarce and have limitations. The

open-source isiZulu corpus, Ukwabelana, is not applicable to

mathematics but can act as a starting point to append

mathematical terms.

We looked at the LaTeX to MathML translators SnuggleTex and

LaTeXML; LaTeXML proved to be a good contender for

understandability and coverage. For future work, perhaps a better

LaTeX to MathML converter can be investigated further.

REFERENCES
[1] A. Gatt and E. Krahmer: Survey of the State of the Art in Natural Language

Generation: Core tasks, applications, and evaluation. J. Artif. Intell. Res. 61:

65-170 (2018))

[2] C. M. Keet and L. Khumalo: Toward a Knowledge-to-Text Controlled Natural

Language of isiZulu. Language Resources and Evaluation 51.1 (2017), pp. 131–

157

[3] C. Maria Keet: NLP for African (Nguni) languages. Guest lecture NLP course

Poznan University of Technology, (2018):

http://www.meteck.org/teaching/NLPAfricaPoznan18.pdf

[4] E. Reiter and R. Dale: Building Applied Natural Language Generation

 Systems (1997).

[5] Zola Mahlaza. “Grammars for Generating isiXhosa and isiZulu Weather

Bulletin Verbs”. MA thesis. Cape Town, South Africa: University of Cape

Town, 2018

[6] E. Reiter. NLG vs. templates. In Proceedings of the 5th European Workshop in

Natural Language Generation, pages 95–105, Leiden, NL, May 1995.

[7] A. Gatt and E. Reiter: SimpleNLG: A realisation engine for practical

applications - Proceedings of the 12th European Workshop on Natural

Language Generation, Athens, Greece, 30 – 31 March 2009. pages 90–93.

[8] E. Reiter: An Architecture for Data-To-Text Systems. Proceedings of the

Eleventh European Workshop on Natural Language Generation, 2007

[9] C. M. Keet and L. Khumalo. “Basics for a Grammar Engine to Verbalize

Logical Theories in isiZulu”. In: Rules on the Web. From Theory to

Applications - 8th International Symposium, RuleML 2014, Co-located with the

21st European Conference on Artificial Intelligence, ECAI 2014, Prague, Czech

Republic, August 18-20. 2014, pp. 216–225.

[10] C. M. Keet and L. Khumalo. “Toward Verbalizing Ontologies in isiZulu”. In:

Controlled Natural Language - 4th International Workshop, CNL 2014,

Galway, Ireland, August 20-22, 2014. Proceedings. Ed. by B. Davis, K.

Kaljurand, and T. Kuhn. Vol. 8625. Lecture Notes in Computer Science.

Springer, 2014, pp. 78–89.

[11] C. M. Keet and L. Khumalo. “Grammar rules for the isiZulu complex verb”. In:

Southern African Linguistics and Applied Language Studies 35.2 (2017), pp.

183–200.Conference Name: ACM Woodstock conference

[12] L. Ferres and J.F. Sepúlveda: Improving accessibility to mathematical formulas:

the Wikipedia math accessor. Proceedings of the International Cross-

Disciplinary Conference on Web Accessibility, pp. 1-9. 2011.

[13] A. Mazzei, M. Monticone, C. Bernareggi: Using NLG for speech synthesis of

mathematical sentences. Proceedings of the 12th International Conference on

Natural Language Generation, pages 463–472. 2019.

[14] J. Byamugisha, C. M. Keet, and B. DeRenzi: Bootstrapping a Runyankore CNL

from an isiZulu CNL. Controlled Natural Language - 5th International

Workshop, CNL 2016, Aberdeen, UK, July 25-27, 2016, Proceedings. Ed. by

B. Davis, G. J. Pace, and A. Z. Wyner. Vol. 9767. Lecture Notes in Computer

Science. Springer, 2016, pp. 25–36

[15] S. Spiegler, A. van der Spuy, P. A. Flach: Ukwabelana - An open-source

morphological Zulu corpus - Proceedings of the 23rd International Conference

on Computational Linguistics (Coling 2010), pages 1020–1028, Beijing, August

2010

[16] K. Van Deemter, Emiel Krahmer, and M. Theune. “Real vs. Template-based

Natural Language Generation: A False Opposition?” In: Computational

Linguistics 31 (1 2005), pp. 15–23.

[17] Z. Mahlaza and C. Maria Keet: A classification of grammar-infused templates

for ontology and model verbalisation, 2019.

[18] A. Belz: Probabilistic Generation of Weather Forecast Texts - Proceedings of

AACL HLT 2007, pages 164–171, Rochester, NY, April 2007.

[19] Keet, C.M., Xakaza, M., Khumalo, L.: Verbalising OWL ontologies in isiZulu

with Python. In: The Semantic Web: ESWC 2017 Satellite Events. LNCS, vol.

10577, pp. 59–64. Springer (2017), 30 May - 1 June 2017, Portoroz, Slovenia

[20] H. Stamerjohanns, D. Ginev, C. David, D. Misev, V. Zamdzhiev, M. Kohlhase:

MathML-aware Article Conversion from LATEX, A Comparison Study,

(2009), Towards a Digital Mathematics Library, pp. 109–120.

[21] Z. Mahlaza and C. M. Keet: A method for measuring verb similarity for two

closely related languages with application to Zulu and Xhosa, (2019), pp 34 -54

