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ABSTRACT  

A screen reader is an assistive technology that helps visually 

impaired people to read electronic text. Screen readers audibly 

render mathematical expressions in their markup language format, 

which is difficult for listeners to understand. We want to join the 

worldwide effort in improving math accessibility for people with 

visual impairments, by focusing on isiZulu speakers. To improve 

access to mathematics, we investigate how to build a natural 

language generation system, that uses template-based realisation 

combined with a few word-level grammar rules, to generate 

textual descriptions of math expressions. We then conduct a 

questionnaire with isiZulu speakers to evaluate the 

understandability of this generated text. Based on the results of 

the questionnaire, simple and complex descriptions are perceived 

as understandable on average for an isiZulu speaker; but they can 

only correctly understand the formula 50% of the time. This gap 

in perceived understanding and actual understanding was found to 

be caused by errors in the square root, integral and minus 

templates. In conclusion, we demonstrated that a template-based 

NLG system can translate mathematical expressions into natural 

language isiZulu text, that is perceived to be understandable on 

average. 

 

1 INTRODUCTION  

There is a global effort to make textbooks available online for 

visually impaired people, where the digital text can be processed 

by screen readers. Screen readers, a form of assistive technology, 

use a text-to-speech (TTS) system to convert electronic text into 

synthesised speech. There are efforts to make this possible for SA 

as the South African Centre for Digital Language Resources 

(SADiLaR) supports research on all aspects of natural language 

processing – including TTS systems, automatic speech 

recognition, and much more. The TTS systems in their repository 

can convert text into synthesised speech for most of South 

Africa’s 11 official languages. 

Despite this, accessing mathematics through digital text still 

presents a challenge for people with visual impairments because 

these TTS systems cannot produce easily understood descriptions 

of mathematical formulae, leaving users unable to efficiently 

listen to mathematics. While mathematical expressions formatted 

in LaTeX, MathML, or other markup languages can be processed 

by these TTS systems, the TTS system renders the expression in 

its markup language format. Listening to mathematical 

expressions in a markup language is inefficient for several 

reasons; It requires some knowledge of that language, it is slow to 

listen to, and it sounds unnatural. 

 

A possible solution to this problem could be natural language 

generation (NLG), as demonstrated by (Ferres and Sepúlveda, 

2011; Mazzei et al., 2019; Mondal and Jawahar, 2019). NLG is a 

subfield of computational linguistics and artificial intelligence that 

maps some input data to readable, natural language text (Reiter 

and Dale, 1997). The input data is usually in a non-linguistic 

format, like numerical data, graphs, images, or in the context of 

mathematics, MathML and LaTeX; and the output is always 

human readable text. The process of translating mathematics into 

natural language text is called math verbalisation, a process which 

could make expressions more understandable when read aloud by 

a TTS system than its markup language equivalent. For this 

reason, an NLG system was implemented. 

When deploying an NLG system in such a scenario, the math 

expressions can be captured using MathML, the World Wide Web 

Consortium’s (W3C) standard for encoding the presentation of 

formulae and embedding mathematics in webpages. This format 

has played a key role in math accessibility; specifically, speech 

synthesis and producing natural language text (MathPlayer 

(Soiffer, 2005), VoiceXML (Reddy et al., 2005) , and AudioMath 

(Ferreira and Freitas, 2004). We investigate a MathML-to-Text 

system that specifically captures mathematical expressions in a 

Content MathML format. 

 

In this study, we aim to improve access to mathematics for isiZulu 

speakers with visual impairments, through one research question: 

How do we build a MathML-to-Text NLG system whose output is 

perceived as understandable by isiZulu speakers? This project 

cannot tackle all 11 official languages, so it focuses only on 

isiZulu. As far as we know, there are no systems in place to 

verbalise mathematical expressions in isiZulu, in South Africa. 

Although isiZulu is spoken by 23% of the population, it is still 

under-resourced in software applications (Grover et al., 2011). 

The biggest barrier for developing Language Technology for 

isiZulu is the lack of resources and the complexity of its 

morphology. Therefore, we hope this project will contribute to 

improving resources for otherwise low-resourced languages in 

South Africa.  

To evaluate the perceived understandability of this MathML-to-

Text system’s output, we invite isiZulu speakers to participate in a 

questionnaire that collects data on their understandability of 

several generated descriptions. 



 

 

The paper is structured as follows. In Section 2, we give a brief 

survey of the current state of NLG and math accessibility in the 

world. In Section 3, we describe the methods used to answer the 

research question. In Section 4, we evaluate the understandability 

of our verbaliser’s output by performing a human-based 

evaluation with isiZulu speakers, and present the results in Section 

5. Section 6 presents the discussion of results and finally Section 7 

concludes this study. 

 

2    BACKGROUND AND RELATED WORK 
We introduce natural language generation (NLG) with a particular 

emphasis on the concept of linguistic realisation. We discuss the 

structure of the isiZulu grammar and what method of realisation 

suits its morphology. We then review a set of works that are 

related to our problem domain, the access of mathematics for 

visually impaired people, and finish off with the NLG techniques 

that have been used in math verbalisers for other languages. 

 

2. 1    Linguistic Realisation 
A typical NLG system includes the same six tasks proposed by 

(Reiter and Dale, 1997); Content determination: Deciding what 

data to include in the final text. Document structuring: the 

overall organisation of the information included in the text. 

Aggregation: combining similar sentences to improve human 

readability. Lexical choice: selecting appropriate words to 

describe the data. Referring expression generation: Selecting 

words or phrases to identify domain entities. Linguistic 

Realisation: also called Realisation, is the final step of generating 

a complete sentence after choosing the appropriate words and 

phrases. This entails filling in any gaps that were not present in 

the input, such as adding articles, prepositions, auxiliary verbs, 

and punctuation. The realiser ensures agreement of nouns, verbs, 

and tenses, by following some form of morphological rules. There 

are several methods of realisation that we will discuss: templates, 

grammar-based systems, data-driven approaches and grammar-

infused templates. 

Templates are an early realisation technique that involves filling 

in the slots of a predefined sentence (Gatt and Krahmer, 2018). 

An example of a template for a basic addition operator is: <$OP1 

plus $OP2>, where OP1 and OP2 are substituted for any operand, 

and can generate a sentence such as, “X plus Y”.  

Grammar-based systems construct sentences based on the 

grammar rules of the language being used (Gatt and Krahmer, 

2018). These systems require a great deal of detail specific to the 

language, therefore, they do not work well as “plug-and-play” 

modules. This issue has prompted the use of realisation engines 

that give users morphology APIs, like SimpleNLG and 

Grammatical Framework (GF). Although grammar-based systems 

may be more challenging to develop, they have a few advantages 

over templates; they are domain independent and the quality of 

the output is generally higher than templates.  

Alternatively, realisation can be accomplished using data-driven 

approaches, such as training a model using ‘end-to-end’ machine 

learning (Gatt and Krahmer, 2018).  

Lastly, there is another type of template-based system that uses 

traditional templates with some grammar rules on top of them 

(introduced as grammar-infused templates by (Mahlaza and Keet, 

2019)). These rules can be word-level functions on a template, 

that ensure grammatically correct text without having to 

implement a full grammar engine. This combines the benefits of 

both approaches – templates are simple to construct but lack the 

ability to handle complex grammars; full grammar systems are 

expensive to develop but can accommodate grammar complexity. 

 

However, realisation techniques are language dependent, and are 

not suitable for every language. Templates and grammar engines 

are suited to Indo-European languages but fail with isiZulu’s 

agglutinating grammar. Unlike Indo-European languages, which 

express the tense, negation, etc. in separate components, 

agglutinative languages use prefixes and suffixes. 

In isiZulu, there are a total of 17 noun classes, with a single and 

plural form in each class. The complex verb is extended with 

prefixes that reflect subject and object concords, tense/aspect, 

mood, and negation. On top of the prefixes, there are suffixes that 

represent stative, applicative, reciprocal, and passive verbs. 

Further, the verb ends with a final vowel that is dependent on 

negation. The complex verb structure with all its affixes is shown 

in (1). 

 

(1) <NEG> <SC> <T/A> <MD> <OC> <VR> <Extension><FV> 

 

Where, NEG=negative, SC=subject concord, T/A=tense/aspect, 

MD=mood, OC=object concord, VR=verb root, FV=final vowel. 

 

To illustrate why traditional templates are not suited for isiZulu; a 

common approach to NLG is the use of templates with a few 

simple rules for template selection. For an English system, it may 

require a rule to select a template with the article ‘an’ instead of 

‘a’ if the object noun starts with a vowel. For an isiZulu system, 

there would have to be a rule for how each of the 17 noun classes 

affects the verb. This complexity makes the use of templates on 

their own infeasible (Keet and Khumalo, 2017). Similarly, 

realisation engines, like SimpleNLG and Grammatical 

Framework, are encoded for grammatical structures close to 

English. Hence, there has not been any implementations of isiZulu 

applications using grammar engines.  

A data-driven approach to NLG requires a comprehensive data 

resource (such as a large, detailed corpus), which is not applicable 

for under resourced computational languages like isiZulu. 

Instead, grammar-infused templates can be used, as shown by 

(Keet and Khumalo, 2017) for a different domain. This is the 

hybrid realisation method that our system will use to handle 

prefixes and suffixes. 

 

2.2    Math Verbalisers 
There has been significant research done on improving math 

accessibility for visually impaired people. We note that there are 

two strains of technologies that provide access to mathematics: 

those that translate MathML or LaTeX expressions into Braille, 

https://en.wikipedia.org/wiki/Content_determination
https://en.wikipedia.org/wiki/Document_structuring


  

 

 

 

such as the LAMBDA project (Bernareggi, et al, 2006); and those 

that render speech or natural language text. The following papers 

address our problem domain using the latter approach. 

 

AsTeR (Raman, 1994), is an early project from the 90s that helps 

produce rendered audio of digital documents. This system takes a 

LaTeX document and parses it into a system that generates natural 

language text based on rules, called Audio Formatting Language 

(AFL). Another paper that assists with accessing LaTeX 

formatted mathematics in PDF documents is Axessibility 

(Ahmetovic et al., 2018). Axessibility, is a LaTeX package that 

automatically generates alternative text descriptions of 

expressions and stores them in a hidden comment attached to the 

expression. MathPlayer (Soiffer, 2005) is a plug-in for Microsoft 

Internet Explorer that renders a visualisation of MathML, which 

allows people with visual impairments (blindness, low-vision and 

learning disabilities) to dynamically interact with mathematical 

expressions. MathPlayer integrates with screen-readers and 

supports synthesised speech generation. 

 

There are math verbalisers that explicitly use the NLG realisation 

methods discussed in Section 2.1 to generate textual descriptions. 

The relevant details of these systems are shown in Table 1. 

 

Table 1: Math Verbalisers that Implement NLG Realisation Methods 

Paper 
Output 

Language 
Realisation Method 

Ferres and 

Sepúlveda, 2011 
Spanish Template-based 

Mazzei et al, 2019 Italian 
Grammar Engine, 

SimpleNLG 

Mondal and 

Jawahar, 2019 
English Data-driven methods 

 

(Ferres and Sepúlveda, 2011) approached the problem of math 

verbalisation in Spanish with a template-based NLG system called 

MathAcc. Mathematical expressions found on Wikipedia are 

rasterised images of LaTeX expressions, which screen readers 

cannot process. To tackle this problem, (Ferres and Sepúlveda, 

2011) collected LaTeX expressions from Wikipedia repositories, 

translated them into a more explicit format, Content MathML 

(CMML), and generated textual descriptions from the CMML 

expressions. The descriptions were then embedded into the 

Wikipedia pages.  

In comparison, (Mazzei et al, 2019) achieved similar goals using 

the grammar engine, SimpleNLG, to generate Italian descriptions 

of CMML expressions, which were then processed by a TTS 

system. 

(Mondal and Jawahar, 2019) proposed a data-driven approach to 

handle the issue of TTS systems’ inability to read document 

images of math expressions. They developed a trainable deep 

neutral network, based off image captioning techniques. The 

model reads mathematical formulae as document images and then 

learns to generate appropriate textual descriptions. 

 

The works discussed in math verbalisation have used realisation 

techniques that are not applicable to isiZulu’s complex grammar. 

To our best knowledge there are currently no MathML-to-Text 

NLG systems for isiZulu, thus, this paper investigates how we can 

accomplish building an understandable MathML-to-Text 

translator, using an appropriate realisation method. 

3 BUILDING THE MATH VERBALISER 

We follow Dale and Reiter’s typical NLG tasks by building an 

NLG pipeline. This pipeline processes CMML expressions and 

uses templates with a few embedded functions to generate text. To 

create these templates, we require building a small corpus of 

example sentences that the templates should be able to generate.  

To ensure project feasibility, we selected eight mathematical 

operations to verbalise. This selection was based on how 

frequently the operator is used. (Ferres and Sepúlveda, 2011) 

found that the most popular operators found in Wikipedia 

repositories are divide, power (superscript), equations, integrals, 

addition, subtraction, square root, multiplication. Hence, these are 

the eight operators chosen.  

 

The following subsections go into detail about how the corpus 

was created and analysed to form templates for each operator. 

Then finally, how the NLG system was implemented.  

3.1    Corpus Creation 

Before the verbaliser could be implemented, we needed to 

establish what the system was expected to produce. We took a 

corpus-based approach (Reiter and Dale, 1997) and asked a 

domain expert to write out examples of appropriate output texts, 

given some input expressions. In this case, the domain expert was 

a mathematician who speaks isiZulu.  

 

The aim of gathering these example outputs was to establish: what 

is the correct wording; how affixes change for each 

operator/operand; how punctuation is used to break up operators 

in a sentence. There is an issue of ambiguity in the order of 

operators when reading the expression out loud. 
(𝑥 + 𝑦)

𝑧
 is read 

aloud as “x plus y over z”. To a listener, this could be 

misinterpreted as (𝑥 +
𝑦

𝑧
) . This was an important factor when 

consulting with the expert – we needed to find a natural way to 

enforce precedence between operators. 

 

Seventy (70) example mathematical formulae were written out in 

a PDF file, with roughly 8 examples per operator, and the expert 

was asked to describe each formula in isiZulu natural language. 

Most examples were kept simple, containing a single operator and 

the two operands it worked on. There were also ‘combination’ 

expressions, these examples were more complex (containing 2 or 

more operators), to see how grammar and punctuation plays a part 

in operator precedence.  

The corpus was iteratively created – with multiple collaborations 

before the final version was agreed upon. Together with the 

expert, we built a collection of 65 input-output pairs. Five 



 

 

expressions could not be completed by the expert and those were 

not included in the collection.  

3.2    Template Design 

After analysing this corpus data, we could manually design 

templates for the verbaliser. We discovered that when numeric 

operands were kept as Arabic numerals, there was a clear pattern 

that every description followed. We converted this pattern into a 

general template, called the ‘primary template’ (1): 

 

(1)  U-$operand1 <verb> <object prefix>-$operand2 

 

The template’s text includes a single operator (the verb), the 

object prefix, and two slots for the operands (except in the case of 

square root and integration, which operate on a single operand). 

Mathematical operators are inherently nested, operators act upon 

other operators, and the isiZulu verb prefix changes depending on 

where it is placed in the sentence. We handled this with a 

‘secondary template’, for situations where a template had to be 

substituted into a ‘primary template’. These secondary templates  

 are created with an embedded function that changes the primary 

verb into a secondary verb. The primary and secondary templates 

are compared for three operators in Table 2. 

 

Table 2: The Primary and Secondary Templates for Power, Times 

and Plus Operators. 

 

Primary and secondary templates can also be linked together with 

‘siphinde’ (and) and an ‘adjoining’ operator to create a chain of 

operators, for expressions like 𝑥2 + 2𝑥 + … and so on. The 

‘adjoining’ operator’s verb is created through a function, called 

adjoining_verb(), that changes the suffix of the verb to an ’-e’.  

 

(3)    <primary template>, siphinde adjoining_verb() <object 

prefix>- <secondary template>, siphinde … 

 

For the expression 𝑥2 + 2𝑥, this chaining template (3) generates 

“U-x ukhuliswe ngenkombananikuphindwa u-2, siphinde 

simhlanganise no-2 esimphindaphinda ngo-x.” Where 

‘simhlanganise no-’ (plus) is the operator that adjoins the primary 

template, ‘U-x ukhuliswe ngenkombananikuphindwa u-’ (power), 

and the secondary template ‘2 esimphindaphinda ngo-x’(times). 

 

Furthermore, to handle the issue of ambiguity in operator 

precedence, we formulated a ‘meta template’ (4). The meta 

template uses the phrase ‘futhi konke’ (and all) in conjunction 

with the chaining template (3) to show unambiguously when an 

operator acts upon an entire bracket of terms. 

 

(4)     <PT>, siphinde adjoining_verb() <O1>-<ST>, ..., futhi 

konke <verb> <O2>-<RHS>. 

 

Where, PT=primary template, O1=object prefix 1, ST=secondary 

template, O2=object prefix 2, RHS=right hand side of the 

expression. 

 

Therefore expressions, such as (𝑥 + 𝑦)2 , can be generated with 

the meta template, to show the exponent operates on all the terms 

in the bracket: “U-x simhlanganisa no-y, futhi konke ukhuliswe 

ngenkombananikuphindwa u-3” 

3.3    Design and Implementation of the System 

The verbaliser is a Python program that runs from the terminal; it 

takes in an XML file containing a CMML snippet; the system 

processes the expression; and then outputs an isiZulu text 

description in a new file. 

 

The system was designed to process mathematics formatted in 

CMML, because it has tagged operators, which make the 

expression’s components much more explicit for the NLG system. 

Instead of focusing on the representation of mathematical 

formulae like MathML, CMML focuses on the semantics and 

meaning of expressions. The difference between the two formats 

are shown in Figure 1. 

 

 
 

In the following subsection, we will discuss the design and 

implementation of the system’s architecture. 

 

3.3.1 Architecture 

The system’s architecture is a traditional NLG pipeline (See 

Figure 2), adapted from (Reiter and Dale, 1997). It is designed 

with distinct, well-defined, and easily integrated modules. There 

are three stages, that perform three of the NLG tasks proposed by 

Dale and Reiter: Content Determination, Document Structuring 

and Linguistic Realisation. A module was built for the text 

planner, sentence planner and linguistic realiser. 

Operator The (1) Primary and (2) Secondary Templates 

Power 

(1)    U-$OP1 ukhuliswe ngenkombananikuphindwa              

u-$OP2 

(2)   $OP1 okhuliswe ngenkombananikuphindwa u-

$OP2 

Times 

(1)   U-$OP1 simphindaphinda ngo-$OP2 

 

(2)   OP1 esimphindaphinda ngo-$OP2 

 

Plus 

(1)   U-$OP1 simhlanganisa no-$OP2 

 

(2)   $OP1 esimhlanganise no-$OP2 

 

(1)             <apply> 

    <divide/> 

        <apply> 

            <minus/> 

                <ci>x</ci>  

                <ci>y</ci> 

        </apply> 

        <cn>2</cn> 

</apply> 

 Figure 1: Comparing the syntax of a (1) Content MathML and a (2) 

MathML Snippet for the Expression (x – y)/2 

(2)             <mfrac> 

    <mrow> 

         <mi>x</mi> 

         <mo>-</mo> 

         <mn>y</mn> 

    </mrow> 

    <mn>2</mn> 

</mfrac> 

 



  

 

 

 

 
Figure 2: The Modular Pipeline Architecture, Adapted from (Reiter 

and Dale, 1997), for the Math Verbaliser. 

 

The text planner module fulfills the content determination task – it 

receives the input CMML expression and filters out the 

information that will be included in the text. The file is read line 

by line and a list of the expression’s tokens is produced. The tags 

containing the operands are removed, so only their value remains. 

The operator tags are cleaned into a more comprehensive form: 

‘<times/>’ is cleaned into ‘times’. This improves ease of use and 

readability further down the pipeline when the templates are 

loaded. The apply tags are left as is. This token list is passed on to 

the sentence planner. 

 

The sentence planner’s job is to organize the overall structure of 

the intended sentence. This module takes the list of tokens as 

input and arranges them into an Abstract Syntax Tree (AST), (See 

figure 3.). The <apply> tags are used to signal the start of a new 

operation but are not inserted into the tree themselves.  

The root of each sub-tree is the operator, the child nodes are its 

operands, and the leaves are the actual values of the expression 

(either variables or numbers). The completed AST is handed over 

to the linguistic realiser. 

 
Figure 3: The AST Created After Parsing the CMML Snippet Shown 

in Figure 1, for the Expression (x - y)/2. 

 

The linguistic realiser module will take the output from the 

sentence planner and generate a grammatically correct and 

complete sentence using the isiZulu templates.  

To use the templates, the realiser opens a text file where the data 

for each template is stored and loads the file line-by-line into 

template objects. These objects store all the information needed to 

create and change a template’s grammar depending on how its 

verb is used (as a primary, secondary or an adjoining verb). This 

data includes name of the CMML operator, the isiZulu verbs for 

the primary and secondary templates, the object prefix, and the 

template layout (this is important for operators that differ from the 

standard two slot template, like square roots). Having the template 

data stored externally from the realiser, allows easy adding or 

updating of templates. 

 

The received AST is depth-first traversed, fetching a template via 

the name of the operator and filling it in for each sub-tree. The 

realiser evaluates the AST in Figure 3 using the meta template as 

“U-x simsusa ku-y, futhi konke simhlukanisa ka-2”. 

4 EVALUATION 

This project focuses on whether the resulting system can produce 

understandable text for users, therefore the generated text must be 

evaluated by human beings. The end users of the proposed system 

are isiZulu speakers in the visually impaired community, 

however, since this evaluation focuses on the understandability of 

the text rather than the rendered audio, people without 

impairments were viable participants.  

 

Subsection 4.1 and 4.2 discuss the method of data collection for 

the evaluation, and the methods of evaluating the textual 

descriptions. 

4.1    Collection of CMML Expressions 

Mathematical expressions were collected to be translated by the 

verbaliser and used in the evaluation. A Perl script was created to 

parse through any given text file and extract all CMML 

expressions it finds (regardless of the operations). Then the 

extracted CMML expressions are filtered out based on whether 

they contain only the chosen operators. Expressions that contain 

any operators that weren’t chosen were discarded. 

The MathML manual1 was downloaded as a text file and the script 

was run on it. Approximately 50 CMML expressions that 

contained only the chosen operators were found. A total of 10 

expressions were selected to be translated into isiZulu text using 

the NLG system, for the evaluation. This selection was based on 

their complexity; five simple expressions (containing two or less 

operators) and five complex expressions (containing 3 or more 

operators).  

 

4.2     Methodology 
The system’s text was evaluated via a Google Form questionnaire. 

To participate, a person had to be fluent in isiZulu and have 

completed at least first-year mathematics. Experience in higher-

level mathematics was a criterion, to ensure they had knowledge 

of all the operations. We recruited participants via social media 

posts and a survey call posted to MAM1000 students at the 

 

1The MathML manual: https://www.w3.org/TR/MathML/mathml.pdf 



 

 

University of Cape Town (UCT). To encourage participation, 

anyone who completed the questionnaire stood a chance to win a 

R250 raffle.  

As human beings were involved, we required an ethics clearance 

to proceed with the evaluation, which was granted by the UCT 

CS Ethics Committee. The evaluation keeps the participants 

anonymous, as no personal or identifying information was 

required with the submission.  

 

The evaluation was conducted as follows. The participants were 

given a link to the Google Form, where they could fill out a 

questionnaire. Before the questionnaire begins, participants must 

read and sign an informed consent form, and disclose their level 

of proficiency in isiZulu (First, second or third language). 

The questionnaire consists of two sections per mathematical 

description, with a total of 10 descriptions. 

Section 1 is a rating-based question, where the participants read 

the generated description of an expression, and then rate the 

understandability of the text on a Likert scale. A rating is selected 

from strongly disagree, disagree, unsure, agree or strongly agree. 

This section is where a participant’s perceived understandability is 

measured. A small comment section is optionally available for 

those who would like to elaborate on their rating.  

Section 2 is a task-based question, where the participants type out 

the corresponding formula of the description into the Google 

Form. The inputted formulae will be compared to the expected 

formula and declared as either an exact match or a mismatch. This 

evaluation technique assesses how accurately a reader can 

understand and reproduce an expression’s formula based on its 

textual description alone, and has been used by (Mazzei et al., 

2019; Mondal and Jawahar, 2019). The reason for this, is to check 

whether their perceived understandability corroborates with their 

actual understandability. 

This section also aims to reveal any problems with specific 

operators, either issues of ambiguity, semantics, or grammar. 

The following notation (see Table 3.) was provided on each page 

for when the participants must type out the description's formulae. 

The participants were also instructed to use parenthesis to show 

precedence between operators. 

 

Table 3: The Notation Provided During the Evaluation, for Typing 

Out Mathematical Expressions. 

Operator Notation 

Divide / 

Power ^ 

Square root sqrt() 

Times * 

Plus + 

Minus - 

Equals = 

Integral int() 

 

We used an attention check question halfway through the 

questionnaire, as a measure of the data’s quality. This can 

potentially pick up on participants who are skim reading and not 

paying attention to the questions. 

 

To analyse the responses, the ratings and exact matches from each 

question are added up to get a total score for each participant. 

Then we can determine the average rating and number of exact 

matches between participants. The same will be done for the 

individual descriptions, to see how specific templates performed. 

Lastly, we want to test if the complexity of a description 

influences whether a participant can understand its formula 

correctly. To test this, we will perform a Fischer exact test on the 

total number of matches/non-matches in each category (simple 

and complex), with the null hypothesis H0: There is no difference 

in understandability of the formulae between the simple and 

complex categories of the mathematical expressions. 

5 RESULTS 

In this section we present the findings from the human evaluation. 

Five isiZulu speakers with different levels of language proficiency 

(first, second and third language speakers) were recruited to join 

the questionnaire, which resulted in a total of 50 responses over 

10 descriptions (the data in found in Appendix A.). We display 

the performance of the individual participants and the 

performance of the descriptions themselves. 

 

Table 4: Compares Each Participant’s Most Common Rating and the 

Total Number of Exact Matches Between Their Input Formula and 

the Expected Formula, and the Overall Average Rating and Matches 

between Participants. 

Participant 
IsiZulu 

Proficiency 

Most Common 

Rating 

Total Exact 

Matches (out of 

10) 

1 
Second 

language 
Unsure 3 

2 
third 

language 
Agree 4 

3 
Second 

language 
Agree 6 

4 
Second 

language 
Strongly agree 5 

5 First language Strongly agree 7 

Average  
Agree, 

Strongly Agree 
5 

Standard 

Deviation 
  1.58 

 

Table 4 displays the results of each participant, comparing their 

most common rating and their total number of exact matches out 

of the 10 input formulae in the questionnaire. This gives an 

indication of their overall understanding of the descriptions. The 

green cells indicate that participants 2, 3, 4, 5 mostly perceived 

the descriptions as understandable (i.e. they have a common rating 

of either ‘agree’ or ‘strongly agree’),  while the yellow cell 

indicates that participant 1 mostly felt unsure about the 

understandability of the descriptions. Participant 5, who is a first 

language (L1) isiZulu speaker, received the highest score: a 

common rating of ‘strongly agree’ and 7 exact matches.  



  

 

 

 

Figure 4: A Stacked Chart Comparing the Proportion of Ratings and the Total Exact Matches (out of 5) of Each Formula, Grouped by Simple or 

Complex; and Displays the Total  Percentage of Each Rating and the Total Exact Matches for the 50 Responses. 

Simple 

Complex 

Table 4 also indicates that the average number of exact matches 

per participant is 5 (± 1.58). 

 

Figure 4 compares the performance of the descriptions, by 

displaying each description’s proportion of ratings and total 

number of exact matches (shown to the right of a formula) from 

the five participants. To visualise the overall perceived 

understanding of the descriptions, the last graph of Figure 4 shows 

the proportion of each rating gathered from all 50 responses. If we 

interpret both the ratings ‘agree’ and ‘strongly agree’ as 

understandable, then 68% of all responses were rated as 

understandable. Of all the participants’ responses, 26% were 

unsure of a description’s understandability, and only 6% of all 

responses disagreed or strongly disagreed on a description’s 

understandability. The total number of exact matches across all 

descriptions is 25 out of 50 (50%). 

 

The expressions that performed the best included those with 

power, equals, multiplication, plus and divide operators.  

The descriptions for the complex expressions y=mx+c and 

(xyz)^3 were rated as understandable by 100% of the responses, 

which coincides with all five participants typing out the formulae 

correctly. The simple description for x^(y+1) was also rated as 

understandable 100% of the time and received 4 exact matches. 

There was one more expression that did well, the complex 

expression x^2+y^2+z^2=0; it yielded exact matches from all five 

participants and was rated as understandable by 80% of responses. 

 

The descriptions that did not perform as well, were those that 

contained square root, integral and minus operators. The 

description for the expression (x-y)/2 was interpreted as (y-x)/2 

(reversed order of operands for the minus sign) by three of the 

five participants but was typed out correctly by one participant. 

The same issue with the minus operator occurred with the 

expression x-(y/2), it was understood as (y/2)-x by four out of five 

participants and received zero exact matches.  

Descriptions containing a square root received mixed ratings and 

few exact matches. The expression sqrt(a-b)/2c could not be 

answered correctly by any of the participants. The L1 speaker was 

the only participant able to distinguish between sqrt(a)+b and 

sqrt(a+b). One participant, an L2 speaker, commented that they 

were confused by the wording ‘Umaziphinde’, in the square root 

description. 

There was a single description containing an integral, int(x+1), 

which was answered correctly only by the L1 speaker. This 

description received the most mixed ratings, with a different 

rating from each of the five participants. 

 

In Figure 4, simple descriptions yielded either understandable or 

unsure ratings, while the complex expressions had a much wider 

range of ratings but mostly received understandable ratings. The 

five simpler expressions received 9 exact matches, while the five 

complex expressions received 16 exact matches, from all five 

participants. The Fisher exact test statistic value was calculated to 

be 0.0887 and therefore, we cannot refute the null hypothesis at 

p<0.05. This tells us that there is no significant relationship 

between the complexity of an expression and its 

understandability. 

6 DISCUSSION 

The results suggest that on average a participant perceived the 

descriptions to be understandable, and 68% of all ratings showed 

that the descriptions were understandable. Based on these results 

from the participants’ and the descriptions’ performance, we can 

conclude that our NLG system can generate text that is generally 

perceived as understandable by isiZulu speakers. This implies that 

our realisation method of using templates with embedded 

functions to handle affixes, is a viable solution for building an 

isiZulu MathML-to-Text system.  

 

There were two types of issues uncovered by the formula input 

section of the evaluation; suspected problems with terminology 



 

 

for the square root and integral templates; and issues with the 

order of operands for the minus template. 

Asking participants to type out the expression’s formula was a 

way to determine if a participant’s perceived understandability 

matches with their actual understandability. Although the 

participants perceived the descriptions as understandable, the 

results show that on average a participant was only able to 

accurately replicate the formulae 50% of the time. A good 

example of why this check was necessary is seen in Figure 4; 80% 

of participants agreed that the description for (x-y)/2 was 

understandable; however, three participants wrote down the same 

incorrect formula. Since there was a consistent error across these 

three participants, it’s likely that the error came from the 

semantics of the template, and not a misunderstanding from the 

participants. 

There were some unexpected discoveries from the results. It was 

expected that there would be a relationship between the 

complexity of expressions and the number of exact matches it 

gets. Surprisingly, the hypothesis test proved that complexity of a 

formula is not a factor in the understandability of it. However, this 

fact strengthens our suspicions that the misunderstandings of 

descriptions containing square root and integral operators, are 

caused by issues with semantics rather than the complexity of the 

description. 

 

There are a few limitations to consider when discussing these 

results. The biggest limitation we faced was the small number of 

participants, and thus limiting the generalisability of our results. 

The second limitation being that four of the five participants were 

not L1 isiZulu speakers. Not surprisingly, the participant who 

spoke isiZulu as a L1 received the highest score. Therefore, it is 

plausible that participants having second and third language 

proficiency in isiZulu may have contributed to a poorer overall 

understanding in the results. Other limitations included possible 

fatigue or inattention experienced by participants. This 

questionnaire could be quite long and tiring, causing participants 

to hurry through the questionnaire and respond regardless of their 

true abilities, leading to possibly skewed and invalid responses. 

The attention check question was included as a safeguard against 

this, however, this method it is not fool proof. Lastly, too many 

participants answered with an ‘unsure’ rating. This rating made up 

26% of responses, which is vague and can be interpreted very 

differently by each respondent. Although there was a comment 

section, no one offered further information on why they found that 

the descriptions were not understandable, or for what reason they 

felt unsure. This leaves us uncertain of which part of a description 

was misleading.  

 

A recommendation for going forward is that the templates for the 

minus, square root, and integral operators require improvements; 

we consider that during the corpus creation stage, collecting more 

output samples from a wider range of isiZulu speakers and then 

basing our templates off the most popular responses, could be a 

more comprehensive approach to building templates, as shown by 

(Ferres and Sepúlveda, 2011) in their template-based system. 

7 CONCLUSIONS AND FUTURE WORK 

This study aimed to identify how we can build a MathML-to-Text 

system that produces text that is perceived as understandable by 

isiZulu speakers. We approached this problem with an NLG 

pipeline that uses templates, with a few word-level functions on 

top of them, as a realisation method to construct natural language 

sentences. Based on a human evaluation of the generated text, we 

conclude that our realisation method produced text that was 

averagely perceived as understandable among isiZulu speakers; 

and thus, is an appropriate technique for building a MathML-to-

Text system. 

 

While these results clearly illustrate a general perceived 

understandability, they also revealed that respondents could 

translate the description into its correct formulae only 50% of the 

time. This was due to a consistent problem among participants 

with the minus, square root and integral templates, and not a 

misunderstanding on the participants’ behalf.  

We also established that there is no relationship between the 

complexity of a formula and its understandability, which further 

demonstrations that this gap in perceived understanding and actual 

understanding is likely a fault in the semantics of the templates, 

rather than the complexity of the formulae. Hence, going forward 

these three templates will require improvements to their 

terminology. 

 

In future work, we hope to extend the collection of templates to 

include more CMML operators and involve several L1 isiZulu 

speakers during the process of collecting corpus data. Other 

potential work includes implementing sentence variation, for more 

natural, non-repetitive output. 
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Appendix A. - Supplementary Information 

 

 

 

 

 User 1 User 2 User 3 User 4 User 5 

Informed 
Consent 

Yes Yes Yes Yes Yes 

16/09/2020 16/09/2020 19/09/2020 12/01/2000 25/09/2020 

Z.P LM S. K.  SY LS 

Proficiency Second language Third language Second language Second language First/home language 

D1 

Agree Agree Agree Unsure Strongly Agree 

(Y-X)/2 (y-x)/2 (X-y)/2 (y-(x/2)) (Y-X)/2 

        Yes 

D2 

Unsure Agree Unsure Strongly Agree Agree 

Y/2-x (y/2)-x (X-y)/2 (y/2)-x X(y/2 -x) 

        Yes 

D3 

Unsure Unsure Unsure Strongly Agree Agree 

a+b a+b Sqrt(a+b) (sqrt(a))+b Sqrt(a+b) 

My Zulu is bad,my home language is 
isiXhosa and l thought will 

understand fully (confused by 
mazphinde) 

      Yes 

D4 

Unsure Unsure Agree Unsure Agree 

2a+b a+b Sqrt(a+b) (sqrt(a))+b Sqrt(a)+b 

        Yes 

D5 

Agree Agree Agree Agree Strongly Agree 

x^y-1 x^(y+1) xy*(y+1) x^(y+1) X^y+1 

        Yes 

D6 

Agree Agree Agree Agree Strongly Agree 

(X x Y x Z)^3 (x*y*z) ^3 (X*y*z)*3^2 (xyz)^3 (X*Y*Z)^3 

        Yes 

Att. Check 

Unsure Agree Strongly Agree Strongly Agree Strongly Disagree 

x/y x/y X/y x/y X/Y 

        Yes 

D7 

Strongly Agree Agree Strongly Agree Strongly Agree Strongly Agree 

Y = mx + c y=m*x+c Y=Mx+c y=mx+c Y=mx+c 

        Yes  

D8 

Agree Agree Unsure Strongly Agree Strongly Agree 

x^2 + y^2+ z^2=0 x^2+y^2+z^2=0 x^2+2y+2z=0 (x^2)+(y^2)+(z^2)=0 (X^2)+(y^2)+(z^2)=0 

        Yes 

D9 

Unsure Disagree Agree Agree Unsure 

(b-2a)/2a B-a Sqrt(a-b)-(2-a) (b-sqrt(a))/2a Sqrt(b-a)=2a 

        Yes 

D10 
Strongly Disagree Unsure Disagree Strongly Agree Agree 

2+1 Sqrt(x) +1 (X+1)/2 1/(x+1) Int(x+1) 

Table 5: Raw Data Captured from the Online Questionnaire, which was Conducted with Five Users. 


