
3D visualization of large astronomical data cubes, towards a
client-server based solution

A literature review

Shuaib Parker
University of Cape Town
prkshu001@myuct.ac.za

ABSTRACT
Astronomy has experienced large technological advancements
in the last few years. Modern telescopes collect data at a pre-
viously unprecedented rate. This new wealth of data presents
a great opportunity for scientific advancement in astronomy.

Three-dimensional (3D) visualization becomes a key fea-
ture in allowing astronomers to reason about these large
sets of complex data. However, this data boom also presents
astronomers and software developers with a new set of chal-
lenges, as visualization tools need to be adequately equipped
to deal with the ever increasing data size.

We find that existing visualization tools focus mainly on
2D visualization and simply cannot process large data cubes
efficiently. Good software architecture, such as a client-server
approach, becomes key in mitigating this issue since complex
data processing can be offloaded to a remote server. We
also highlight the importance of harnessing the power of the
graphics processing unit (GPU) to speed up rendering and
allow the user to properly interact with the 3D model.

CCS CONCEPTS
• Applied computing → Physical sciences and engineering .

KEYWORDS
Visualization, Visualization Tools, Astronomic visualization

1 INTRODUCTION
Astronomy has always been a visual science. Astronomers
often need to analyze large sets of complex data and vi-
sualization helps immensely in this regard [16]. The need
for visualization has only increased since then, as modern
telescopes collect data in greater detail and magnitude than
ever before [9]. The data collected by these telescopes are
often multi-dimensional, and are commonly referred to as
astronomical data cubes. For the rest of this paper we will
simply refer to them as data cubes.

Despite the multi-dimensional nature of these data cubes,
most current software packages only offer 2D visualizations
[2]. While 2D visualizations are useful in their own right, it
is clear that 3D visualizations can provide further insight
during data analysis [16, 24]. It’s also important to note that
these 3D visualizations need to be rendered efficiently enough
to allow for real-time user interactivity.

Although there have been several attempts at 3D visual-
ization [14], there seems to be a severe lack of modern 3D
visualization tools for astronomy.

The large size of these modern data cubes also poses a
serious problem, since most existing software was not designed
to deal with data cubes many gigabytes large, resulting in
poor performance on a typical workstation.

With these issues in mind it becomes clear that the ideal
modern visualization tool would need to:

∙ Be capable of good 3D visualization
∙ Have the ability to run on a modestly powered work-

station at adequate speeds
∙ Allow for a high level of interactivity

In this paper we will review the various tools and tech-
niques used for 3D visualization in astronomy and determine
whether it satisfies the criteria above. This will allow us to
learn from their strengths and avoid their weaknesses when
designing a visualization tool of our own.

2 WHY 3D VISUALIZATION?
Why the need for 3D visualizations at all? The first argument
can be found in the nature of the data cubes themselves. They
are inherently three-dimensional, containing two spatial axes
and a third axis (usually frequency). Figure 1 displays the
typical structure of the data cube

Figure 1: Typical structure of an astronomical data cube. X
and Y represent the spatial axes, while lambda represents
the frequency axis. Retrieved from https://www.researchgate.
net/figure/the-spectral-data-cube_fig10_274710096

It’s natural to assume that visualizing this data cube
in 3D could aid analysis and provide insight not readily
apparent in 2D. 3D models also aid users in evaluating the
data qualitatively [24]. This is essential when dealing with
large amounts of data, since it is near impossible to fully
comprehend every detail of such large amounts of data.

https://www.researchgate.net/figure/the-spectral-data-cube_fig10_274710096
https://www.researchgate.net/figure/the-spectral-data-cube_fig10_274710096

Shuaib Parker

3D models also offer a more holistic overview of the data.
Instead of stepping through a 3D data cube piece by piece,
the user can get a more global view to aid analysis. This
global view could also be key when performing quality control
on the data cube [6].

3 CURRENT 2D AND 3D VISUALIZATION
TECHNIQUES

Most of the current astronomical visualization tools focuses
on 2D visualization. Typically these 2D visualizations display
a ’slice’ of the data cube to the user. The user can then
typically adjust the third axis with a slider and step through
the cube in that way. While adequate for certain types of
analysis, these types of 2D visualizations put a large cognitive
strain on the user, as they have to remember the information
displayed in the previous frames and don’t ever get a full
overview of the data [10].

There are quite a number of established 3D visualization
methods employed by fields such as medicine, gaming and
indeed astronomy. One particularly useful set of techniques
for astronomy is volume rendering [5].

Volume rendering is a set of techniques that are used to
display a 2D projection of a 3D data set. Volume rendering
can be broken up into two distinct types: indirect volume
rendering and direct volume rendering.

3.1 Indirect volume rendering
Indirect volume rendering (otherwise known as surface ren-
dering) tries to transform a 3D data set into a set of geometric
primitives representing the data, and then attempts to ren-
der this new image. After an initial pre-processing step, each
subsequent render can be done quickly. Indirect volume ren-
dering is often used in fields such as gaming [12], in order to
create 3D objects such as terrain and characters.

However, not all 3D objects and data can be sufficiently
approximated by geometric primitives. Astronomical data in
particular falls into this category, since they typically do not
have well defined surfaces [10]. This can result in significant
noise errors and rendering artifacts.

3.2 Direct volume rendering
Direct volume rendering methods on the other hand, attempts
to directly render the data on a 3D grid. The grid can be
broken down to individual elements called voxels (which can
be thought of as the 3D equivalent of pixels). Direct volume
rendering is computationally expensive, but it does not suffer
from the type of noise errors found in indirect volume render-
ing methods. Examples of direct volume rendering methods
are ray-tracing [20] and ray-casting [22].

4 EXISTING VISUALIZATION TOOLS
There are quite a number of existing visualization tools for
astronomical data. This section will analyze some of the most
popular tools in the field, and highlight their strengths and
weaknesses.

4.1 SAOImage DS9
One of the more popular pieces of visualization software for
astronomy is SAOImage DS9. Initially developed in 1990,
it still enjoys widespread use and is actively maintained to
this day. DS9 supports the Flexible Image Transport System
(FITS) [25] format, which is the most commonly used file
format in astronomy, as well as binary tables and multiple
other file formats [11].

DS9 provides a graphical user interface (GUI) that allows
the user to view a 2D slice of the data cube along different
axes. The user can then adjust a slider to view different slices
of the cube. Figure 2 is an example of the DS9 user-interface,
found in their user manual.

Figure 2: A screenshot of the DS9 user interface. Retrieved
from http://ds9.si.edu/doc/user/gui/index.html.

More recently, DS9 has added support for 3D visualization
by making use of a direct volume rendering technique called
ray-tracing [4]. However, this 3D visualization functionality
suffers from performance issues, since it does not make use
of the graphics processing unit (GPU) to aid rendering. This
slows down rendering considerably and makes interacting
with the data fairly cumbersome.

DS9 is also requires the entire data cube to be loaded
into the main memory of the end user’s workstation before
processing and rendering it, making it simply impossible to
handle very large data cubes [9]. These issues make it less
than ideal for modern use.

http://ds9.si.edu/doc/user/gui/index.html.

3D visualization of large astronomical data cubes, towards a client-server based solution

4.2 KARMA
Another widely used visualization tool is KARMA [7]. First
developed in 1996, it is still being used by astronomers today.

KARMA allows the user to view a 2D slice of the data cube
along the frequency axis. Typical features for data analysis of
the slice, like zooming and panning are also supported. While
the 2D visualization features available in KARMA seem
adequate, the user-interface itself is not very user-friendly
[21]. Simple tasks force the user to navigate through multiple
windows and it requires a high degree of technical knowledge
to operate.

KARMA later introduced their XRAY package, which
introduced 3D volumetric rendering capabilities, but it’s
performance is substandard [1] and as a result, offers limited
interactivity.

KARMA is no longer being actively maintained, and was
not initially designed to cater for massive amounts of data,
making it fairly cumbersome for modern data analysis.

4.3 CARTA
CARTA [3] or the Cube Analysis and Rendering Tool for
Astronomy, is one of the more modern visualization tools.
The key feature that makes CARTA interesting is it’s client-
server model. All of the CPU and memory intensive tasks
are performed by a remote server, easing the burden on the
end user’s workstation. The server then sends a compressed
subset of the data to the client, which renders the image using
GPU-accelerated techniques [15]. This architecture allows
CARTA to run at impressive speeds, loading terabytes worth
of data in a couple of seconds [17]. In addition, the client-
side rendering allows visual changes to reflect on the users
end rapidly, without the need to fetch the model from the
server again. However, this does mean that the end user’s
workstation needs to be equipped with decent on-board GPU.

CARTA is also built to be extensible through a plug-
in framework. Developers who want to modify or extend
CARTA’s capabilities can make use of existing API’s and
write their own plugins in Python or C++. CARTA is also
open-source, allowing multiple developers to update and
maintain it’s code. A desktop version of CARTA also exists
where the ’server’ code can be loaded on the end user’s
workstation. This can prove useful when working in an area
with limited internet connectivity, but this version is not
suitable for large data sets.

Unfortunately, CARTA only offers 2D visualization, allow-
ing the user to view a slice of the data cube along different
axes. No 3D visualization features are currently available.
Figure 3 shows an example screenshot of the CARTA interface

While CARTA’s client-server architecture yields promising
results for handling large data sets, it’s lack of 3D rendering
capabilities are a significant drawback. However, CARTA is
highly extensible, which means that it should be possible to
integrate a 3D visualization into it.

Figure 3: A screenshot of the CARTA GUI. Retrieved from
https://carta.readthedocs.io/en/latest/about_gui.html

4.4 3D slicer and SlicerAstro
3D slicer [13] is an open-source 3D visualization package. It
is free to use and has a large number of active developers. It
boasts powerful tools for 3D visualization such as both CPU
and GPU powered rendering using the Visualization Toolkit
(VTK) [8] interface. 3D slicer itself is not an astronomical
tool. It was initially designed for use in the medical field for
visualizations such as MRI scans. However, the package has
a plug-in mechanism that allows extensions to be developed
for usage in other fields. One such extension is SlicerAstro
[19].

The SlicerAstro extension is geared towards astronomic
visualization, particularly that of HI galaxies. It uses a direct
volume rendering method called ray-casting [22] to render
3D views of the data. Ray-casting produces high quality 3D
models, but is computationally expensive. The GPU accelera-
tion techniques inherent to 3D slicer mitigates this drawback
somewhat and allows the visualizations to render efficiently,
enabling user interactivity. Figure 3 displays a 3D model of
an HI emission that has been rendered by SlicerAstro.

Figure 4: A screenshot of the SlicerAstro interface when visu-
alizing an HI emission [19]

Despite it’s impressive 3D visualization capabilities, SlicerAs-
tro and 3D slicer in general struggles to deal with very large
data cubes. The entire cube has to be loaded onto the end

https://carta.readthedocs.io/en/latest/about_gui.html

Shuaib Parker

user’s workstation for processing and then needs to be ren-
dered, limiting the size of data cubes that can be processed.

5 COMMON ISSUES IN VISUALIZATION
SOFTWARE

While reviewing the existing software tools, we noted some
common issues that many of these tools suffer from.

5.1 The large-than-memory problem
Most current tools require the entire data cube to be loaded
into the main memory before they could perform any pro-
cessing or visualization of the data. However, the sheer size
of modern data cubes can often exceed a typical desktop
computer’s memory, making this task practically impossible.
This problem was dubbed the larger-than-memory problem
by Hassan et al. [9]. This is a serious issue that occurs even
in frequently used packages like the aforementioned DS9 and
KARMA.

One way to mitigate this problem is to employ a client-
server architecture such as the aforementioned CARTA. This
model delegates the memory intensive tasks to a remote
server, and allows the visualization itself to be viewed on the
end user’s browser. This is a promising approach, since it
enables very large data cubes to be viewed by even modestly
powered workstations.

Another approach to the larger-than-memory problem is
the use of algorithms that leverage secondary storage such
as the hard disk in order to supplement the main system
memory [18]. Naturally, the hard disk has a much slower
read/write speed than the main memory, so these algorithms
need to be highly optimized in order to create a satisfactory
user experience.

5.2 Lack of GPU-assisted rendering
Another common issue found in older visualization tools such
as DS9 and KARMA is the lack of GPU-assisted rendering.
Modern GPU’s are increasing in power at a much faster
rate than CPU’s [15] and their architecture allows for highly
parallel algorithms to be run on them. As the volume and
complexity of data keeps increasing, tools that don’t harness
the GPU’s power during rendering run a serious risk of being
left behind due to severe performance issues.

5.3 Lack of user-friendliness
The lack of user-friendliness is a problem that plagues scien-
tific visualization software in general [21]. Scientific visual-
ization tools are often designed with experts in mind, and
can often confuse user’s with limited domain knowledge. Em-
ploying human computer interaction (HCI) techniques such
as participatory design [23] is one of the ways this problem
can be mitigated when designing a new tool.

6 DISCUSSION
As we mentioned in the introduction, we are looking for
visualization tools that

∙ Are capable of good 3D visualizations
∙ Can run on a modestly powered workstation
∙ Allows for a high level of interactivity

Unfortunately, none of the existing tools seem to fit all of
these criteria.

Commonly used tools such as DS9 and KARMA were
initially built for 2D visualizations. While current versions
of these packages do offer volumetric rendering capabilities,
their implementations are dated and do not offer high levels
of interactivity. Modern techniques such as GPU accelerated
rendering are not employed, resulting in a significant perfor-
mance hit when dealing with very large data cubes. These
older packages also require the entire cube to be loaded into
the end user’s workstation, severely limiting the size of data
cubes they can process.

CARTA offers a promising approach in dealing with the
larger-than-memory problem with it’s client-server model. It
also offers a high level of interactivity by leveraging the power
of the GPU. Another important aspect of CARTA is the data
slicing it performs. It sends only a subset of the data cube to
the user, allowing it to efficiently render a view of huge data
cubes. Additionally, it employs client-side rendering which
enables highly interactive visualizations. However, CARTA
does not offer any sort of 3D visualization, making it fall
short of our criteria.

SlicerAstro on the other hand has great 3D visualization
capabilities, but fails at efficiently dealing with large sets
of data due to a lack of the aforementioned client-server
approach.

When designing our own tool, it seems quite clear that
we need to borrow the client-server approach employed by
CARTA. This architecture, coupled it’s data slicing capabil-
ities, make it scale incredibly well when dealing with large
sets of data. Client-side rendering also seems necessary to
enable highly interactive visualizations.

Combining the client-server streaming model of CARTA
with the sophisticated 3D visualization of SlicerAstro seems
like an interesting angle to explore. It would allow sophis-
ticated 3D visualizations to run smoothly on a modestly
powered workstation. When designing a new tool, we would
also need to focus on user-friendliness, since this is often a
neglected aspect in typical scientific visualization tools.

7 CONCLUSIONS
This paper has reviewed the various techniques and tools used
to visualize astronomical data cubes. While many techniques
and tools exist, there seems to be a lack of tools that provide
good, interactive 3D visualizations of large data cubes. Many
of the popular tools are dated and are simply not suitable for
the modern era, which points to a growing need for a more
modern tool to solve this problem.

Many existing tools have interesting features and architec-
tures that we can gain a lot of insight from. Combining the
client-server architecture of CARTA, with the 3D volumetric
rendering capabilities of SlicerAstro is an interesting angle to
explore if we want to create a suitable visualization tool for

3D visualization of large astronomical data cubes, towards a client-server based solution

the modern era. Additionally, our tool would ideally leverage
the power of the client’s GPU while performing it’s rendering,
since this would enable a high level of interactivity.

When designing a new visualization tool, we also need to
keep HCI principles in mind in order to make our tool as
user-friendly as possible.

REFERENCES
[1] David G Barnes, Christopher J Fluke, Paul D Bourke, and Owen T

Parry. An advanced, three-dimensional plotting library for as-
tronomy. Publications of the Astronomical Society of Australia,
23(2):82–93, 2006.

[2] Ugo Becciani, Alessandro Costa, V Antonuccio-Delogu, G Caniglia,
M Comparato, C Gheller, Z Jin, Mel Krokos, and P Massimino.
Visivo–integrated tools and services for large-scale astrophysical
visualization. Publications of the Astronomical Society of the
Pacific, 122(887):119, 2010.

[3] Angus Comrie, Kuo-Song Wang, Pamela Harris, Anthony Mor-
aghan, Shou-Chieh Hsu, Adrianna Pińska, Cheng-Chin Chiang,
Hengtai Jan, Rob Simmonds, Tien-Hao Chang, and Ming-Yi Lin.
CARTA: The Cube Analysis and Rendering Tool for Astronomy,
December 2018.

[4] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed
ray tracing. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 137–145,
1984.

[5] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume
rendering. ACM Siggraph Computer Graphics, 22(4):65–74, 1988.

[6] Christopher J Fluke, David G Barnes, and Amr H Hassan. Visu-
alisation and analysis challenges for wallaby. In 2010 Sixth IEEE
International Conference on e-Science Workshops, pages 15–20.
IEEE, 2010.

[7] Richard Gooch. Karma: a visualization test-bed. In Astronomical
Data Analysis Software and Systems V, volume 101, page 80,
1996.

[8] Marcus D Hanwell, Kenneth M Martin, Aashish Chaudhary, and
Lisa S Avila. The visualization toolkit (vtk): Rewriting the ren-
dering code for modern graphics cards. SoftwareX, 1:9–12, 2015.

[9] Amr Hassan and Christopher J Fluke. Scientific visualization in
astronomy: Towards the petascale astronomy era. Publications
of the Astronomical Society of Australia, 28(2):150–170, 2011.

[10] Amr H Hassan, Christopher J Fluke, and David Graeme Barnes.
Interactive visualization of the largest radioastronomy cubes. New
Astronomy, 16(2):100–109, 2011.

[11] WA Joye and E Mandel. New features of saoimage ds9. In
Astronomical data analysis software and systems XII, volume
295, page 489, 2003.

[12] Anton Kaplanyan and Carsten Dachsbacher. Cascaded light prop-
agation volumes for real-time indirect illumination. In Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, pages 99–107, 2010.

[13] Ron Kikinis, Steve D Pieper, and Kirby G Vosburgh. 3d slicer:
a platform for subject-specific image analysis, visualization, and
clinical support. In Intraoperative imaging and image-guided
therapy, pages 277–289. Springer, 2014.

[14] Michiel Kregel et al. Structure and kinematics of edge-on galaxy
disks. Rijksuniversiteit Groningen, 2003.

[15] Jens Kruger and Rüdiger Westermann. Acceleration techniques
for gpu-based volume rendering. In IEEE Visualization, 2003.
VIS 2003., pages 287–292. IEEE, 2003.

[16] Ray P Norris. The challenge of astronomical visualisation. In
Astronomical Data Analysis Software and Systems III, volume 61,
page 51, 1994.

[17] JA Ott and Carta Team. Carta: Cube analysis and rendering tool
for astronomy. AAS, pages 364–11, 2020.

[18] Davide Punzo. 3D visualization and analysis of HI in and
around galaxies. PhD thesis, Rijksuniversiteit Groningen, 2017.

[19] Davide Punzo, JM van der Hulst, JBTM Roerdink, Jean-
Christophe Fillion-Robin, and Lingyun Yu. Slicerastro: A 3-d
interactive visual analytics tool for hi data. Astronomy and
computing, 19:45–59, 2017.

[20] Timothy J Purcell, Ian Buck, William R Mark, and Pat Hanra-
han. Ray tracing on programmable graphics hardware. In ACM
SIGGRAPH 2005 Courses, pages 268–es. 2005.

[21] Laurisha Rampersad, Sarah Blyth, Ed Elson, and Michelle M
Kuttel. Improving the usability of scientific software with par-
ticipatory design: a new interface design for radio astronomy
visualisation software. In Proceedings of the South African In-
stitute of Computer Scientists and Information Technologists,
pages 1–9. 2017.

[22] Scott D Roth. Ray casting for modeling solids. Computer graphics
and image processing, 18(2):109–144, 1982.

[23] Douglas Schuler and Aki Namioka. Participatory design: Princi-
ples and practices. CRC Press, 1993.

[24] Melanie Tory. Mental registration of 2d and 3d visualizations (an
empirical study). In IEEE Visualization, 2003. VIS 2003., pages
371–378. IEEE, 2003.

[25] Donald Carson Wells and Eric W Greisen. Fits-a flexible image
transport system. In Image Processing in Astronomy, page 445,
1979.

	Abstract
	1 Introduction
	2 Why 3D visualization?
	3 Current 2D and 3D visualization techniques
	3.1 Indirect volume rendering
	3.2 Direct volume rendering

	4 Existing visualization tools
	4.1 SAOImage DS9
	4.2 KARMA
	4.3 CARTA
	4.4 3D slicer and SlicerAstro

	5 Common issues in visualization software
	5.1 The large-than-memory problem
	5.2 Lack of GPU-assisted rendering
	5.3 Lack of user-friendliness

	6 Discussion
	7 Conclusions
	References

