

CS/IT Honours

Final Paper 2020

Generating Natural Language IsiZulu Text From Mathematical Expressions

Author: Shannon Smith

Project Abbreviation: MATHVERB

Supervisor(s): Zola Mahlaza

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 20 5

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Generating Natural Language IsiZulu Text From Mathematical

Expressions

Shannon Smith

Department of Computer Science

 University of Cape Town

smtsha028@myuct.ac.za

ABSTRACT

A screen reader is an assistive technology that helps visually

impaired people to read electronic text. Screen readers audibly

render mathematical expressions in their markup language format,

which is difficult for listeners to understand. We want to join the

worldwide effort in improving math accessibility for people with

visual impairments, by focusing on isiZulu speakers. To improve

access to mathematics, we investigate how to build a natural

language generation system, that uses template-based realisation

combined with a few word-level grammar rules, to generate

textual descriptions of math expressions. We then conduct a

questionnaire with isiZulu speakers to evaluate the

understandability of this generated text. Based on the results of

the questionnaire, simple and complex descriptions are perceived

as understandable on average for an isiZulu speaker; but they can

only correctly understand the formula 50% of the time. This gap

in perceived understanding and actual understanding was found to

be caused by errors in the square root, integral and minus

templates. In conclusion, we demonstrated that a template-based

NLG system can translate mathematical expressions into natural

language isiZulu text, that is perceived to be understandable on

average.

1 INTRODUCTION

There is a global effort to make textbooks available online for

visually impaired people, where the digital text can be processed

by screen readers. Screen readers, a form of assistive technology,

use a text-to-speech (TTS) system to convert electronic text into

synthesised speech. There are efforts to make this possible for SA

as the South African Centre for Digital Language Resources

(SADiLaR) supports research on all aspects of natural language

processing – including TTS systems, automatic speech

recognition, and much more. The TTS systems in their repository

can convert text into synthesised speech for most of South

Africa’s 11 official languages.

Despite this, accessing mathematics through digital text still

presents a challenge for people with visual impairments because

these TTS systems cannot produce easily understood descriptions

of mathematical formulae, leaving users unable to efficiently

listen to mathematics. While mathematical expressions formatted

in LaTeX, MathML, or other markup languages can be processed

by these TTS systems, the TTS system renders the expression in

its markup language format. Listening to mathematical

expressions in a markup language is inefficient for several

reasons; It requires some knowledge of that language, it is slow to

listen to, and it sounds unnatural.

A possible solution to this problem could be natural language

generation (NLG), as demonstrated by (Ferres and Sepúlveda,

2011; Mazzei et al., 2019; Mondal and Jawahar, 2019). NLG is a

subfield of computational linguistics and artificial intelligence that

maps some input data to readable, natural language text (Reiter

and Dale, 1997). The input data is usually in a non-linguistic

format, like numerical data, graphs, images, or in the context of

mathematics, MathML and LaTeX; and the output is always

human readable text. The process of translating mathematics into

natural language text is called math verbalisation, a process which

could make expressions more understandable when read aloud by

a TTS system than its markup language equivalent. For this

reason, an NLG system was implemented.

When deploying an NLG system in such a scenario, the math

expressions can be captured using MathML, the World Wide Web

Consortium’s (W3C) standard for encoding the presentation of

formulae and embedding mathematics in webpages. This format

has played a key role in math accessibility; specifically, speech

synthesis and producing natural language text (MathPlayer

(Soiffer, 2005), VoiceXML (Reddy et al., 2005) , and AudioMath

(Ferreira and Freitas, 2004). We investigate a MathML-to-Text

system that specifically captures mathematical expressions in a

Content MathML format.

In this study, we aim to improve access to mathematics for isiZulu

speakers with visual impairments, through one research question:

How do we build a MathML-to-Text NLG system whose output is

perceived as understandable by isiZulu speakers? This project

cannot tackle all 11 official languages, so it focuses only on

isiZulu. As far as we know, there are no systems in place to

verbalise mathematical expressions in isiZulu, in South Africa.

Although isiZulu is spoken by 23% of the population, it is still

under-resourced in software applications (Grover et al., 2011).

The biggest barrier for developing Language Technology for

isiZulu is the lack of resources and the complexity of its

morphology. Therefore, we hope this project will contribute to

improving resources for otherwise low-resourced languages in

South Africa.

To evaluate the perceived understandability of this MathML-to-

Text system’s output, we invite isiZulu speakers to participate in a

questionnaire that collects data on their understandability of

several generated descriptions.

The paper is structured as follows. In Section 2, we give a brief

survey of the current state of NLG and math accessibility in the

world. In Section 3, we describe the methods used to answer the

research question. In Section 4, we evaluate the understandability

of our verbaliser’s output by performing a human-based

evaluation with isiZulu speakers, and present the results in Section

5. Section 6 presents the discussion of results and finally Section 7

concludes this study.

2 BACKGROUND AND RELATED WORK
We introduce natural language generation (NLG) with a particular

emphasis on the concept of linguistic realisation. We discuss the

structure of the isiZulu grammar and what method of realisation

suits its morphology. We then review a set of works that are

related to our problem domain, the access of mathematics for

visually impaired people, and finish off with the NLG techniques

that have been used in math verbalisers for other languages.

2. 1 Linguistic Realisation
A typical NLG system includes the same six tasks proposed by

(Reiter and Dale, 1997); Content determination: Deciding what

data to include in the final text. Document structuring: the

overall organisation of the information included in the text.

Aggregation: combining similar sentences to improve human

readability. Lexical choice: selecting appropriate words to

describe the data. Referring expression generation: Selecting

words or phrases to identify domain entities. Linguistic

Realisation: also called Realisation, is the final step of generating

a complete sentence after choosing the appropriate words and

phrases. This entails filling in any gaps that were not present in

the input, such as adding articles, prepositions, auxiliary verbs,

and punctuation. The realiser ensures agreement of nouns, verbs,

and tenses, by following some form of morphological rules. There

are several methods of realisation that we will discuss: templates,

grammar-based systems, data-driven approaches and grammar-

infused templates.

Templates are an early realisation technique that involves filling

in the slots of a predefined sentence (Gatt and Krahmer, 2018).

An example of a template for a basic addition operator is: <$OP1

plus $OP2>, where OP1 and OP2 are substituted for any operand,

and can generate a sentence such as, “X plus Y”.

Grammar-based systems construct sentences based on the

grammar rules of the language being used (Gatt and Krahmer,

2018). These systems require a great deal of detail specific to the

language, therefore, they do not work well as “plug-and-play”

modules. This issue has prompted the use of realisation engines

that give users morphology APIs, like SimpleNLG and

Grammatical Framework (GF). Although grammar-based systems

may be more challenging to develop, they have a few advantages

over templates; they are domain independent and the quality of

the output is generally higher than templates.

Alternatively, realisation can be accomplished using data-driven

approaches, such as training a model using ‘end-to-end’ machine

learning (Gatt and Krahmer, 2018).

Lastly, there is another type of template-based system that uses

traditional templates with some grammar rules on top of them

(introduced as grammar-infused templates by (Mahlaza and Keet,

2019)). These rules can be word-level functions on a template,

that ensure grammatically correct text without having to

implement a full grammar engine. This combines the benefits of

both approaches – templates are simple to construct but lack the

ability to handle complex grammars; full grammar systems are

expensive to develop but can accommodate grammar complexity.

However, realisation techniques are language dependent, and are

not suitable for every language. Templates and grammar engines

are suited to Indo-European languages but fail with isiZulu’s

agglutinating grammar. Unlike Indo-European languages, which

express the tense, negation, etc. in separate components,

agglutinative languages use prefixes and suffixes.

In isiZulu, there are a total of 17 noun classes, with a single and

plural form in each class. The complex verb is extended with

prefixes that reflect subject and object concords, tense/aspect,

mood, and negation. On top of the prefixes, there are suffixes that

represent stative, applicative, reciprocal, and passive verbs.

Further, the verb ends with a final vowel that is dependent on

negation. The complex verb structure with all its affixes is shown

in (1).

(1) <NEG> <SC> <T/A> <MD> <OC> <VR> <Extension><FV>

Where, NEG=negative, SC=subject concord, T/A=tense/aspect,

MD=mood, OC=object concord, VR=verb root, FV=final vowel.

To illustrate why traditional templates are not suited for isiZulu; a

common approach to NLG is the use of templates with a few

simple rules for template selection. For an English system, it may

require a rule to select a template with the article ‘an’ instead of

‘a’ if the object noun starts with a vowel. For an isiZulu system,

there would have to be a rule for how each of the 17 noun classes

affects the verb. This complexity makes the use of templates on

their own infeasible (Keet and Khumalo, 2017). Similarly,

realisation engines, like SimpleNLG and Grammatical

Framework, are encoded for grammatical structures close to

English. Hence, there has not been any implementations of isiZulu

applications using grammar engines.

A data-driven approach to NLG requires a comprehensive data

resource (such as a large, detailed corpus), which is not applicable

for under resourced computational languages like isiZulu.

Instead, grammar-infused templates can be used, as shown by

(Keet and Khumalo, 2017) for a different domain. This is the

hybrid realisation method that our system will use to handle

prefixes and suffixes.

2.2 Math Verbalisers
There has been significant research done on improving math

accessibility for visually impaired people. We note that there are

two strains of technologies that provide access to mathematics:

those that translate MathML or LaTeX expressions into Braille,

https://en.wikipedia.org/wiki/Content_determination
https://en.wikipedia.org/wiki/Document_structuring

such as the LAMBDA project (Bernareggi, et al, 2006); and those

that render speech or natural language text. The following papers

address our problem domain using the latter approach.

AsTeR (Raman, 1994), is an early project from the 90s that helps

produce rendered audio of digital documents. This system takes a

LaTeX document and parses it into a system that generates natural

language text based on rules, called Audio Formatting Language

(AFL). Another paper that assists with accessing LaTeX

formatted mathematics in PDF documents is Axessibility

(Ahmetovic et al., 2018). Axessibility, is a LaTeX package that

automatically generates alternative text descriptions of

expressions and stores them in a hidden comment attached to the

expression. MathPlayer (Soiffer, 2005) is a plug-in for Microsoft

Internet Explorer that renders a visualisation of MathML, which

allows people with visual impairments (blindness, low-vision and

learning disabilities) to dynamically interact with mathematical

expressions. MathPlayer integrates with screen-readers and

supports synthesised speech generation.

There are math verbalisers that explicitly use the NLG realisation

methods discussed in Section 2.1 to generate textual descriptions.

The relevant details of these systems are shown in Table 1.

Table 1: Math Verbalisers that Implement NLG Realisation Methods

Paper
Output

Language
Realisation Method

Ferres and

Sepúlveda, 2011
Spanish Template-based

Mazzei et al, 2019 Italian
Grammar Engine,

SimpleNLG

Mondal and

Jawahar, 2019
English Data-driven methods

(Ferres and Sepúlveda, 2011) approached the problem of math

verbalisation in Spanish with a template-based NLG system called

MathAcc. Mathematical expressions found on Wikipedia are

rasterised images of LaTeX expressions, which screen readers

cannot process. To tackle this problem, (Ferres and Sepúlveda,

2011) collected LaTeX expressions from Wikipedia repositories,

translated them into a more explicit format, Content MathML

(CMML), and generated textual descriptions from the CMML

expressions. The descriptions were then embedded into the

Wikipedia pages.

In comparison, (Mazzei et al, 2019) achieved similar goals using

the grammar engine, SimpleNLG, to generate Italian descriptions

of CMML expressions, which were then processed by a TTS

system.

(Mondal and Jawahar, 2019) proposed a data-driven approach to

handle the issue of TTS systems’ inability to read document

images of math expressions. They developed a trainable deep

neutral network, based off image captioning techniques. The

model reads mathematical formulae as document images and then

learns to generate appropriate textual descriptions.

The works discussed in math verbalisation have used realisation

techniques that are not applicable to isiZulu’s complex grammar.

To our best knowledge there are currently no MathML-to-Text

NLG systems for isiZulu, thus, this paper investigates how we can

accomplish building an understandable MathML-to-Text

translator, using an appropriate realisation method.

3 BUILDING THE MATH VERBALISER

We follow Dale and Reiter’s typical NLG tasks by building an

NLG pipeline. This pipeline processes CMML expressions and

uses templates with a few embedded functions to generate text. To

create these templates, we require building a small corpus of

example sentences that the templates should be able to generate.

To ensure project feasibility, we selected eight mathematical

operations to verbalise. This selection was based on how

frequently the operator is used. (Ferres and Sepúlveda, 2011)

found that the most popular operators found in Wikipedia

repositories are divide, power (superscript), equations, integrals,

addition, subtraction, square root, multiplication. Hence, these are

the eight operators chosen.

The following subsections go into detail about how the corpus

was created and analysed to form templates for each operator.

Then finally, how the NLG system was implemented.

3.1 Corpus Creation

Before the verbaliser could be implemented, we needed to

establish what the system was expected to produce. We took a

corpus-based approach (Reiter and Dale, 1997) and asked a

domain expert to write out examples of appropriate output texts,

given some input expressions. In this case, the domain expert was

a mathematician who speaks isiZulu.

The aim of gathering these example outputs was to establish: what

is the correct wording; how affixes change for each

operator/operand; how punctuation is used to break up operators

in a sentence. There is an issue of ambiguity in the order of

operators when reading the expression out loud.
(𝑥 + 𝑦)

𝑧
 is read

aloud as “x plus y over z”. To a listener, this could be

misinterpreted as (𝑥 +
𝑦

𝑧
) . This was an important factor when

consulting with the expert – we needed to find a natural way to

enforce precedence between operators.

Seventy (70) example mathematical formulae were written out in

a PDF file, with roughly 8 examples per operator, and the expert

was asked to describe each formula in isiZulu natural language.

Most examples were kept simple, containing a single operator and

the two operands it worked on. There were also ‘combination’

expressions, these examples were more complex (containing 2 or

more operators), to see how grammar and punctuation plays a part

in operator precedence.

The corpus was iteratively created – with multiple collaborations

before the final version was agreed upon. Together with the

expert, we built a collection of 65 input-output pairs. Five

expressions could not be completed by the expert and those were

not included in the collection.

3.2 Template Design

After analysing this corpus data, we could manually design

templates for the verbaliser. We discovered that when numeric

operands were kept as Arabic numerals, there was a clear pattern

that every description followed. We converted this pattern into a

general template, called the ‘primary template’ (1):

(1) U-$operand1 <verb> <object prefix>-$operand2

The template’s text includes a single operator (the verb), the

object prefix, and two slots for the operands (except in the case of

square root and integration, which operate on a single operand).

Mathematical operators are inherently nested, operators act upon

other operators, and the isiZulu verb prefix changes depending on

where it is placed in the sentence. We handled this with a

‘secondary template’, for situations where a template had to be

substituted into a ‘primary template’. These secondary templates

 are created with an embedded function that changes the primary

verb into a secondary verb. The primary and secondary templates

are compared for three operators in Table 2.

Table 2: The Primary and Secondary Templates for Power, Times

and Plus Operators.

Primary and secondary templates can also be linked together with

‘siphinde’ (and) and an ‘adjoining’ operator to create a chain of

operators, for expressions like 𝑥2 + 2𝑥 + … and so on. The

‘adjoining’ operator’s verb is created through a function, called

adjoining_verb(), that changes the suffix of the verb to an ’-e’.

(3) <primary template>, siphinde adjoining_verb() <object

prefix>- <secondary template>, siphinde …

For the expression 𝑥2 + 2𝑥, this chaining template (3) generates

“U-x ukhuliswe ngenkombananikuphindwa u-2, siphinde

simhlanganise no-2 esimphindaphinda ngo-x.” Where

‘simhlanganise no-’ (plus) is the operator that adjoins the primary

template, ‘U-x ukhuliswe ngenkombananikuphindwa u-’ (power),

and the secondary template ‘2 esimphindaphinda ngo-x’(times).

Furthermore, to handle the issue of ambiguity in operator

precedence, we formulated a ‘meta template’ (4). The meta

template uses the phrase ‘futhi konke’ (and all) in conjunction

with the chaining template (3) to show unambiguously when an

operator acts upon an entire bracket of terms.

(4) <PT>, siphinde adjoining_verb() <O1>-<ST>, ..., futhi

konke <verb> <O2>-<RHS>.

Where, PT=primary template, O1=object prefix 1, ST=secondary

template, O2=object prefix 2, RHS=right hand side of the

expression.

Therefore expressions, such as (𝑥 + 𝑦)2 , can be generated with

the meta template, to show the exponent operates on all the terms

in the bracket: “U-x simhlanganisa no-y, futhi konke ukhuliswe

ngenkombananikuphindwa u-3”

3.3 Design and Implementation of the System

The verbaliser is a Python program that runs from the terminal; it

takes in an XML file containing a CMML snippet; the system

processes the expression; and then outputs an isiZulu text

description in a new file.

The system was designed to process mathematics formatted in

CMML, because it has tagged operators, which make the

expression’s components much more explicit for the NLG system.

Instead of focusing on the representation of mathematical

formulae like MathML, CMML focuses on the semantics and

meaning of expressions. The difference between the two formats

are shown in Figure 1.

In the following subsection, we will discuss the design and

implementation of the system’s architecture.

3.3.1 Architecture

The system’s architecture is a traditional NLG pipeline (See

Figure 2), adapted from (Reiter and Dale, 1997). It is designed

with distinct, well-defined, and easily integrated modules. There

are three stages, that perform three of the NLG tasks proposed by

Dale and Reiter: Content Determination, Document Structuring

and Linguistic Realisation. A module was built for the text

planner, sentence planner and linguistic realiser.

Operator The (1) Primary and (2) Secondary Templates

Power

(1) U-$OP1 ukhuliswe ngenkombananikuphindwa

u-$OP2

(2) $OP1 okhuliswe ngenkombananikuphindwa u-

$OP2

Times

(1) U-$OP1 simphindaphinda ngo-$OP2

(2) OP1 esimphindaphinda ngo-$OP2

Plus

(1) U-$OP1 simhlanganisa no-$OP2

(2) $OP1 esimhlanganise no-$OP2

(1) <apply>

 <divide/>

 <apply>

 <minus/>

 <ci>x</ci>

 <ci>y</ci>

 </apply>

 <cn>2</cn>

</apply>

 Figure 1: Comparing the syntax of a (1) Content MathML and a (2)

MathML Snippet for the Expression (x – y)/2

(2) <mfrac>

 <mrow>

 <mi>x</mi>

 <mo>-</mo>

 <mn>y</mn>

 </mrow>

 <mn>2</mn>

</mfrac>

Figure 2: The Modular Pipeline Architecture, Adapted from (Reiter

and Dale, 1997), for the Math Verbaliser.

The text planner module fulfills the content determination task – it

receives the input CMML expression and filters out the

information that will be included in the text. The file is read line

by line and a list of the expression’s tokens is produced. The tags

containing the operands are removed, so only their value remains.

The operator tags are cleaned into a more comprehensive form:

‘<times/>’ is cleaned into ‘times’. This improves ease of use and

readability further down the pipeline when the templates are

loaded. The apply tags are left as is. This token list is passed on to

the sentence planner.

The sentence planner’s job is to organize the overall structure of

the intended sentence. This module takes the list of tokens as

input and arranges them into an Abstract Syntax Tree (AST), (See

figure 3.). The <apply> tags are used to signal the start of a new

operation but are not inserted into the tree themselves.

The root of each sub-tree is the operator, the child nodes are its

operands, and the leaves are the actual values of the expression

(either variables or numbers). The completed AST is handed over

to the linguistic realiser.

Figure 3: The AST Created After Parsing the CMML Snippet Shown

in Figure 1, for the Expression (x - y)/2.

The linguistic realiser module will take the output from the

sentence planner and generate a grammatically correct and

complete sentence using the isiZulu templates.

To use the templates, the realiser opens a text file where the data

for each template is stored and loads the file line-by-line into

template objects. These objects store all the information needed to

create and change a template’s grammar depending on how its

verb is used (as a primary, secondary or an adjoining verb). This

data includes name of the CMML operator, the isiZulu verbs for

the primary and secondary templates, the object prefix, and the

template layout (this is important for operators that differ from the

standard two slot template, like square roots). Having the template

data stored externally from the realiser, allows easy adding or

updating of templates.

The received AST is depth-first traversed, fetching a template via

the name of the operator and filling it in for each sub-tree. The

realiser evaluates the AST in Figure 3 using the meta template as

“U-x simsusa ku-y, futhi konke simhlukanisa ka-2”.

4 EVALUATION

This project focuses on whether the resulting system can produce

understandable text for users, therefore the generated text must be

evaluated by human beings. The end users of the proposed system

are isiZulu speakers in the visually impaired community,

however, since this evaluation focuses on the understandability of

the text rather than the rendered audio, people without

impairments were viable participants.

Subsection 4.1 and 4.2 discuss the method of data collection for

the evaluation, and the methods of evaluating the textual

descriptions.

4.1 Collection of CMML Expressions

Mathematical expressions were collected to be translated by the

verbaliser and used in the evaluation. A Perl script was created to

parse through any given text file and extract all CMML

expressions it finds (regardless of the operations). Then the

extracted CMML expressions are filtered out based on whether

they contain only the chosen operators. Expressions that contain

any operators that weren’t chosen were discarded.

The MathML manual1 was downloaded as a text file and the script

was run on it. Approximately 50 CMML expressions that

contained only the chosen operators were found. A total of 10

expressions were selected to be translated into isiZulu text using

the NLG system, for the evaluation. This selection was based on

their complexity; five simple expressions (containing two or less

operators) and five complex expressions (containing 3 or more

operators).

4.2 Methodology
The system’s text was evaluated via a Google Form questionnaire.

To participate, a person had to be fluent in isiZulu and have

completed at least first-year mathematics. Experience in higher-

level mathematics was a criterion, to ensure they had knowledge

of all the operations. We recruited participants via social media

posts and a survey call posted to MAM1000 students at the

1The MathML manual: https://www.w3.org/TR/MathML/mathml.pdf

University of Cape Town (UCT). To encourage participation,

anyone who completed the questionnaire stood a chance to win a

R250 raffle.

As human beings were involved, we required an ethics clearance

to proceed with the evaluation, which was granted by the UCT

CS Ethics Committee. The evaluation keeps the participants

anonymous, as no personal or identifying information was

required with the submission.

The evaluation was conducted as follows. The participants were

given a link to the Google Form, where they could fill out a

questionnaire. Before the questionnaire begins, participants must

read and sign an informed consent form, and disclose their level

of proficiency in isiZulu (First, second or third language).

The questionnaire consists of two sections per mathematical

description, with a total of 10 descriptions.

Section 1 is a rating-based question, where the participants read

the generated description of an expression, and then rate the

understandability of the text on a Likert scale. A rating is selected

from strongly disagree, disagree, unsure, agree or strongly agree.

This section is where a participant’s perceived understandability is

measured. A small comment section is optionally available for

those who would like to elaborate on their rating.

Section 2 is a task-based question, where the participants type out

the corresponding formula of the description into the Google

Form. The inputted formulae will be compared to the expected

formula and declared as either an exact match or a mismatch. This

evaluation technique assesses how accurately a reader can

understand and reproduce an expression’s formula based on its

textual description alone, and has been used by (Mazzei et al.,

2019; Mondal and Jawahar, 2019). The reason for this, is to check

whether their perceived understandability corroborates with their

actual understandability.

This section also aims to reveal any problems with specific

operators, either issues of ambiguity, semantics, or grammar.

The following notation (see Table 3.) was provided on each page

for when the participants must type out the description's formulae.

The participants were also instructed to use parenthesis to show

precedence between operators.

Table 3: The Notation Provided During the Evaluation, for Typing

Out Mathematical Expressions.

Operator Notation

Divide /

Power ^

Square root sqrt()

Times *

Plus +

Minus -

Equals =

Integral int()

We used an attention check question halfway through the

questionnaire, as a measure of the data’s quality. This can

potentially pick up on participants who are skim reading and not

paying attention to the questions.

To analyse the responses, the ratings and exact matches from each

question are added up to get a total score for each participant.

Then we can determine the average rating and number of exact

matches between participants. The same will be done for the

individual descriptions, to see how specific templates performed.

Lastly, we want to test if the complexity of a description

influences whether a participant can understand its formula

correctly. To test this, we will perform a Fischer exact test on the

total number of matches/non-matches in each category (simple

and complex), with the null hypothesis H0: There is no difference

in understandability of the formulae between the simple and

complex categories of the mathematical expressions.

5 RESULTS

In this section we present the findings from the human evaluation.

Five isiZulu speakers with different levels of language proficiency

(first, second and third language speakers) were recruited to join

the questionnaire, which resulted in a total of 50 responses over

10 descriptions (the data in found in Appendix A.). We display

the performance of the individual participants and the

performance of the descriptions themselves.

Table 4: Compares Each Participant’s Most Common Rating and the

Total Number of Exact Matches Between Their Input Formula and

the Expected Formula, and the Overall Average Rating and Matches

between Participants.

Participant
IsiZulu

Proficiency

Most Common

Rating

Total Exact

Matches (out of

10)

1
Second

language
Unsure 3

2
third

language
Agree 4

3
Second

language
Agree 6

4
Second

language
Strongly agree 5

5 First language Strongly agree 7

Average
Agree,

Strongly Agree
5

Standard

Deviation
 1.58

Table 4 displays the results of each participant, comparing their

most common rating and their total number of exact matches out

of the 10 input formulae in the questionnaire. This gives an

indication of their overall understanding of the descriptions. The

green cells indicate that participants 2, 3, 4, 5 mostly perceived

the descriptions as understandable (i.e. they have a common rating

of either ‘agree’ or ‘strongly agree’), while the yellow cell

indicates that participant 1 mostly felt unsure about the

understandability of the descriptions. Participant 5, who is a first

language (L1) isiZulu speaker, received the highest score: a

common rating of ‘strongly agree’ and 7 exact matches.

Figure 4: A Stacked Chart Comparing the Proportion of Ratings and the Total Exact Matches (out of 5) of Each Formula, Grouped by Simple or

Complex; and Displays the Total Percentage of Each Rating and the Total Exact Matches for the 50 Responses.

Simple

Complex

Table 4 also indicates that the average number of exact matches

per participant is 5 (± 1.58).

Figure 4 compares the performance of the descriptions, by

displaying each description’s proportion of ratings and total

number of exact matches (shown to the right of a formula) from

the five participants. To visualise the overall perceived

understanding of the descriptions, the last graph of Figure 4 shows

the proportion of each rating gathered from all 50 responses. If we

interpret both the ratings ‘agree’ and ‘strongly agree’ as

understandable, then 68% of all responses were rated as

understandable. Of all the participants’ responses, 26% were

unsure of a description’s understandability, and only 6% of all

responses disagreed or strongly disagreed on a description’s

understandability. The total number of exact matches across all

descriptions is 25 out of 50 (50%).

The expressions that performed the best included those with

power, equals, multiplication, plus and divide operators.

The descriptions for the complex expressions y=mx+c and

(xyz)^3 were rated as understandable by 100% of the responses,

which coincides with all five participants typing out the formulae

correctly. The simple description for x^(y+1) was also rated as

understandable 100% of the time and received 4 exact matches.

There was one more expression that did well, the complex

expression x^2+y^2+z^2=0; it yielded exact matches from all five

participants and was rated as understandable by 80% of responses.

The descriptions that did not perform as well, were those that

contained square root, integral and minus operators. The

description for the expression (x-y)/2 was interpreted as (y-x)/2

(reversed order of operands for the minus sign) by three of the

five participants but was typed out correctly by one participant.

The same issue with the minus operator occurred with the

expression x-(y/2), it was understood as (y/2)-x by four out of five

participants and received zero exact matches.

Descriptions containing a square root received mixed ratings and

few exact matches. The expression sqrt(a-b)/2c could not be

answered correctly by any of the participants. The L1 speaker was

the only participant able to distinguish between sqrt(a)+b and

sqrt(a+b). One participant, an L2 speaker, commented that they

were confused by the wording ‘Umaziphinde’, in the square root

description.

There was a single description containing an integral, int(x+1),

which was answered correctly only by the L1 speaker. This

description received the most mixed ratings, with a different

rating from each of the five participants.

In Figure 4, simple descriptions yielded either understandable or

unsure ratings, while the complex expressions had a much wider

range of ratings but mostly received understandable ratings. The

five simpler expressions received 9 exact matches, while the five

complex expressions received 16 exact matches, from all five

participants. The Fisher exact test statistic value was calculated to

be 0.0887 and therefore, we cannot refute the null hypothesis at

p<0.05. This tells us that there is no significant relationship

between the complexity of an expression and its

understandability.

6 DISCUSSION

The results suggest that on average a participant perceived the

descriptions to be understandable, and 68% of all ratings showed

that the descriptions were understandable. Based on these results

from the participants’ and the descriptions’ performance, we can

conclude that our NLG system can generate text that is generally

perceived as understandable by isiZulu speakers. This implies that

our realisation method of using templates with embedded

functions to handle affixes, is a viable solution for building an

isiZulu MathML-to-Text system.

There were two types of issues uncovered by the formula input

section of the evaluation; suspected problems with terminology

for the square root and integral templates; and issues with the

order of operands for the minus template.

Asking participants to type out the expression’s formula was a

way to determine if a participant’s perceived understandability

matches with their actual understandability. Although the

participants perceived the descriptions as understandable, the

results show that on average a participant was only able to

accurately replicate the formulae 50% of the time. A good

example of why this check was necessary is seen in Figure 4; 80%

of participants agreed that the description for (x-y)/2 was

understandable; however, three participants wrote down the same

incorrect formula. Since there was a consistent error across these

three participants, it’s likely that the error came from the

semantics of the template, and not a misunderstanding from the

participants.

There were some unexpected discoveries from the results. It was

expected that there would be a relationship between the

complexity of expressions and the number of exact matches it

gets. Surprisingly, the hypothesis test proved that complexity of a

formula is not a factor in the understandability of it. However, this

fact strengthens our suspicions that the misunderstandings of

descriptions containing square root and integral operators, are

caused by issues with semantics rather than the complexity of the

description.

There are a few limitations to consider when discussing these

results. The biggest limitation we faced was the small number of

participants, and thus limiting the generalisability of our results.

The second limitation being that four of the five participants were

not L1 isiZulu speakers. Not surprisingly, the participant who

spoke isiZulu as a L1 received the highest score. Therefore, it is

plausible that participants having second and third language

proficiency in isiZulu may have contributed to a poorer overall

understanding in the results. Other limitations included possible

fatigue or inattention experienced by participants. This

questionnaire could be quite long and tiring, causing participants

to hurry through the questionnaire and respond regardless of their

true abilities, leading to possibly skewed and invalid responses.

The attention check question was included as a safeguard against

this, however, this method it is not fool proof. Lastly, too many

participants answered with an ‘unsure’ rating. This rating made up

26% of responses, which is vague and can be interpreted very

differently by each respondent. Although there was a comment

section, no one offered further information on why they found that

the descriptions were not understandable, or for what reason they

felt unsure. This leaves us uncertain of which part of a description

was misleading.

A recommendation for going forward is that the templates for the

minus, square root, and integral operators require improvements;

we consider that during the corpus creation stage, collecting more

output samples from a wider range of isiZulu speakers and then

basing our templates off the most popular responses, could be a

more comprehensive approach to building templates, as shown by

(Ferres and Sepúlveda, 2011) in their template-based system.

7 CONCLUSIONS AND FUTURE WORK

This study aimed to identify how we can build a MathML-to-Text

system that produces text that is perceived as understandable by

isiZulu speakers. We approached this problem with an NLG

pipeline that uses templates, with a few word-level functions on

top of them, as a realisation method to construct natural language

sentences. Based on a human evaluation of the generated text, we

conclude that our realisation method produced text that was

averagely perceived as understandable among isiZulu speakers;

and thus, is an appropriate technique for building a MathML-to-

Text system.

While these results clearly illustrate a general perceived

understandability, they also revealed that respondents could

translate the description into its correct formulae only 50% of the

time. This was due to a consistent problem among participants

with the minus, square root and integral templates, and not a

misunderstanding on the participants’ behalf.

We also established that there is no relationship between the

complexity of a formula and its understandability, which further

demonstrations that this gap in perceived understanding and actual

understanding is likely a fault in the semantics of the templates,

rather than the complexity of the formulae. Hence, going forward

these three templates will require improvements to their

terminology.

In future work, we hope to extend the collection of templates to

include more CMML operators and involve several L1 isiZulu

speakers during the process of collecting corpus data. Other

potential work includes implementing sentence variation, for more

natural, non-repetitive output.

REFERENCES

S. Grover, A., Van Huyssteen, G., and Pretorius, M. (2011). The South African

human language technology audit. Language Resources & Evaluation, 45, pp 271-

288.

A. Gatt and E. Krahmer: Survey of the State of the Art in Natural Language

Generation: Core tasks, applications, and evaluation. J. Artif. Intell. Res. 61: pp 65-

170, 2018

E. Reiter and R. Dale: Building Applied Natural Language Generation

Systems, Cambridge University Press, 1997

L. Ferres and J.F. Sepúlveda: Improving accessibility to mathematical formulas: the

Wikipedia math accessor. Proceedings of the International Cross-Disciplinary

Conference on Web Accessibility, pp. 1-9. 2011.

A. Mazzei, M. Monticone, C. Bernareggi: Using NLG for speech synthesis of

mathematical sentences. Proceedings of the 12th International Conference on Natural

Language Generation, pp 463–472. 2019.

C. M. Keet and L. Khumalo. “Grammar rules for the isiZulu complex verb”. In:

Southern African Linguistics and Applied Language Studies 35.2, pp. 183–200, 2017

Z. Mahlaza and C. Maria Keet: A classification of grammar-infused templates for

ontology and model verbalisation, In: Metadata and Semantic Research - 13th

International Conference, MTSR, Rome, Italy 2019.

T. V. Raman. Audio System for Technical Readings. PhD thesis, Computer Science,

Cornell University, 1994.

N. Soiffer. Mathplayer: web-based math accessibility. Proceedings of the 7th

international ACM SIGACCESS conference on Computers and accessibility,

Baltimore, MD, USA, pp 204–205. ACM Press, 2005.

D. Ahmetovic, T. Armano, C. Bernareggi, et al: Axessibility: A LaTeX package for

mathematical formulae accessibility in pdf documents. In Proceedings of the 20th

International ACM SIGACCESS Conference on Computers and Accessibility, pp

352–354, 2018.

A. Mondal and C. Jawahar: Textual Description for Mathematical Equations, Centre

for Visual Information Technology, International Institute of Information

Technology, Hyderabad, India, Published in ICDAR, 2019

Appendix A. - Supplementary Information

 User 1 User 2 User 3 User 4 User 5

Informed
Consent

Yes Yes Yes Yes Yes

16/09/2020 16/09/2020 19/09/2020 12/01/2000 25/09/2020

Z.P LM S. K. SY LS

Proficiency Second language Third language Second language Second language First/home language

D1

Agree Agree Agree Unsure Strongly Agree

(Y-X)/2 (y-x)/2 (X-y)/2 (y-(x/2)) (Y-X)/2

 Yes

D2

Unsure Agree Unsure Strongly Agree Agree

Y/2-x (y/2)-x (X-y)/2 (y/2)-x X(y/2 -x)

 Yes

D3

Unsure Unsure Unsure Strongly Agree Agree

a+b a+b Sqrt(a+b) (sqrt(a))+b Sqrt(a+b)

My Zulu is bad,my home language is
isiXhosa and l thought will

understand fully (confused by
mazphinde)

 Yes

D4

Unsure Unsure Agree Unsure Agree

2a+b a+b Sqrt(a+b) (sqrt(a))+b Sqrt(a)+b

 Yes

D5

Agree Agree Agree Agree Strongly Agree

x^y-1 x^(y+1) xy*(y+1) x^(y+1) X^y+1

 Yes

D6

Agree Agree Agree Agree Strongly Agree

(X x Y x Z)^3 (x*y*z) ^3 (X*y*z)*3^2 (xyz)^3 (X*Y*Z)^3

 Yes

Att. Check

Unsure Agree Strongly Agree Strongly Agree Strongly Disagree

x/y x/y X/y x/y X/Y

 Yes

D7

Strongly Agree Agree Strongly Agree Strongly Agree Strongly Agree

Y = mx + c y=m*x+c Y=Mx+c y=mx+c Y=mx+c

 Yes

D8

Agree Agree Unsure Strongly Agree Strongly Agree

x^2 + y^2+ z^2=0 x^2+y^2+z^2=0 x^2+2y+2z=0 (x^2)+(y^2)+(z^2)=0 (X^2)+(y^2)+(z^2)=0

 Yes

D9

Unsure Disagree Agree Agree Unsure

(b-2a)/2a B-a Sqrt(a-b)-(2-a) (b-sqrt(a))/2a Sqrt(b-a)=2a

 Yes

D10
Strongly Disagree Unsure Disagree Strongly Agree Agree

2+1 Sqrt(x) +1 (X+1)/2 1/(x+1) Int(x+1)

Table 5: Raw Data Captured from the Online Questionnaire, which was Conducted with Five Users.

