
Server-Side Rendering of Large Astronomical Data Cubes
Honours project proposal

Jonathan Weidaman
University of Cape Town
Cape Town, South Africa

jonoweideman1@gmail.com

Shuaib Parker
University of Cape Town
Cape Town, South Africa
prkshu001@myuct.ac.za

1 PROJECT DESCRIPTION
Astronomy as a scientific field relies heavily on visualization.
Modern telescopes collect data at an ever-increasing rate [3],
and visualization enables astronomers to effectively analyze
these large sets of data [6]. The data collected by these
telescopes are usually represented as a three-dimensional
(3D) array and are commonly referred to as data cubes.

Despite the 3D nature of these cubes, most astronomical
visualization tools focus on 2D visualization. This is usually
achieved by rendering a ‘slice’ of the data cube along different
axes. While these 2D views are useful in their own right, it is
clear that visualizing these data cubes in 3D would provide
astronomers with additional insight. [6, 8]

The sheer size of these data cubes poses another problem
for visualization tools. Most of the current software offerings
are traditional desktop applications that cannot efficiently
process these data cubes, due to the limited power of a typical
consumser laptop or desktop.

CARTA [1] is an open-source software tool that tackles this
problem. It uses a client- server architecture that delegates
most of the expensive computation to a remote server, and
then streams a portion of the processed data to the end-user’s
browser for rendering. This makes it possible for the user
to visualize and interact with very large data cubes fairly
efficiently. However, CARTA only offers 2D visualization,
and the CARTA team are keen on adding 3D visualization
support.

The aim of this project is to help CARTA achieve this by
developing a 3D visualization prototype that is capable of
effectively rendering large astronomical data cubes.

2 PROBLEM STATEMENT AND AIMS
Current astronomical visualization tools typically suffer from
two major issues :

∙ The inability to render large data cubes efficiently
∙ Sub-par or non-existent 3D visualization capabilities

CARTA handles the first problem very well, but it lacks
any form of 3D rendering capabilities.

The aim of this project is to provide CARTA with a 3D
visualization prototype that can be integrated into their sys-
tem. Our prototype will not extend CARTA directly, but will
employ a similar client-server architecture and use a similar
tech-stack in order to ensure that future integration into
CARTA is as seamless as possible. Initially, we considered
integrating into CARTA directly, but by consulting our super-
visor and CARTA’s head developer, it was determined that

the direct integration into CARTA would involve too many
integration problems that wouldn’t necessarily be interesting
for the purposes of the project, and would drain a lot of our
time.

It is also important for our prototype to render the 3D
model at a high enough frame-rate and low enough latency
to allow the user to easily easily interact with it.

3 PROCEDURES AND METHODS
This section will offer a brief overview of some of the scientific
visualization tools relevant to our project and discuss what
we can learn from them.Our goal is to develop a software
tool that will allow the user to view and interact with a 3D
representation of a data cube in his / her web browser. In or-
der to achieve this we will employ a client-server architecture,
with a C++ server performing the computationally expensive
processing and rendering. The server will then downsample
the data and send it to a React based web-application that
can be used to view and interact with the processed data.

The volume rendering itself will be written using VTK, as
this provides us with a powerful GPU-accelerated rendering
method out of the box. We will be using gRPC for the API
layer to communicate between the two. These elements are
explained in more detail below.

3.1 Back-end
The server will provide most of the heavy lifting when it comes
to rendering. C++ is our preferred language for the server,
since it provides high performance, control over memory
management (which will be required due to our memory
intensive tasks), support of many libraries which are widely
used in astronomical visualization (e.g. VTK, CUDA) and is
widely used by developers in this field which will lead to a
higher level of impact. The system will initially support data
in the flexible image transport system (FITS) [9] format.

When a data cube is selected by the user for visualization,
the server initially generates a high-quality image of the
data cube, and this is streamed to the web-based client. In
addition, a low-resolution LOD (level-of-detail) model will
also be generated by the server and sent to the client.

The client will then be able to interact with the data by
rotating, zooming in on areas of interest etc. When the user
interacts with the data in this way, the high-resolution view
will be replaced by the LOD model which gets rendered and
displayed by the front-end. This will allow the user-driven
changes to the 3D view to reflect rapidly, and with minimal
delay.



However, when the user stops interacting for a short period
of time (approximately 200ms), a message is sent to the
server and a high-quality view of the current LOD model
is generated and streamed to the user. Once this view is
received by the front-end, it updates the view of the existing
model. If the user interacts with the model after this, the
view returns to the LOD model.

The resolution of the LOD model, relative to the resolu-
tion of the full model stored on the server will have to be
experimented with. Since the LOD model is fully rendered on
the user’s browser, a resolution which is too high may lead
to significant drop in FPS, preventing the interaction with
the data cube from being seamless. As outlined by R. Norris,
this is considered as an essential feature in a 3D astronomical
visualization tool [6]. We may wish to experiment with what
level of performance we can achieve on machines with various
hardware and customize the level of detail accordingly.

We will also experiment whether the level of detail should
be calculated proportionally to the resolution of the full data
cube or should be fixed regardless of it. This is because, if
the original data cube has a resolution which is “too” high
(relative to the specs of the user’s PC), a fixed level of detail
might produce a model where so much information is lost
that the visualisation of it essentially becomes pointless. In
these cases, the best solution might be to produce a model
with a LOD proportional to the original at the expense of
interactive performance, but maintain enough information in
the visualisation to allow the user to select a subset of the
model to be visualised, at which point interactive performance
could be achieved. All of this will have to be experimented
with to determine the best solution.

3.2 Front end / client
The main aim of the front-end/client is to allow smooth and
interactive exploration of the 3D data.

The user will have access to several features which they
can use to interact with the data. They will be able to rotate
the LOD model by clicking and dragging it with a mouse,
and will be able to zoom in and out using the mouse’s scroll
wheel. As mentioned before, when the user is exploring the
data in this way, it will render a low-res LOD model provided
by the server and this low-res view will be the one that the
user interacts with. Once the user stops interacting with
the view, the high-resolution image will be streamed in and
replace the LOD model.

The user should also be able to select a subset of the
data cube, or a region of interest (ROI), to be visualized in
higher detail. The exact mechanism to perform this function
will have to be experimented with in order to provide and
intuitive and interactive solution.

One potential solution is to allow the user to click and drag
from one point to another on the current view of the model to
create a 2-dimensional rectangle. Once this is done, the model
can then be rotated so the drawn square becomes orthogonal
to the display (so that the rectangle appears as a line), and
the user can then click and drag the face of the rectangle

to another point in the model, essentially adding in the 3rd
dimension of the rectangular cuboid. Another option is that
after the 2D rectangle is drawn, the user could be prompted
for the length of the 3rd dimension by a dialog box in the GUI
. All of these will have to be experimented with to determine
which is the most intuitive from the perspective of the user.
If some techniques prove to be optimal in certain cases but
not in others, the final system could contain multiple options
for the user.

Another interactive feature which would be of use to as-
tronomers would be the ability to change the mapping of
voxel values to colours and opacity, i.e. the transfer function.
This would enhance the user experience and improve the
ability to analyse data cubes by increasing the likelihood
of visually detecting features within them. An intuitive im-
plementation of this would be to provide a widget, which
contains labeled sliders for each of these functions. The colour
transfer function will likely be a RGB function and hence
three sliders will be provided – one for each value. A separate
slider will be provided for opacity. As the user adjusts the
slider, the LOD model should be recomputed and updated
in real time.

3.3 Communication layer / API
In order to communicate and send data between the front-
end and back-end we will make use of gRPC. gRPC is an
alternative to traditional API frameworks such as REST
and OpenAPI. gRPC is language agnostic,and will allow the
client to call methods directly from the back-end.

Although vanilla gRPC does not support web-based clients,
gRPC has a web-based package called gRPC-web which we
will make use of.

gRPC should be sufficient for most of our client-server
calls, but we will explore various other technologies (such as
web sockets) when trying to stream the actual image data,
since this needs to be done as efficiently as possible. Once we
have found the most efficient method, it will be included in
the final version of our application.

Figure 1: System diagram of our software prototype

2



4 EVALUATION METRICS
The main evaluation criteria we will be using will concern
the speed and efficiency of our software system. Speed is a
key aspect we are designing for, since our software system
needs to serve as a prototype for a production system that
has to realistically handle very large data cubes.

While user interaction will eventually be a key part of
a production system, we won’t be performing user based
testing, since user-based design and testing is a large problem
in of itself and focusing on it could detract from what the
prototype is trying to achieve: ie. a scalable 3D visualization
solution.

Our performance-based metrics are shown below:

4.1 Frames per second
This metric will measure the amount of high-resolution frames
per second we can deliver from the backend to the frontend.
A decently high FPS is important to provide the user with
a smooth enough experience that allows them to interact
with the 3D data easily. Higher FPS values also indicate that
our solution could be scalable when dealing with larger data
cubes. We will consider an FPS above 5 to be satisfactory
for user interaction. FPS can be measured easily by VTK’s
“framerate” function.

4.2 Round trip latency (ms)
A round trip in our case will be defined as the time from the
moment the front-end makes a render request to the moment
it receives the image data. This time will be measured in mil-
liseconds (ms). A low latency is important because a render
request is likely to be sent whenever the user stops interacting
with the data. High latency will result in significant lag and
will hamper the user experience. We will consider a round
trip latency of under 50ms to be acceptable for our prototype.
To measure this, we could make use of a front-end library
such as Axios to give us the round trip time in milliseconds.

5 RELATED WORK
This section will offer a brief overview of some of the scientific
visualization tools relevant to our project and discuss what
we can learn from them.

5.1 KARMA and Ds9
Two of the most popular astronomical visualization tools are
KARMA [2] and DS9 [4]. However, these tools are traditional
desktop applications and struggle to process and render large
data cubes. They require the entire cube to be loaded into the
main memory of the PC, which is impossible in some cases,
since the data cube size can often exceed the size of the main
memory [3]. Both KARMA and Ds9 also fail to make use of
the graphics processing unit (GPU) for rendering, severely
limiting their overall performance.

5.2 CARTA
CARTA is much more efficient at handling large data sets,
since it employs a client-server architecture. It delegates most
of the computation and storage to enterprise-class servers,
and then sends a subset of the processed data to the front-end.
The front-end then renders this data and displays the view
to the user. We plan on emulating CARTA’s client-server
approach since it will allow our solution to scale up when
dealing with very large data cubes. However, since CARTA
is only capable of 2D visualizations, it is able to get away
with full client-side rendering. We will not be able to achieve
this, since 3D volume rendering is computationally expensive
and cannot be efficiently performed on a typical personal
computer. Most of our rendering will therefore be performed
on the server-side.

5.3 3D slicer and VTK
3D-slicer is an open-source 3D-visualization tool geared to-
wards the medical field. While not directly used for astronomy,
3D-slicer is capable of creating interactive 3D visualizations
which makes it especially interesting for our project. 3D-slicer
is built on top of The Visualization Toolkit (VTK).

VTK is an open-source graphics library that implements
powerful 3D rendering techniques such as ray-casting [7] to
produce high quality 3D models. We will be using VTK in
this project for both our client-side and server-side rendering.
3D-slicer therefore provides us with a VTK implementation
that we can learn from. VTK leverages the power of the
graphics processing unit (GPU) by using Nvidia’s CUDA [5]
under the covers. This allows it to run highly parallel code
much more efficiently than pure CPU-based code.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

This study involves the development of a web application
where all software, libraries and data files used are free and in
the public domain. Hence, there are no legal issues to be ad-
dressed. The software will follow the guidelines and rules for
developing Open Source Software (OSS), so there will be no
intellectual property issues to deal with. Sufficient documen-
tation and user guides will be produced and made available
online and these will be written in a professional style. If the
researchers are contacted, they will conduct themselves in
a professional manner as well as in any environment where
the project may be showcased. Since this project does not
involve any human subjects, there are no ethical issues to
address.

7 ANTICIPATED OUTCOMES
In this section we detail the results we expect to see at the
end of the project. This is important to consider prior to the
beginning of the project as it will guide many decisions about
the scope of the project, the design of the software, which
features to prioritise during development and how to test the
software.

3



7.1 System
As mentioned before, we aim to create a 3D visualization tool
that enables large astronomical data cubes to be explored.
This will be in the form of a client-server-based application,
with a C++ backend server and a React-based web client.
We consider the following features key to our system:

Server:
∙ Generation and rendering of a high-resolution 3D model.
∙ Streaming of a high-resolution view to the frontend.
∙ Generation and streaming of a low-res LOD model.

Client:
∙ Rendering of an interactive low-resolution 3D model.
∙ Interactive features such as panning and zooming in

on the data.
∙ Region of interest selection.
∙ Customizable transfer functions (optional depending

on time).

7.2 Impact
Our project is intended to serve as a proof of concept for 3D
visualization of large astronomical data cubes through the
use of a client-server architecture, in particular where the
rendering of the data cubes is done on the server before being
streamed to the user. We expect our impact to be the interest
of astronomers and for future 3D astronomical visualisation
applications to utilize a similar architecture.

7.3 Key success factors
We will judge the success of our project based on the following
criteria:

∙ The server is able to read in and construct models from
FITS files.

∙ The generation of LOD 3D models on the server which
are streamed to the user.

∙ The LOD model is interactive in the user’s browser
in the following ways: zoom in and out and rotate
using a mouse, ROI selection and customisable transfer
functions using sliders.

∙ Rendering of LOD models as well high quality images
done on the GPU of the PC the server is running on.

∙ The performance on the user’s browser maintains in-
teractive speeds.

∙ The visualisations of data cubes is accurate (i.e. if the
same data cube is visualised using another visualisation
tool, they both produce similar visualisations).

8 PROJECT PLAN
8.1 Risks
The risks for this project are outlined in the risk matrix which
is presented in Appendix A. This matrix describes each risk,
how we plan to mitigate and monitor it as well as manage it
in the case that it occurs. A probability and impact from one
to ten is assigned for each risk, where 1 translates to a low
probability and low impact to ten being a high probability
and high impact.

8.2 Timeline
Our Gantt chart can be found in Appendix B

8.3 Resources required
Each team member will require a PC with an integrated
GPU, a stable internet access in order to access a remote
GitHub repository and the necessary tools (such as IDEs
and compilers) in order to develop the application in C++
and TypeScript. Astronomical data cubes also need to be
provided in order to test our software system.

8.4 Deliverables
∙ Presentation of feasibility demo - 3rd till 7th August
∙ Submission of paper draft - 4th September
∙ Submission of final paper - 14th September
∙ Submission of final code - 21st September
∙ Presentation of final demo - 5th till 10th October
∙ Completion of web page - 12th October
∙ School of IT showcase - 15th October
∙ Completion of poster design - 21st October

8.5 Milestones
∙ Presentation of feasibility demo
∙ Completion of application (bare minimum before im-

provements, additional features, etc)
∙ Testing framework completed
∙ Project code finished
∙ Submission of draft of final report
∙ Submission of finished final report
∙ Final presentation
∙ Completion of web page
∙ Completion of final poster

9 WORK ALLOCATION
Shuaib will be responsible for most of the front-end devel-
opment as well as the communication protocol between the
client and the server. The front-end will comprise of a web
application that displays an interactive view of the cube. The
front-end also needs to render a low resolution view of the
data cube while the user is interacting with it. The commu-
nication protocol between the client and the server will need
to handle the transfer of LOD data cubes and high quality
renders from the server to the client as well as commands
and requests from the user to the server.

Jonathan will be responsible for most of the back-end
(server) development. This will include the storage and access
of the data files used in visualization, the efficient genera-
tion of LOD models, the rendering of high quality images,
processing of data cubes based on user input, compression
of data prior to being sent to the user and the creation of a
server which can operate autonomously and handle multiple
users at once.

REFERENCES
[1] Angus Comrie, Kuo-Song Wang, Pamela Harris, Anthony Mor-

aghan, Shou-Chieh Hsu, Adrianna Pińska, Cheng-Chin Chiang,
4



Hengtai Jan, Rob Simmonds, Tien-Hao Chang, and Ming-Yi Lin.
CARTA: The Cube Analysis and Rendering Tool for Astronomy,
December 2018.

[2] Richard Gooch. Karma: a visualization test-bed. In Astronomical
Data Analysis Software and Systems V, volume 101, page 80,
1996.

[3] Amr Hassan and Christopher J Fluke. Scientific visualization in
astronomy: Towards the petascale astronomy era. Publications of
the Astronomical Society of Australia, 28(2):150–170, 2011.

[4] WA Joye and E Mandel. New features of saoimage ds9. In As-
tronomical data analysis software and systems XII, volume 295,
page 489, 2003.

[5] David Kirk et al. Nvidia cuda software and gpu parallel computing
architecture. In ISMM, volume 7, pages 103–104, 2007.

[6] Ray P Norris. The challenge of astronomical visualisation. In
Astronomical Data Analysis Software and Systems III, volume 61,
page 51, 1994.

[7] Scott D Roth. Ray casting for modeling solids. Computer graphics
and image processing, 18(2):109–144, 1982.

[8] Melanie Tory. Mental registration of 2d and 3d visualizations (an
empirical study). In IEEE Visualization, 2003. VIS 2003., pages
371–378. IEEE, 2003.

[9] Donald Carson Wells and Eric W Greisen. Fits-a flexible image
transport system. In Image Processing in Astronomy, page 445,
1979.

5



APPENDIX A: RISK MATRIX

Figure 2: Risk matrix

6



APPENDIX B: GANTT CHART

Figure 3: Gantt chart

7


	1 Project description
	2 Problem statement and aims
	3 Procedures and methods
	3.1 Back-end
	3.2 Front end / client
	3.3 Communication layer / API 

	4 Evaluation metrics
	4.1 Frames per second
	4.2 Round trip latency (ms)

	5 Related work
	5.1 KARMA and Ds9
	5.2 CARTA
	5.3 3D slicer and VTK

	6 Ethical, Professional and Legal Issues
	7 Anticipated outcomes
	7.1 System
	7.2 Impact
	7.3 Key success factors

	8 Project plan
	8.1 Risks
	8.2 Timeline
	8.3 Resources required 
	8.4 Deliverables
	8.5 Milestones

	9 Work Allocation
	References

