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1 ABSTRACT
The scientific field of astronomy has benefited greatly from
the data boom of the 21st century. This wealth of data
provides astronomers with a great opportunity for more
detailed analysis, but it is also coupled with various challenges.
Visualization tools need to designed to deal with both the
volume and complexity of modern astronomical data.

Most current visualization tools struggle to process very
large data cubes, and also offer very limited 3D rendering
capabilities. There is a need for software that is designed
to solve these issues . In this paper we present a software
visualization prototype that aims to do just that. By implementing
a hybrid rendering approach, we attempt to explore a unique
angle that aims to tackle both of these issues.

2 INTRODUCTION
Astronomy has always been a field that relies heavily on
visualization. The ever increasing size and complexity of
astronomical data has only increased the need for such
visualizations [8].

Astronomical data is usually represented as a 3D data cube.
Despite the fact that the data is 3D in nature, most current
software visualization tools focus only on 2D visualization,
offering limited or inefficient 3D rendering capabilities. Representing
these inherently 3D cubes as a volume would hold obvious
benefits and provide astronomers with additional insight
when analyzing their data. [8, 11]

Data cubes are often many terabytes in size and can’t be
loaded into a typical desktops memory. Transferring these
cubes from their archive onto the user’s machine is also a
very time-consuming task and practically impossible in a lot
of cases. Software visualization tools therefore needs to be
designed in a way that mitigates this problem.

CARTA [2] (Cube Analysis and Rendering Tool for Astronomy)
is a visualization tool designed to do this by employing a
client-server architecture. It delegates most of the expensive
computation to a powerful remote server, and then streams
a down-sampled version of the data cube to the end-user’s
browser for rendering. This allows large data cubes to be
analyzed on very modest workstations. However, CARTA is
only capable of 2D visualization, and the CARTA team are
eager to add a 3D visualization component to their system.

This project focuses on creating a 3D visualization prototype
that employs a similar client-server architecture to CARTA.
The main goal of the project is to provide the CARTA team
with a prototype that explores different 3D visualization
techniques that they can eventually integrate into CARTA.

Direct integration into CARTA was considered, but it was
not deemed practical since it would require a large amount of
time dedicated purely for integration that would eat into the
development time of the project. A prototype would allow
us to better explore the 3D visualization options without
worrying about these time-consuming integration issues.

3 RELATED WORK
There are plenty of existing astronomical software visualization
tools. However, all of them seem to suffer from at least one
of two major problems. They either don’t have adequate
3D visualization capabilities, or they cannot efficiently and
effectively render very large data-cubes.

Often they suffer from both of these issues. This section
will analyze some of the more popular software visualization
packages, and discuss their strengths and weaknesses.

3.1 KARMA and Ds9
Two of the most popular astronomical visualization tools are
KARMA [3] and DS9 [6]. However, these tools are traditional
desktop applications and struggle to process and render large
data cubes. They run into the infamous larger-than-memory
problem [5] where the entire data cube needs to be loaded
onto the end-user’s system, and often the system simply does
not have enough memory to handle this. KARMA and Ds9
also fail to leverage the GPU at all, delegating all the work to
the GPU, which puts a large bottleneck on their performance.

3.2 CARTA
In contrast, CARTA is far more suited at handling large data
cubes due to it’s client-server architecture. It delegates most
of the computation and storage to enterprise-class servers,
and then streams a subset of the processed data to the
client. The client then renders this data and allows the
user to interact with it. We plan on emulating CARTA’s
client-server approach since it will allow our solution to
scale up when dealing with very large data cubes. CARTA
only performs client-side rendering however, and it can get
away with this, since it only supports 2D rendering. We will
not be able to achieve this, since 3D volume rendering is
computationally expensive and a typical end-user system
will cause a significant bottleneck. In order to combat this,
we will implement a hybrid rendering approach, which we
explain in a later section.



3.3 3D slicer and VTK
3D-slicer is an open-source 3D-visualization tool geared towards
the medical field. 3D-slicer is not typically used for astronomy,
but it is capable of creating interactive 3D visualizations
which makes it especially interesting for our project. 3D-
slicer uses The Visualization Toolkit (VTK) [1], which we
make use of in our prototype.

VTK is an open-source graphics library that implements
powerful 3D rendering techniques such as ray-casting [10] to
produce high quality 3D models. We will be using VTK’s
C++ library for server-side rendering, and their JavaScript
library for client-side rendering. VTK harnesses the power
of the graphics processing unit (GPU) by using Nvidia’s
CUDA [7] technology. This allows it to render data much
more efficiently than pure CPU-based code.

4 DESIGN AND IMPLEMENTATION
4.1 Requirements Gathering
In order to make sure that we are going in the right direction,
we held weekly meetings with our supervisor, Professor Rob
Simmonds as well as CARTA’s lead developer, Dr. Angus
Comrie. This provided us with valuable input to ensure that
we were designing our system with the right goals in mind.
We agreed on a couple of core features that needed to be
implemented. Firstly, the client would need to be in the form
of a web application in order to mimic CARTA. Secondly the
computationally expensive processing, down-sampling and
rendering would need to be done server-side, to ensure that
the load on the end user’s machine was kept to a minimum.
The rendering also needed to leverage the GPU in order to
increase speed and efficiency. The user should also be able
to interact with the cube in real time, at reasonable FPS
(frames per second). The communication between client and
server needs to also be built in a way that minimizes latency
to further aid the user experience. Lastly, the system design
needs to cater for very large data cubes, possibly larger than
the user’s entire system memory.

These were the core principles that we kept in mind while
designing our prototype.

4.2 Division of work
This was a two man project. My partner focused on dealing
with the server side applications, like server-side rendering,
cropping, down-sampling etc. I was responsible for the client,
user interface, client-side rendering and state-management.
Both of us dealt with the communication layer and we worked
together pretty extensively, often editing each other’s code
to better fit our needs.

4.3 Design details
Our prototype is in the form of a React based web application
that communicates with a C++ back-end server. gRPC was
our communication protocol of choice.

Since we needed to be able to handle very large data cubes,
as well as provide a highly interactive user experience, we

Figure 1: Basic architecture of our software prototype

decided to explore a hybrid rendering approach, where both
the client and server would perform some sort of rendering.
This core process is described below and is further illustrated
in Figure 2.

∙ The user opens the web application and clicks the drop
down menu.

∙ A gRPC call is made to the server, asking for the list
of files.

∙ The server sends the list of files to the client, and the
client displays it to the user.

∙ Once the user selects the file they want to view, another
gRPC call is made to the server, specifying the file.

∙ The server then down samples the cube to a certain size
(initially 10mb), and then streams it to the client via
gRPC. This down-sampled cube is a low-res level-of-
detail representation of the data-cube, and is referred
to as an LOD model in this paper. The gRPC call
includes information about the exact byte size of the
cube, so that the client knows when the data has been
fully sent. The server also generates a high resolution
cube that it keeps on the server.

∙ The client receives the stream of bytes and concatenates
them into one byte array. Once the stream has finished,
the client converts the byte array into a float array,
stores the LOD model in memory and renders the cube
using VTK. The cube can now be interacted with by
rotating, zooming, cropping etc.

∙ After the user stops interacting with the cube for
a certain amount of time (~250ms) a gRPC call is
made to the server, containing various details about
the cube, like it’s position, orientation, focal-point,
cropping planes etc.

∙ The server receives this message, and takes a snapshot
of the high resolution model at the exact orientation
defined in the message. The image is then encoded
using FFmpeg using the H.264 codec and sent to the
client.

∙ The client receives this screenshot and decodes it using
an npm package called h264Decoder. The decoder
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returns a byte array in the Yuv420 color-space format.
This is converted into the RGB color-space and rendered
using VTK. Once the rendering has finished, the high
resolution image replaces the LOD model displayed to
the user.

∙ As soon as the user interacts with the cube again, the
image is replaced with the LOD model again, and the
process is repeated.

Figure 2: Sequence diagram of our software prototype

This approach allows for a highly interactive experience,
since the user will only ever interact with a low resolution
cube. However, it also allows for detailed observations to be
made, because as soon as the user stops interacting with the
cube, they will be presented with a high resolution image
that provides them with more detail to explore. It also allows
very large data cubes to be visualized, since large cubes will
be cropped before being sent to the client.

4.4 Key features
This section will detail the key features found in my part of
this project (i.e the client). The user interface is shown in
Figure 3 below.

∙ A is a simple file selector. The client requests a list of
all the files sitting in a special data directory on the
server. It then lists all of them together with their file
sizes (in megabytes (mb) ).

∙ B is the area that displays both the level-of-detail
(LOD) model generated by the client, as well as the
high-resolution image generated by the server. VTK
does most of the heavy lifting in this regard, making
use of GPU accelerated rendering techniques. The byte
stream received by the client is converted into an array
of floats, and then rendered using VTK. The user is
able to make use of basic features such as rotating the
cube, zooming in and panning.

Figure 3: Screenshot of user-interface

When the user stops interacting with the LOD model,
the client replaces the LOD model with the high resolution
image, allowing for more detailed analysis. The replacement
is done after 150ms in order to prevent multiple gRPC
calls in quick succession. This is done seamlessly and
in an ideal scenario the user would not notice a jarring
difference, only that the model became more detailed.
This feature is important for allowing detailed analysis
to be performed on very large cubes.

∙ C is a resizing widget. The client is able to crop various
regions of the cube in real time, by dragging the edges
of the widget to resize it as he/she sees fit . The non-
relevant areas then get filtered out, allowing the user
to focus on a particular section or slice. This cropping
is done purely on the client-side, no calls are made to
the server until a higher-resolution cube is selected (see
next point). The widget is mapped to the axis sliders
( see D), and vice-versa, allowing the user to choose
which method he / she prefers when cropping the cube
region

∙ D represents sliders that allow the user to resize the
cube, similar to C. The max and min values correspond
to the max and min dimensions of the cube currently
being viewed by the user. Cropping is an essential part
of the analysis astronomers perform, as it allows them
to hone in on a slice of data they want to explore
further. It is essential for the cropping process to be
as fast as possible in order to aid this.

∙ E is a slider that allows the client also allows the user
to specify a certain target megabyte value (10 -100mb )
for the LOD model, using a slider. When the user clicks
the "request new model" button, the client will then
send a request to the server to generate this higher-res
LOD model and send it back to the client. This allows
the resolution of the LOD model to be specified by
the user. This is useful if the user wants to request a
more detailed cube so that they can more effectively
analyze the data. While the high quality image would
still be available, sometimes the LOD model can be at
such low detail that it would be difficult for the user to
determine where to stop and analyze, and this feature
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helps mitigate that problem. This feature also allows
the user to specify a fairly high resolution LOD model
of a specific slice of a cube. For instance, if the cube is
over a terabyte in size, a 10mb representation of the
cube will likely be unintelligible to the user, since it
will be down-sampled too heavily. This feature allows
the user to specify a small slice of that very large data-
cube, and then request a 50mb version of it, allowing
a more intelligible piece of data to be displayed.

∙ F resets the cube to the last LOD model that contained
the full model of the cube. This cube is stored in front-
end memory to reduce the amount of time it would
take to reset, since resetting is likely a feature the user
would use multiple times when analyzing the cube. All
cropping regions / zoom values are reset when this
button is pressed.

∙ G allows the user to specify the type of down-sampling
done by the server on the LOD model. "Max" grabs
only the maximum voxel values in a certain area, while
mean takes the average of those values. When this
option is changed, a new request is sent to the server
to generate the new model and the model currently
displayed on the client is then replaced with this new
model.

∙ H are sliders that allow the user to adjust the color
transfer function of the cube. A transfer function is
a function that maps every voxel to a certain color
and opacity. This allows the user to adjust the color
to increase visibility as they see fit. This feature is
not fully fleshed out, and it would preferably allow a
greater control over values like the opacity to further
allow the user to enhance the areas they want to focus
on.

4.5 Core languages and technologies used
Since the overall goal was to integrate into CARTA, we tried
to match CARTA’s tech stack as much as we could.

∙ React was used for the web-client since it matched
CARTA and is also a well supported and modern web
framework. React also supports TypeScript which is a
powerful and modern front-end language.

∙ C++ was chosen for the back-end server, since it is a
powerful language suited for high performance tasks.

∙ gRPC was chosen as the communication protocol, since
it is language agnostic, and offers fast communication
speeds with low latency. This is especially important for
our project since we are aiming for a highly interactive
user experience.

∙ VTK was used as a visualization framework to handle
a large part of the rendering complexity. VTK is an
incredibly powerful framework that leverages the GPU
of the user’s system in order to perform it’s rendering.
VTK also has both a C++ and JavaScript API, allowing
us to use it for rendering on both the client and the
server.

∙ FFmpeg was used for encoding the screenshot on the
server, and h264decoder was used to decode it on
the client-side. Initially we planned on using Nvdia’s
hardware-accelerated encoder Nvenc for the encoding,
but due to technological constraints we were unable to
do so. FFmpeg is an able encoder, but it does not make
use of the GPU which would be idea for our use case.
h264decoder is a fairly lightweight WebAssembly-based
[4] decoding library for the web with admittedly some
large restrictions. The ability to decode h264 on the
browser seems to be in its infancy, and the alternative
browser-based decoders seems to have similar restrictions.
We chose H.264 as a codec since it allows us to send
the high resolution image at a fairly high quality with
a fairly low bandwidth requirement. The H.265 codec
was a consideration, since it is more efficient [9], but
we feared it would be too CPU intensive to decode in
the browser.

∙ MobX was used for client-side state management, in
order to mirror CARTA and to work around the inherent
limitations of React’s build in state management.

5 TESTING AND EVALUATION METHODS
The testing methods of the software system focused mainly
on the scalability of our approach, since the main aim was
to create a prototype that is able to allow astronomers to
analyze very large data-cubes fairly quickly and without much
lag and latency.

Two main testing criteria was chosen to evaluate whether
the system satisfied our goals or not.

Firstly, the time between when the render button was
clicked, until the time the model was displayed to the user was
measured. The model is down-sampled to 10mb during this
process, and sent over an internet connection. A connection
speed of 35 megabits per second was used for this trial. This
measurement will be called server-to-client latency. Three
trials were done for every file and the mean of these three
trials was recorded.

Secondly, the frames-per-second (FPS) was measured when
interacting with both a 10mb and 30mb LOD model, and
averaged over 30 seconds.

An average FPS above 15 was considered sufficient for
interactivity and analysis, provided there weren’t significant
spikes. The JavaScript library react-fps was used to measure
the FPS while interacting with the data-cube.

Four binary data files of varying sizes was used for both
of these tests. The files were 41.7mb, 195mb, 564.7mb and
844mb in size. These tests were run on an AMD FX 8320
CPU and an Nvidia 1660 super GPU.

6 RESULTS
6.1 Server-to-client latency
Figure 4 describes the time between the render request, until
the time the LOD model gets displayed to the user.

As expected, the time taken to load these models increases
as the model size increases. This is mostly due to the increase
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Figure 4: Bar chart depicting server-to-client latency

in time taken to down-sample the larger data cube. Network
speed is not relevant to this increase, since the LOD model
sent over the network is fixed (either 10mb or 30mb) regardless
of the model, hence it will be a fairly constant across the
various models. The increase in latency might be a concern
when dealing with very large cubes, since the relationship
between latency and cube size is linear. This could result in
very large data-cubes taking an impractically long time to
process.

6.2 FPS measurement results
The FPS tests yielded positive results. For the 10mb LOD
model, all 4 data-cubes rendered between 45 - 50 FPS which
is more than sufficient for the types of interaction (zooming,
cropping, panning) needed in order to analyze the data.

The 30MB LOD models averaged around 41 FPS, which
again is more than enough to allow for user interactivity. Our
initial claim was that an FPS above 15 would be sufficient
for user interaction such as rotation / cropping / zooming
etc, and it seems we have comfortable achieved that.

Figure 5 shows the detailed breakdown of the results.
The FPS drops slightly when loading a higher-resolution

LOD model but it is not too big of a concern, since the
maximum LOD model size that can be requested is 100mb,
regardless of the actual data-cube size. If there is a need
for much larger LOD models, the performance could start
becoming a problem, and more efficient rendering techniques
would have to be explored.

7 DISCUSSION
Our aim for this project was to create a software visualization
prototype that was capable of rendering 3D representations of
very large data-cubes. The 3D models needed to be rendered
at interactive frame rates, but also needed to be of a high
enough quality to enable visual analysis of the data. The
findings were intended to help CARTA implement 3D visualization
in their system.

Figure 5: Bar chart depicting the FPS while interacting with
various data-cubes

The client-server hybrid rendering model we implemented
was designed to satisfy this goal. This hybrid-rendering model
provided the user with a data visualization that is both
interactive and capable of being analyzed in detail . Firstly,
it creates a low-fidelity, interactive model of a large data
cube and sends it to the user’s machine, which renders this
model. When the user stops to analyze a certain part of the
model, a snapshot of the high resolution model is taken by
the server that matches the orientation of the cube exactly.
This snapshot then replaces LOD model when the user has
is not interacting with it, allowing for more detailed analysis.

Testing the system ourselves yielded fairly positive results.
The hybrid rendering approach seemed to work well for cubes
of up to 844mb. The LOD model felt fairly interactive and
the high-res image provided a more detailed image when the
interaction stopped. On a surface level at least, it seemed
that our approach worked.

The FPS measurements undertaken for client-side rendering
yielded promising results, with the FPS hovering in the 45-50
range for a 10mb LOD model and around 41 FPS for the
30mb LOD model. This is well within the the FPS range
required for interaction. While there is a drop in FPS when
selecting higher resolution LOD models, the LOD model
shouldn’t get so large that it drops the FPS too much. If the
user’s PC is struggling with a particular LOD model’s target
size, they can always scale it down to a more suitable size
using the slider provided by the UI.

The server-to-client latency is another important aspect to
consider when thinking about the scalability of the solution,
since the LOD model needs to be down-sampled and sent
to the client in a reasonable amount of time. From the
experiments ran, it seems that the server-to-client latency
increases linearly in relation to the data-cube size, which
is concerning if we consider down-sampling very large data-
cubes. Cropping the full cube server-side before down sampling
is an approach that could possibly be explored when dealing
with these large data cubes.
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Certain issues became apparent when testing our system
with cubes of different sizes. In the cubes used for our tests,
the features of the LOD model were still recognizable, but
admittedly as the cube size got larger, the features of each
model became less defined. This could become a problem
when dealing with very large data-cubes, since at a certain
point the resolution of the LOD model might become too
low to distinguish any features at all. This further motivates
the need for something like server-side cropping before down-
sampling.

Using FFmpeg for the encoding is not the ideal since it is
CPU bound, and Nvenc would be a much better option to
explore in the future, since it uses GPU accelerated techniques.
The only reason we did not make use of it was due to hardware
limitations.

Another limitation to note is the fact that the current
software package supports only raw binary data and not the
popular FITS [12] format often used for astronomical data.
This is something that can be expanded upon in future work.

No formal user testing was performed on the web-client.
The purpose of our prototype was to explore ways to analyze
very large data-cubes in 3D, with the end goal of integrating
the approach into CARTA. We felt that user testing would be
a bit superfluous since the goal was not to create a standalone
visualization tool. User evaluations and testing is definitely
something that needs to be done if this approach is to be
expanded upon in the future.

8 RESTRICTIONS TO SUCCESS
8.1 Hardware compatibility
While we thought typical home hardware would be sufficient
for our development needs, certain software packages such as
Nvidia’s hardware accelerated encoder Nvenc, was incompatible
on our machines, meaning we had to use FFmpeg for encoding.
While not a huge deal at this point, Nvenc is definitely the
more efficient solution since it makes use of GPU power,
meaning it will scale better when dealing with higher resolution
images.

9 CONCLUSIONS
We have developed a 3D visualization prototype that allows
large data-cubes to be analyzed fairly quickly. We believe the
hybrid-rendering approach we have explored is fairly unique
and provides an interesting approach that warrants further
exploration. We believe the low-fi interactive model coupled
with a higher-res screenshot provides a good compromise
between smooth interaction and detailed visual analysis.
There are some scaling concerns to keep in mind with this
model, particularly when down-sampling very large data-
cubes. A feature such as cropping the full model before
down-sampling is definitely an angle to explore in the future.

It is also important to note that prototype is not a robust,
user-evaluated system and while the overall approach and
design yielded some interesting results, the actual software
system was not intended to be a complete and standalone

solution. A more robust and user-friendly system is another
aspect to explore in the future.

We believe our hybrid-rendering model, particularly approach
of replacing the low-res model with a high-res image, provides
a promising approach of allowing both interactivity and
detailed analysis to the user. We believe this is a unique
angle that doesn’t seem to be replicated in any of the existing
astronomical visualization packages that we have analyzed
and think it warrants further exploration and refinement.
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