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Abstract 

In this literature review, the current astronomical 

visualisation software applications are analysed to 

determine their efficacy and efficiency in visualising 

the large volumes of data being produced by modern 

radio telescopes. Volumetric rendering is then 

introduced as a potential technique for rendering multi-

dimensional astronomical data.  We conclude that a 

future application, in order to meet the requirements of 

radio astronomers for visualisation of large data sets, 

would require a client-server architecture, use 

volumteric instead of texture-based rendering, perform 

rendering on the server side before streaming the 

compressed rendered images to the user, support 

various features which allow interaction, and be built 

opensource with high modularity to allow the 

development of plugins which could be shared between 

users. 
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1 Introduction 

The development of radio telescopes (such as the 

Square Kilometer Array [15] currently under 

construction in South Africa) has presented new 

opportunities in the field of radio astronomy. The 

quantity and quality of the data collected by these 

telescopes requires novel techniques for analysis and 

interpretation in order to extract the maximum amount 

of useful information. This data comes in the form of 

data “cubes”, meaning it is three dimensional (two 

positional and one spectral) and can be visualised as a 

stack of 2D images captured along the radiofrequency 

spectrum [4]. Analysis of astronomical data at different 

frequencies allows astronomers to detect certain 

astronomical phenomena which would otherwise be 

undetectable. For example, neutral hydrogen (H1) 

surveys at the 21-cm sub infra-red emission-line can be 

used to infer important information such as the star 

formation rate [11] and cold gas accretion [14] of 

galaxies. 

 

It has recently been pointed out that there is a lack of 

an application that can deal with large astronomical 

data cubes [4][9]. Currently, there are only a few tools 

which provide 3D rendering and only for a small subset 

of a larger data cube (see section 2). When working 

with a large data set, these tools have required the user 

to step through the data cube viewing one rendered 2D 

image at a time until the desired frequency or collection 

of frequencies is found. This process is inefficient since 

it requires the user to perform many interactions with 

the data and attempt to construct a mental 3D 

visualisation from a collection of 2D images. Although 

this technique is useful in certain cases, the addition of 

a 3D representation of this data using volumetric 

rendering along with tools which would provide 

interaction and flexibility for cubes larger than what 

can be stored on a personal computer (PC) would be of 

great use to the next and current generation of radio 

astronomers [4]. 

 



  

 

 

 

In this literature review, the current astronomical 

visualisation tools are analysed as well as their 

shortcomings in terms of their efficacy and efficiency 

in visualising 3D data, 3D volumetric rendering is then 

introduced as potential technique to overcome these 

shortcomings and this technique is explored in detail 

along with a review of its current implementation in 

astronomy and other scientific fields. Finally, in the 

conclusions section, a potential tool or plugin is 

outlined which would utilize this volumetric rendering 

technique and draw upon the tools analysed in order to 

satisfy the needs of radio astronomers for 3D 

visualisation of large data sets. 

 

2. Review of contemporary 3D visualisation tools 

Many 3D data visualisation tools exist, however in this 

review only those which are open source, publicly 

available and continuously maintained by developers 

are analysed. This review is required in order to avoid 

duplication of software and features which have 

already been developed and are in use. 

 

2.1 KARMA 

 

Figure 1: The user interface of Karma. Left: A 2D rendered 

image superimposed with a contour lines for intensity values. 

Right: A position velocity profile corresponding to a slice 

specified by a user. 

Karma [3] is a general-purpose programmer's toolkit 

and is made up of KarmaLib, a structured library and 

application programming interface (API), and several 

modules or applications to perform specific tasks. 

Karma is a serverless and non-network application. 

Hence, all input data cubes must be stored on the host 

machine. This will often prevent users from being able 

to visualise large data cubes when running the 

application on their PCs due to lack of storage capacity. 

For example, the typical survey conducted by 

MeerKAT will have 8K × 8K bits spatial resolution and 

up to 32K spectral resolution [6], which would give a 

typical size of 8K × 8K × 32K × 4 (assuming 32-bit 

floats) ≈ 8 TB at full spectral and spatial resolution. 

These data cubes are clearly too large to be stored on 

most PCs without access to an external hard drive, 

most of which have far less than 8 TB of storage 

capacity. 

 

Karma’s rendering is done by the CPU as opposed to a 

graphical processing unit (GPU). This, together with 

the lack of memory capacity of PCs, imposes 

significant constraints on the size and resolution of data 

which can be visualised using Karma. 

 

There is also the requirement that data cubes used for 

volumetric rendering in Karma must have bit values in 

the range of -127 to 127. This is a severe limitation for 

astronomers as images often contain very bright 

sources which would be stored as bit values higher than 

127. For these data cubes to be rendered, they would 

have to be scaled to fit into this range which would 

result in a significant loss of information. 

 

The main visualisation features supported by the 

library include: 

• Volume rendering of data cubes (see section 

3). 

• Play movies of data cubes - allowing the user 

to step through frames of a data cube. E.g., a 

cube where each step in the movie corresponds 

to a different frequency.  

• Inspecting multiple images and cubes at the 

same time - allowing the user to compare 

several datasets at the same time and apply 

different display settings to each. 

• Slice a cube - used to display three orthogonal 

slices through the cube where each slice is 

along one of the principle planes (X, Y and Z). 

• Superimposing images. 



 

• Interactive position-velocity slices - allowing 

users to use a two-dimensional image to define 

a slice through a three-dimensional data cube. 

• Interactive co-ordinate placement - allowing 

users to quickly place a co-ordinate system 

onto images which do not have one. 

• Rectangular to polar gridding of images - 

which allows the user to easily alternate the co-

ordinate grid between polar and rectangular.  

 

 

2.2 SAOImage DS9 

Figure 2: The user interface of SAOImage DS9. 

SAOIMage DS9 [7] is another widely used 

astronomical data imaging and visualisation 

application. As with Karma, all rendering is done on 

the client’s CPU, and the input data cubes are required 

to be stored on the client’s PC. Hence it imposes 

similar constraints on the cube size and resolution 

depending on the user’s CPU(s) performance and 

storage capacity.  

 

DS9 is a standalone application and requires no 

installation. It also provides access to web-based 

archive servers such as the Mikulski Archive for 

Space Telescopes (MAST), SkyView and many more 

through FTP and HTTP. All data cubes retrieved in 

this manner are required to be entirely copied into the 

memory of the user’s machine before rendering can 

take place. 

 

DS9 does not support volumetric rendering, hence it 

requires astronomers to visualise data cubes in 

“movies” - by stepping through the data cube one 

rendered 2D image at a time. Another notable feature 

supported by DS9 is inter-process communication 

using the Simple Application Messaging Protocol 

(SAMP) [16]. This is a standard for the exchange of 

data between participating client applications and is 

used by many applications dealing with astronomical 

data.  

 

2.3 CARTA 

 

Figure 2: The user interface of CARTA with labels of widgets 

superimposed. 

The Cube Analysis and Rendering Tool for 

Astronomy (CARTA) [1] is an application used for 

the analysis and visualisation of astronomical data. Its 

mission is to provide usability and scalability into the 

future as the size and detail of radio images increases 

as more advanced radio telescopes are built. It plans 

to achieve this through exploiting modern web 

technologies, computing parallelization and modern 

GPUs.  

 

CARTA adopts a client-server architecture. It does 

this to allow users to visualise data cubes too large to 

be stored on PCs. It comprises of two versions: the 

desktop (server) version and the remote (client) 

version. The server is responsible for data cube 

storage, retrieval of a subset of a data cube which is 

selected by a client, compression and any other 

preprocessing. The remote version is used for 



  

 

 

 

accessing the CARTA server remotely, GPU-

accelerated rendering, displaying the image and 

interaction from the client. The desktop version 

allows users to run a CARTA server on their own PC. 

The main use case for this is when a user has a data 

cube stored locally which is not stored on the CARTA 

server. 

 

CARTA currently does not support volumetric 

rendering. Similarly to SAOImage DS9, it only allows 

visualisation of 3D data cubes through 2D rendered 

slices. However, CARTA supports several features 

which are noteworthy: 

• Tiled rendering – the separation of a graphical 

image into a regular grid so that each section 

of the grid (or tile) can be rendered 

independently of the others and at the same 

time (in parallel). 

• Cursor information – displaying information 

about a pixel where the cursor is positioned at 

the top of the screen.  

• Region of Interest (ROI) – allowing the user 

to draw or select a specific region in the 

image which can then be separated for further 

analysis. 

 

2.4 SlicerAstro (plugin for 3DSlicer) 

Figure 3: The user interface of SlicerAstro. Top left: A 3D 

render before smoothing is applied. Top right: A 3D render 

after smoothing is applied. Bottom: Paired 2D views of the 

same data with intensity contours superimposed. 

3DSlicer [8] is an application for the analysis and 

visualisation of medical images. It is supported by 

multiple operating systems including Windows, 

MacOSX and Linux, supports both CPU and GPU 

rendering, supports 3D volumetric rendering and is 

extensible to allow the development and use of plugin 

applications and algorithms.  

 

SlicerAstro [12] is one such plugin, which includes 

several capabilities that are particular to astronomical 

applications, such as: 

• Support for the Flexible Image Transport 

System (FITS) file format, which is the most 

widely used file format in astronomy. 

• Astronomical co-ordinate systems. 

• Interactive 3-D modeling (rotation, zoom, 

etc.). 

• Coupled 1-D/2-D/3-D visualisation with 

linked views. 

• Support for the SAMP protocol. 

• Generation of flux density profiles and 

histograms of the voxel intensities.  

 

3DSlicer (and hence SlicerAstro) is a serverless 

application, and all rendering is done using the host 

machine’s CPU and GPU. Punzo et al. reported that 

SlicerAstro provides interactive performance when 

rendering data-cubes of dimensions up to 107 voxels 

and very fast performance (<3.5 sec) for larger ones 

(up to 108voxels) [12]. SlicerAstro also makes use of 

a several smoothing functions, most notably of which 

is the intensity-driven gradient filter. This filter 

preserves the detailed structure of the signal while 

smoothing the faint part of it, improving visualisation 

and feature detection. An example of this shown in 

figure 4. 

 

3 Volumetric Rendering 

Volumetric rendering is a technique used in computer 

graphics to visualise a 3D discretely sampled data set 

on a 2D display [2][10]. The data usually comes in the 

form of a “cube” or stack of 2D images of the same 

dimensions (i.e. the same amount of pixels), with each 

image on the stack usually acquired in a regular pattern 

(e.g. one every unit of time or distance).  

 



 

Previous approaches to visualising 3D data utilize 

computer graphics techniques which attempt to reduce 

the volume array to a set of 2D geometric primitives 

(usually triangles) linked together in a mesh in order to 

approximate the surfaces of objects contained in the 

data. This technique, known as texture mapping (or 

texture-based rendering) [5], is inefficient when 

rendering objects which have a branching structure, 

especially when there is a high density of branching 

relative to the overall size of the object. This is because 

only the surfaces of objects are rendered when using 

this technique and branching structures rapidly 

increase the surface area of objects, making them more 

computationally intensive to render. Animators and 

computer game developers have had to circumnavigate 

this problem either by using various techniques to 

reduce the complexity of the object (e.g. 

multiresolution rendering [13]) or exclude them 

altogether. Thus, texture-based rendering is 

undesirable when high detail is required or branching 

objects are being rendered. 

 

Texture-based rendering also proves inadequate when 

users require the insides of objects to be rendered, since 

this technique only renders the surfaces of objects and 

excludes all detail found within. This is most notably 

seen in scientific visualisation when users wish to 

interact with, move inside, cut or disassemble objects 

with high precision. For example, a doctor may wish to 

visualise the data acquired from an MRI scan in a 3D 

interactive environment so they can view the inside of 

a patient’s body. 

 

Volumetric rendering aims to solve these problems by 

generating images of 3D data without explicitly 

extracting geometric surfaces from the data [10]. This 

technique directly renders each volumetric element (or 

voxel), which can be thought of as a 3D pixel, where 

the values associated with each voxel are calculated by 

sampling the immediate area surrounding the it. Each 

voxel has an opacity and colour value, which is usually 

calculated by the RGBA transfer function. This 

function maps a numerical value to a colour and 

opacity. 

 

3.1 Volume Ray Casting 

Volume ray casting, also referred to as ray marching, 

is the technique utilized by volumetric rendering 

whereby a 2D image is created from a 3D dataset. In 

this technique, for each pixel of the final image, a 

viewing ray is caste through the volume. Along its 

path, samples of opacity and the colour of voxels are 

recorded and accumulated at equal intervals. In certain 

cases, the sampling point might occur between voxels, 

in which case it is necessary to interpolate values from 

the surrounding voxels. After all sampling points have 

been shaded (i.e. coloured and lit), they are composited 

along the viewing ray, and the resulting opacity and 

colour value assigned to the corresponding pixel. This 

process is completed for each pixel on the screen until 

the final image is produced. 

 

Due to the parallel nature of this technique, since each 

viewing ray can be computed in parallel, modern GPUs 

with multiple cores are best suited to the task of 

volumetric rendering. Scalability into the future is also 

resolved in this way as more GPUs can simply be 

added as the size of the data cubes increase. 

 

4 Discussion 

The various astronomical data visualisation software 

discussed in section 2 as well as many others which are 

currently being used have been designed for 

visualisation of data with file sizes small enough to be 

stored on PCs and laptops. The next generation of radio 

telescopes will produce data cubes several TBs in size 

[4], and these cubes can be stitched together to form 

even larger cubes. It was shown that CARTA supports 

data cubes of this size through its use of a client-server 

architecture which allows the use of storage capacity 

as well as powerful CPUs which are usually 

inaccessible to users. However, CARTA does support 

3D rendering of these data cubes or any subsets of them 

– it only allows the user to view 2D renders of the 3D 

data cubes, and this rendering is done by the users 

GPU.  

 

SlicerAstro (section 2.4) was shown to support 3D 

rendering, however this rendering is also done on client 

GPUs. SlicerAstro does provide several features which 



  

 

 

 

are of great utility to astronomers for visualising 

galaxies and for tasks such as feature spotting and real 

time interaction (rotation, zoom, etc.). However, this 

can only be done for data cubes which are small enough 

to be stored on the host machine. It was also shown that 

the interactivity and performance of AstroSlicer begins 

to decrease when rendering > 107 voxels. The typical 

survey conducted by MeerKAT contains 

approximately 2 × 1012 voxels [6], i.e. AstroSlicer can 

provide high performance for data cubes 2 × 105 times 

smaller than a single data cube captured by MeerKAT. 

Thus, AstroSlicer would require significantly greater 

computational power in order to render a single data 

cube produced by MeerKAT whilst maintaining an 

acceptable interactive performance. Punzo et al. did not 

state the specifications of the machine used during 

these performance tests which makes it is impossible 

to determine which out of random-access memory 

(RAM), the CPU or GPU was the bottleneck of the 

performance for SlicerAstro. More research is needed 

to be done on this, and projections made on the 

performance that can be expected if rendering is done 

using advanced computational hardware. 

 

The features, architecture and customer reviews of 

SlicerAstro can be drawn upon when developing an 

application capable of volumetrically rendering and 

visualising large data cubes. The rendering equation as 

well as the transfer function could directly be used in 

more advanced software capable of visualising much 

larger cubes, or they could prove to be inefficient but 

capable of being refactored and optimized in order to 

be used in future applications. Interviews could be 

conducted and customer reviews pooled to determine 

which features of SlicerAstro provide the most utility 

and which are regarded as non-essential for future 

iterations.  

 

Karma is a good example of a successful astronomical 

visualisation tool since it was developed in the 1990’s 

and is still in wide use today. Its robustness and wide 

variety of features is what makes it the tool of choice 

for many astronomers and should be emulated in future 

applications. The limitations of Karma which makes it 

unsuitable for large data sets were its serverless 

architecture and reliance on user’s machine as well as 

the limitations it sets on bit values during volumetric 

rendering, leading to a loss of information. 

 

SAOImage DS9, likewise with Karma, requires all 

rendering to be done on the user’s machine and does 

not support 3D rendering. Hence, it suffers from 

similar constraints in terms of data cube size. Its feature 

which distinguish it from the rest in this review is its 

remote server access of data cubes. This can be 

considered a quality of life feature since this can be 

done via a web browser, however it should be 

considered in future applications in order to improve 

the overall user experience and ease of use. 

 

The astronomical data captured by radio telescopes is 

usually in a branching structure or is cloud-like. 

Galaxies, solar systems and gas clouds are permeated 

throughout space and are comprised of many smaller, 

disjointed features. This makes texture-based 

volumetric rendering inefficient when rendering 

astronomical data, since the algorithm either has to 

form surfaces which enwrap multiple smaller objects, 

leading to a loss of information, or form countless 

smaller surfaces surrounding individual objects, 

leading to an exponential increase in computational 

complexity. Another drawback from wrapping 

surfaces around multiple objects, for example an H1 

gas cloud, is that if the user were to position the view 

of the visualisation inside the cloud after the render had 

been completed, nothing would be visible (i.e. it would 

appear empty inside). Since radio astronomy is a 

scientific field and interactivity of the 3D virtualization 

is regarded as essential, high precision and accuracy is 

required during data analysis and information loss must 

be avoided at all costs. 

 

This leaves volumetric rendering (section 3) as the 

rendering technique of choice for 3D visualisation of 

astronomical data. This technique does not attempt to 

explicitly extract 3D geometric surfaces and instead 

directly renders each voxel. This maintains the high 

detail of cloud-like and branching structures found in 

astronomical data and allows them to be visualised and 

interacted with in 3D. Since the volumetric ray casting 



 

algorithm can be executed in parallel, rendering can be 

conducted on modern GPUs or clusters of GPUs. A 

client-server architecture would likely be a 

requirement to grant access to such hardware which the 

majority of users would not have access to. This would 

allow users to visualise data cubes too large to be stored 

on their machine, and grant access to a cluster of GPUs 

as opposed to a single one running on their machine,  

potentially in an interactive environment with 

acceptable performance. 

 

5 Conclusions 

In this review, various astronomical visualisation 

software applications were analysed considering recent 

developments in radio astronomy telescopes and the 

magnitude of data they are producing. A new 

application will be required in order to visualise these 

large data sets in 3D. This application will require a 

client-server architecture which would allow the 

exploitation of larger data storage hardware 

unavailable to most users on their PCs. Volumetric 

rendering would be the technique of choice over 

texture-based rendering due to the nature of the data 

produced by radio telescopes and the types of 

interaction required by astronomers with the data. This 

rendering must be done on the server side which would 

allow for the use of clusters of modern GPUs, after 

which the rendered images are compressed and 

streamed to users to be displayed. Several features 

common to many current astronomy visualisation 

applications were reviewed in order to consider which 

should be included in future applications. The software 

should be modular and opensource to allow 

development of further plugins and tools which might 

be required in specific use cases. 
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