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ABSTRACT

As molecular dynamics simulations are increasingly used to analyse
complex molecules, having a way of extracting the dominant mole-
cule conformations from the trajectories is important. Clustering
algorithms provide a way to extract the dominant conformations
and analyse the large amounts of trajectory data that are produced.
In this review, the clustering algorithms available from standard
molecular dynamics analysis and simulation software and from
other sources are evaluated. Factors including usability, customis-
ability and quality of produced clusters are relevant when consider-
ing the overall usefulness of software in general, and as a possible
tool for clustering trajectories of flexible molecules. In particular,
clustering algorithms which are resistant to noise and outliers and
can produce clusters of varying sizes are ideal. Additionally, it can
be important to use algorithms which do not require user-specified
parameters, as these can introduce bias.
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1 INTRODUCTION

Molecular dynamics (MD) simulations can be used to provide pow-
erful insights into the structure and properties of molecules in
different states. It is common for the simulations, or trajectories, to
consist of 50 000, 100 000 [16] or more than a million frames [15].
For these large quantities of data to be meaningfully interpreted,
the dominant conformations of the molecule within the simulation
must be extracted. This is particularly important for highly flexible
molecules. A typical approach is to use a clustering algorithm to
group the frames of the trajectory into several clusters. Ideally, the
clusters are constructed so that there is maximal similarity between
frames within the cluster and maximal dissimilarity between frames
from different clusters.

Algorithms for clustering MD trajectories are available from
a variety of sources, including standard packages for MD simu-
lation, such as AMBER [17], CHARMM [3] and GROMACS [1],
standard packages for MD analysis, such as UCSF Chimera [18] and
VMD [12], as well as from stand-alone software packages which
are released in conjunction with research. Many factors affect the
accuracy and usefulness of the software in each of these groups.
Different algorithms will have different computational complexities,
in terms of time and memory requirements, will produce different
results, and will have applications to which they are particularly
suited. The software will also have differences in terms of its licens-
ing, usability and ease of installation.

Due to the increasing application of clustering algorithms to
MD, it is important to ensure that the algorithms being applied
are suitable and produce useful clusters which do not contain un-
related frames and are not missing related frames. As shown by
Gonzalez-Aleman et al., there can be misinformation regarding
what algorithm has been implemented within a package [10]. This
misinformation can lead to inaccurate and non-reproducible results,
as well as incorrect assumptions about the quality of the resulting
clusters.

This review will look at the algorithms for clustering MD tra-
jectories that are available today, either as part of standard MD
software or from a separate source, and will consider their overall
usefulness in clustering trajectories of flexible molecules.

2 CLUSTERING ALGORITHMS

The majority of clustering algorithms can be categorised as being
either distribution-based — where the data is assumed to have
been sampled from some set of probabilistic distributions, density-
based — where clusters are created from regions of differing data
densities — or distance-based — where the similarity between two
data points is based on how close together they are [2]. This is one
of a variety of ways of categorising clustering algorithms.

Distance-based clustering algorithms are widely used as they
are easy to implement and only require that a distance function
can be defined on the data. In the case of MD, the root-mean-
square deviation (RMSD) is generally used to define the distance
between frames [21]. Distance-based algorithms can be further
sub-categorised as either flat or hierarchical [2]. In hierarchical
distance-based models, the resulting clusters make up a tree or
dendrogram where the leaves are individual data points and the
root is a cluster containing all the data points. The dendrogram
can either be built from the bottom, in bottom-up, agglomerative
or linkage algorithms, or from the top, in top-down or divisive
algorithms [21]. In flat distance-based models, such as k-means and
its variants, clusters tend to be seeded randomly and are then itera-
tively reconstructed, with each generation of clusters improving
upon the previous.

Density-based algorithms are also used in the context of MD.
The DBSCAN algorithm is a popular density-based algorithm [2],
and HDBSCAN [4, 5], which is a version of DBSCAN with a hierar-
chical component, has seen many different applications, including
MD [16]. Additionally, the algorithm APLoD [15], which is based on
the density peaks [19] algorithm, has been designed for clustering
MD trajectories.



Distribution-based algorithms, also known as probabilistic or
generative models, are not common in terms of applications to
MD. However, many distribution-based algorithms can be shown
to reduce to distance-based algorithms [2]. As distance-based al-
gorithms are easier to understand and implement, it is logical that
they would be used over their corresponding distribution-based
algorithms.

While some clustering algorithms do fit neatly into the described
categories, others do not. One of the most commonly used cluster-
ing algorithms for MD is the Quality Threshold (QT) algorithm, and
while it is distance-based, it cannot be classified as either flat or hier-
archical. There are also more complex clustering techniques which
use combinations of algorithms from different categories to achieve
improved clustering [16], and therefore cannot be categorised as
others can.

Each clustering algorithm will deliver varying results and have
different shortcomings and strengths. Different implementations
of a single clustering algorithm may also have subtle or significant
differences. One important factor is the degree of outlier sensitiv-
ity. Some clustering algorithms are also biased towards creating
spherical, convex clusters, clusters of similar sizes or very small
clusters [21]. An ideal clustering algorithm should be able to find
concave clusters and clusters of irregular shapes, different sizes
and different diameters where required. It should also ideally have
some way of handling outliers and noise in the data.

Another important aspect of each clustering algorithm is whether
it requires or allows user-specified parameters and if these parame-
ters have a default option available. Common parameters are the de-
sired cluster count [21], the cut-off value for hierarchical algorithms,
and the similarity threshold for QT algorithms [10]. Particularly if
the trajectory analysis is exploratory, specifying these parameters
could introduce bias and it is preferable for the algorithm to be able
to select suitable default parameters without user input [16]. On
the other hand, it is also sometimes useful for the user to be able to
adjust the clustering degree by changing a parameter [23].

3 CLUSTERING FOR MOLECULAR
DYNAMICS

3.1 Main MD Algorithms

3.1.1 Quality Threshold. The Quality Threshold (QT) algorithm,
from Heyer et al. [11] in 1999, is one of the most commonly used
clustering algorithms for MD. It generally produces clusters which
are well-formed as they have a similarity quality guarantee [10].
This means that any two frames which are placed in the same clus-
ter are guaranteed to have a user-specified level of similarity at
minimum. It does not require the user to make any assumptions
about cluster count, rather, the user specifies the similarity thresh-
old. However, the similarity threshold does affect the number and
sizes of the resulting clusters.

The algorithm works by first placing each frame into its own
candidate cluster. For each candidate cluster, each of the frames is
considered and is added if the RMSD between it and every other
frame in the cluster is below the similarity threshold. Once the
candidate clusters are fully constructed, the largest is selected and
its frames are removed from the remaining clusters. This process is
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repeated until each frame is in a cluster or is deemed impossible to
cluster.

There is an algorithm by Daura et al. [8] which is similar to the
QT algorithm, with a key difference that it does not provide the
same similarity quality guarantee which makes QT an effective
algorithm [10]. The algorithm from Daura et al. only requires that
frames added to a cluster are similar to the seed of the cluster, while
QT requires similarity to every frame in the cluster. On multiple
occasions, it has been stated that QT clustering has been imple-
mented, when actually the algorithm from Daura et al. has been
implemented [10].

The QT algorithm has been applied to the trajectory of a protein,
and the results compared to those from the algorithm by Daura
et al. when applied to the same trajectory [10]. It is shown that
frames within the clusters produced by the algorithm from Daura
et al. often have an RMSD value between them which exceeds
the given similarity threshold, while this is not the case for the
clusters produces by the QT algorithm. The result of this is that the
QT clusters each have visibly correlated frames, while the clusters
produced by the algorithm from Daura et al. include unrelated
frames our combine unrelated clusters.

3.1.2  Hierarchical Algorithms. Hierarchical algorithms are rela-
tively fast and are easy to implement and understand. As previously
outlined, there are two classes of hierarchical algorithms, agglom-
erative and divisive, with the difference between the two being the
direction in which the hierarchical dendrogram is constructed [21].
In agglomerative algorithms, each data point is initially assigned
to its own cluster, and a pair of clusters are merged at each step.
In divisive algorithms, all of the data points are initially assigned
to one large cluster, and a cluster is split at each step. The way
in which the clusters are selected for merging or splitting varies
between implementations and affects the quality of the resulting
clusters.

Agglomerative hierarchical algorithms seem to be more popu-
lar than divisive for clustering MD trajectories as they are more
commonly implemented [21, 23]. However, an example implemen-
tation of a divisive algorithm chooses to split the cluster with the
greatest diameter, which it defines as the maximal distance between
any pair of points in the cluster [21]. The point that the cluster is
split at is then based off of this maximal distance. Agglomerative
algorithms are also known as linkage algorithms. Four implemen-
tations are single-linkage, complete-linkage, average-linkage and
centroid-linkage. In each of these algorithms, the pair of clusters
that have the smallest distance between them are merged, but the
algorithms differ in how they define the distance between clusters.
The distance between a pair of clusters is defined as the minimal
intercluster point-to-point distance in single-linkage, the maximal
intercluster point-to-point distance in complete-linkage, the aver-
age intercluster point-to-point distance in average-linkage and the
distance between the cluster centroids in centroid-linkage.

Implementations vary based on parameter requirements as well.
Some implementations will require that the user supply a desired
cluster count [21] or a cut-off value[23], which is the RMSD distance
at which cluster merging or splitting stops. Other algorithms will
perform an optimisation to pick a suitable number of clusters [13,
23]. The complete cluster hierarchy can also be output in its entirety
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and, because this gives a visualisation of the clusters, it can be used
to better understand the data. This also means that a cluster count or
cut-off value could be selected after the algorithm is complete, rather
than having to run the algorithm multiple times with different
parameters [21].

A number of hierarchical algorithms were applied to real MD
trajectory by Shao et al. [21] in 2007. The simulations used were
of a 10-mer polyadenine DNA single strand, the interaction of a
drug with DNA and a protein. Two artificial trajectories were also
created by sampling independent trajectories of the polyadenine
DNA single strand, with the goal of testing if the algorithms could
identify five equally sized clusters in the first artificial trajectory
and five substantially differently sized sized clusters in the other.
Single-linkage, average-linkage and centroid-linkage successfully
located the differently sized clusters. However, as single-linkage is
particularly sensitive to the position of points near the boundary of
a cluster, because they can continually be merged into the cluster
even if they are unrelated, single-linkage performed poorly with the
real MD data. Average-linkage and centroid-linkage both performed
we on the real MD data, and were able to produce clusters of varying
size and shape

Some agglomerative algorithms tend to produce very small or
singleton clusters around outliers, as the algorithms begin with
each frame as its own cluster [21]. Divisive algorithms are similarly
susceptible to outliers as they have a direct effect on where the
clusters are split, however, they seem to be faster than agglomera-
tive algorithms for low cluster counts. Shao et al. [21] also note the
results of hierarchical algorithms depend heavily on the data, and
the user-selected cluster count. Their implementation required a
user-specified cluster count, and so they ran the algorithms with a
variety of counts to find the optimal value.

3.1.3 HDBSCAN. Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) [4, 5], is a density-based
algorithm, which outputs a hierarchical tree and has the ability to
label frames as noise. The clusters which are output are the areas
of high density which are separated by areas of low density or
noise [16].

The algorithm makes use of the the idea of neighbourhoods
in the data, each neighbourhood consists of a core point and the
k nearest data points, or neighbours [16]. The core distance for
each neighbourhood is the distance from the core point to the
furthest point in the neighbourhood. The algorithm works by first
creating a network of all the points, where the weight of the edge
between each pair of points is the mutual reachability distance
between them. The mutual reachability distance of two points is
the maximum of three values: the distance between the two points
and the core distances of each of the points. Once the network has
been constructed, the edges are removed, beginning with those
with the greatest weights, until removing any more edges would
result in a disjoint partition of the data. At this point, a hierarchical
dendrogram is created via the single-linkage algorithm. Points with
the lowest edges between them are merged to create clusters until
one large cluster is formed. The dendrogram must then be cut to
produce the final clusters. To do this, the user-specified minimum
cluster size is used with a cluster stability metric to obtain the final
clustering

Although it takes two parameters — minimum cluster size and
minimum neighbourhood size - for exploratory purposes HDB-
SCAN can be used so that is effectively non-parametric. The authors
of the algorithm recommend setting both parameters to the default
value, one, for this purpose [4].

In 2016, Melvin et al. [16] implemented and applied HDBSCAN
to a set of proteins and nucleic acids and found it to be effective in
serveral ways. For generally stable molecules, it is able to cluster
large-scale conformational changes. Although it produced many
small clusters for unstable systems, it was still able to capture the
intermediate conformations of the molecules. The fact that it can
categorise frames as noise means that it is still able to capture
conformations in disordered systems, where other algorithms may
produce unusable clustering. Melvin et al. recommend it for in-
trinsically disordered proteins. It was also successful in identifying
clusters of varying shape and density. Finally, due to the ability
of HDBSCAN to be used non-parametrically, it is ideal for initial
investigation of a system, as its behaviour is a good indicator of the
overall stability of the system.

3.1.4  K-Means and iMWK-Means. K-means is one of the simplest
clustering algorithms available [2]. The algorithm works by first
randomly seeding the centroids of k clusters, where k is the is
the user-specified desired cluster count, and assigning each data
point to the cluster whose centroid it is nearest to. The centroid of
each cluster is then recalculated, by computing the average of all
the points in the cluster and the data points are reassigned. This
process continues until there are no changes when recalculating
the centroids [21].

The fact that the centroids are randomly seeded means that the
results are not deterministic [21] and even with multiple runs it is
not guaranteed that ideal clustering will be produced. The resulting
clusters are also obviously dependent on the choice of k, which is
not ideal if the structure of the data is not known before applying
the clustering. K-means was applied to MD trajectories in 2007 by
Shao et al. [21], and although it performed reasonably well, it was
unable to produce cluster of different sizes or irregular shapes.

Intelligent Minkowski Weighted K-Means (iIMWK-Means) [9], is
a variant of k-means which does not require that the user specify
the number of clusters. It only has one parameter which is essen-
tially a choice of distance metric [16]. iMWK-Means works by first
overestimating the number of clusters and then performing a round
of k-means. After this, each frame is rescaled based on its distance
from the centroid of the cluster that it is in. The process of perform-
ing k-means and rescaling is repeated until the rescaling results in
no changes, after which point, k-means is applied for a final time.

The process of rescaling increases the likelihood that the denser
areas of the data will be clustered together, while the noisy frames
will receive a low weighting and will affect the clustering to a lessor
degree [16].

iMWK-Means was applied by Melvin et al. [16] to a set of MD
trajectories of nucleic acids and proteins. It is able to identify clus-
ters of varying shape and density and was found to be primarily
effective for generally stable systems, where it tends to produce
clusters which show subtle changes in the secondary structures
of the molecule. Melvin et al. hypothesise that iIMWK-Means may



prove additionally useful if it is applied to the frames within a sin-
gle cluster from another algorithm, for example, HDBSCAN, as it
would be able to pick out the more subtle details within the cluster.

3.1.5 APLoD. In 2017, Lui et al. [15] presented the clustering al-
gorithm, Adaptive Partitioning by Local Density-Peaks (APLoD),
which, when compared to the density peaks [19] algorithm, is highly
efficient in terms of time costs and memory usage. The algorithm
uses a density-based search and calculates local densities, rather
than global densities as is done in the density peaks algorithm. The
number of clusters produced by APLoD is dependent on the choice
of localisation parameter, k. A small value for k results in more
clusters than a large value for k, additionally, the number of clusters
in the high density regions of the data is affected by k to a greater
degree than the sparse regions. Lui et al. suggest varying the value
of k in order to achieve reasonable clustering.

The APLoD algorithm was applied to a series of extremely large
MD data sets and demonstrated its ability to cluster large amounts
of data quickly [15]. It is able to create clusters of different sizes
based on the density of the different areas of the data due to the
fact that it adapts to local densities.

3.2 Software Implementations

3.2.1 Standard Packages. In 2007, Shao et al. [21] developed a freely
available C library, PTRA]J, of algorithms for clustering MD tra-
jectories. The algorithms included, among others, are k-means,
divisive hierarchical clustering, agglomerative hierarchical cluster-
ing — with single-linkage, centroid-linkage, average-linkage and
complete-linkage variants.

From 2013, PTRA]J and its successor CPPTRA]J [20] were both
distributed as part of the freely available simulation package, AM-
BER [6, 17]. The PTRA]J code was reworked and rewritten in C++
to become CPPTRA]J. Compared to PTRAJ, CPPTRA]J has substan-
tially improved computation times and a more maintainable code-
base [20]. At the time, CPPTRAJ contained three of the algorithms
from PTRA]J - the single, average and complete linkage agglomera-
tive hierarchical algorithms — with plans for the remaining algo-
rithms to be added.

CHARMM (Chemistry at HARvard Molecular Mechanics) [3] can
be used to cluster trajectories. It contains a k-means implementation.
It is also possible to use scripts to run other clustering algorithms
with CHARMM [3, 14]. A version without high-performance func-
tionality, charmm, is available for free. Otherwise, the full version
of CHARMM can be licensed for a fee [7].

GROMACS [1] is freely available program for MD. A major
goal of the software is to be highly efficient on computers with
widely varying specifications and to be easily extendable by outside
developers. The most commonly used algorithm available within
GROMACS is the gromos method [10] which is an implementation
of the algorithm by Daura et al. [8].

UCSF Chimera [18] has been designed to be extensible. The
software is freely available, and is primarily written in Python,
with a C++ core layer. Its structure makes it simple for outside
developers and researchers to add additional functionality. It uses
the NMRCLUST [13] algorithm to cluster. This algorithm is an
average-linkage hierarchical algorithm which does not require the
user to specify a cut-off value or desired cluster count. It instead
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uses a penalty function to choose a cut-off value which minimises
the number of clusters as well as the spread of each cluster. This
maximises the likelihood that the frames within a cluster are similar
and that there are no frames that should be included in the cluster
that are missing. However, as it is an agglomerative hierarchical
algorithm it will sometimes produce many small clusters [23].

The VMD (Visual Molecular Dynamics) [12] measure cluster com-
mand can also be used to cluster MD trajectories. The clustering
algorithm is described as being based on the QT algorithm [10].
However, in 2019 Gonzalez-Aleméan et al. showed that the clusters
produced by measure cluster do not posses the similarity quality
guarantee which makes QT a popular algorithm. Instead the re-
sulting clusters provably contain pairs of frames which are more
dissimilar than should be allowed by the similarity threshold. Based
on this, it seems that the measure cluster command instead imple-
ments the algorithm by Daura et al. [8]. VMD is also distributed
freely with its C++ source code, and has plugin system which makes
it highly extensible [22].

In 2018, Tubiana et al. [23] presented TTClust, an easy-to-use
and freely available clustering program for MD. It contains an
agglomerative hierarchical algorithm with a number of variants
including single-linkage, complete-linkage, average-linkage and
centroid-linkage. The user can supply a cut-off value or desired
cluster count, alternatively the TTClust implementation can com-
pute an optimal cluster count. Because the TTClust algorithm saves
the RMSD between each pair of frames during its initial run, these
values do not need to be recalculated on subsequent runs unless pa-
rameters are changed. This is useful if repeated runs with different
parameters are required.

3.2.2 Stand-alone Packages. Gonzalez-Aleman et al. [10] provided
a freely available Python implementation of QT clustering in 2019.
The clusters produced with this algorithm were shown to have
a similarity quality guarantee, unlike the implementation of the
algorithm by Daura et al. [8] in the GROMACS [1] gromos and
VMD [12] measure cluster commands. Gonzalez-Alemén et al. ad-
ditionally point out that, as of 2019, a freely available and correct
implementation of QT clustering did not exist.

A Python implementation of HDBSCAN and iMWK-Means for
MD is available from Melvin et al.[16]. The package was made
available in 2016 and makes use of the implementations of each the
algorithms which were made available by their respective authors.

The authors of the APLoD [15] algorithm have made their Python
implementation available for free. The implementation is from 2017.

4 DISCUSSION
4.1 Algorithms

Table 1 shows a summary of the algorithms investigated in this
review. Each has different strengths and weaknesses which are
important in considering them as useful candidates for clustering
MD trajectories of flexible molecules. As there will never be a
single algorithm which always delivers superior results, a variety
of approaches should be selected as candidates [21].

It is reasonable to assume that clustering methods which are able
to produce clusters of varying shapes and sizes would be useful in
clustering flexible molecules. HDBSCAN, iMWK-Means and the
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Table 1: Comparison of Clustering Algorithms

Algorithm Implemented In

Parameters

Notes

Quality Threshold [11]  Stand alone

software [10]

Algorithm from Daura GROMACS [1] gromos
et al. [8]
VMD [12]
measure cluster
Hierarchical PTRA]J [21],
- Divisive CPPTRA]J [20]
(AMBER)
Hierarchical PTRAJ [21],
- Agglomerative CPPTRA]J [20]
(AMBER)
TTClust [23]
Hierarchical UCSF Chimera [18]
- Agglomerative

(NMRCLUST) [13]
HDBSCAN [4, 5] Stand alone
software [16]

iMWK-Means [9] Stand alone

software [16]

K-Means CHARMM [16]
PTRAJ [21],
CPPTRA]J [20]
(AMBER)

APLoD [15] Stand alone

software [15]

User-specified similar-
ity threshold

Unknown
Unknown

User-specified cluster
count

User-specified cluster
count

Optional user-specified
cluster count or cut-off
value

None

Minimum cluster size,
minimum neighbour-
hood size

Choice of distance met-
ric

User-specified cluster
count

User-specified cluster

count

User-specified localisa-
tion parameter

Optimal cluster count is
computed if no parame-
ters are given

Penalty function used
to choose optimal clus-
ter count

Suitable default values
available - can be used
non-parametrically

Suitable default values
available — can be used
non-parametrically

agglomerative hierarchical average-linkage and centroid-linkage
variants are known to be capable of this, although others may
also be. These algorithms will still perform well even if some of
the dominant conformations of the molecule are visited less fre-
quently in the trajectory than others, and this is likely to be the case
for at less some flexible molecules. Additionally, HDBSCAN and
iMWK-Means have the ability to ignore noise in the data [16] while
average-linkage and centroid-linkage may be sensitive to outliers.
HDBSCAN, in particular, was able to find dominant conformations

even in disordered systems with high levels of noise. This may be
useful in clustering flexible molecules as many of the frames may
not depict any of the dominant structures visited by the molecule.

As the structure of the trajectories is unlikely to be known in ad-
vance, algorithms that are non-parametric, or have suitable default
values for parameters, would be ideal as well. Having to specify a
cluster count requires assumptions to be made and can introduce a
degree of bias [23]. HDBSCAN and iMWK-Means are both suitable
in this case as they can easily be used with default parameters



which effectively make them non-parametric. Additionally, neither
the NMRCLUST implementation of agglomerative hierarchical clus-
tering nor the TTClust implementation requires parameters from
the user.

The QT algorithm is also an attractive option for clustering, as the
resulting clusters will always have a similarity quality guarantee
and hence will be highly correlated. Although it does require a
parameter, the similarity threshold, this requires less of a direct
assumption about the data than a cluster count, for example. QT
clustering is also superior to the algorithm from Daura et al. as
this algorithm does not possess the same quality guarantee. The
fact that no unrelated frames can be added to a cluster also means
that the degree to which outliers can affect the final clustering is
limited.

Although APLoD seems like a promising algorithm, its use case is
primarily focused on creating Markov State Models for proteins[15].
Because of this, it may not be an ideal candidate for clustering
general flexible molecules where the goal is to study the dominant
conformations of the molecule.

4.2 Software Usability

Algorithms should be selected so as to prioritise both the quality
of the cluster that are produced, as well as the ease of installation,
customisation and use of the software in which the algorithm is
implemented. The software which are implemented completely
or partially in Python are possibly more useful than the software
which are not. Python is simpler and easier to customise than C, C++
and Fortran. The powerful tools available in the Python ecosystem
can also be leveraged more easily through software that is already
implemented in Python.

PTRA]J and its successor CPPTRA] are written in C and C++
respectively. It is unclear whether or not the PTRA] library is still
distributed with AMBER or available at all. It was implemented in
2007 [21], and plans to replace it with CPPTRA]J were in motion
by 2013 [20]. Regardless, the way that the PTRAJ code-base was
structured meant that it was not easily extendable and customis-
ing it or using it as it is would be complicated. CPPTRA]J is more
easily extendable that PTRAJ, and might be expected to be straight-
forward to use as it is distributed with AMBER [20]. However, it
is complicated to use for those not familiar with AMBER [23]. If
all of the algorithms from PTRAJ have now been implemented in
CPPTRA]J and are hence available in AMBER, CPPTRAJ may be an
attractive option for clustering flexible molecules due to the variety
of algorithms it includes.

GROMACS, UCSF Chimera and VMD all put an emphasis on
the fact that their software is intended to be extended by outside
researchers, and they have endeavoured to structure their source
code so that the customisation process is straightforward [1, 12, 18].
This same emphasis is seemingly absent from CHARMM and AM-
BER. UCSF Chimera particularly lends itself to customisation, as its
structure is divided into a C++ and Python core which implements
key functionality, while more specific functionality is all added
through extensions which can either be entirely in Python or a
mixture with C++ [18].

The algorithms implemented by Gonzalez-Aleméan et al. [10],
Melvin et al. [16] and Liu et al. [15] are not part of standard MD
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software and therefore there may be some difficulty in using them
as they may not have much, if any, documentation. Similar consid-
eration must be made for TTClust [23]. Although it is a complete
system for clustering MD trajectories, it is not as widely used as
the other software discussed and there may be unforeseen issues.
However, these concerns are somewhat offset by the fact that these
are all Python libraries, which adds to their usability.

5 CONCLUSIONS

In this review, we have evaluated the algorithms available for clus-
tering MD trajectories. These algorithms are available from stan-
dard MD simulation and analysis software, as well as from separate
packages made available with research. Standard MD software may
have better documentation and be more stable. More caution must
be exercised when using non-standard software, but it should not
be completely ignored as it may provide algorithms which produce
better clustering.

Trajectories of flexible molecules are likely to be successfully
clustered by algorithms that can handle noise and outliers, can
produce clusters of varying shapes and sizes and do not require
too many assumptions about the data to be made by the user. It is
also advisable that a variety of algorithms be applied to any one
flexible molecule, to ensure that odds of achieving useful clustering
are maximised.

HDBSCAN, iMWK-Means, NMRCLUST from UCSF Chimera are
ideal in that they require no parameters. UCSF Chimera has the
added benefit of being suited to customisation if this is required and
NMRCLUST implements average-linkage hierarchical clustering
which is able to produce clusters of varying shapes and sizes, as
HDBSCAN and iMWK-Means are.

HBDSCAN and iMWK-Means also seem to be the least vulner-
able to noise and outliers out of all the algorithms investigated.
HBDSCAN in particular is able pick the dominant conformations
out of disordered systems where a large number of the frames are
categorised as noise.

Finally, QT clustering is a popular approach for clustering MD
trajectories and Gonzalez-Aleman et al. [10] provide a true imple-
mentation of it. QT produces clusters with a quality guarantee
which ensures that no unrelated frames, or outliers, are included
within the resulting clusters.

REFERENCES

[1] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilard Pall, Jeremy C
Smith, Berk Hess, and Erik Lindahl. 2015. GROMACS: High performance molec-
ular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX 1-2, C (2015), 19-25.

Charu C. Aggarwal and Chandan K. Reddy. 2013. DATA CLUSTERING Algorithms
and Applications. CRC Press/Taylor and Francis Group, University of Minnesota,
Minneapolis, Minnesota.

B. R. Brooks, C. L. Brooks, A. D. Mackerell Jr., L. Nilsson, R. J. Petrella, B. Roux,
Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R.
Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J.
Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor,
R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus. 2009.
CHARMM: The biomolecular simulation program. Journal of Computational
Chemistry 30, 10 (2009), 1545-1614. https://doi.org/10.1002/jcc.21287

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. 2013. Density-Based
Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge
Discovery and Data Mining, Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi
Motoda, and Guandong Xu (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
160-172.

[2

B3

—_
=t


https://doi.org/10.1002/jcc.21287

Comparing the Software and Algorithms Available for Clustering Molecular Dynamics Trajectories

[5] Ricardo J. G. B Campello, Davoud Moulavi, Arthur Zimek, and Jérg Sander. 2015. Sciences of the United States of America 101, 41 (2004), 14766—-14770.

Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier [15] Song Liu, Lizhe Zhu, Fu Kit Sheong, Wei Wang, and Xuhui Huang. 2017. Adaptive
Detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 10, 1 partitioning by local density-peaks: An efficient density-based clustering algo-
(2015), 1-51. rithm for analyzing molecular dynamics trajectories. Journal of Computational

D.A. Case, LY. Ben-Shalom, S.R. Brozell, D.S. Cerutti, IIl T.E. Cheatham, VW.D.
Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, AW.
Goetz, D. Greene, R Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S.
Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M.
Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan,
R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling,
J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X.
Whu, L. Xiao, D.M. York, and P.A. Kollman. 2018. AMBER 2018.

CHARMM. 2020. CHARMM. https://www.charmm.org// Retrieved 12 May
2020.

Xavier Daura, Karl Gademann, Bernhard Jaun, Dieter Seebach, Wilfred F.
Van Gunsteren, and Alan E. Mark. 1999. Peptide Folding: When Simulation
Meets Experiment. Angewandte Chemie International Edition 38, 1-2 (1999), 236—
240.

Renato Cordeiro de Amorim and Christian Hennig. 2015. Recovering the num-
ber of clusters in data sets with noise features using feature rescaling factors.

Chemistry 38, 3 (2017), 152-160. https://doi.org/10.1002/jcc.24664

Ryan L. Melvin, Ryan C. Godwin, Jiajie Xiao, William G. Thompson, Kenneth S.
Berenhaut, and Freddie R. Salsbury. 2016. Uncovering Large-Scale Confor-
mational Change in Molecular Dynamics without Prior Knowledge. Jour-
nal of Chemical Theory and Computation 12, 12 (2016), 6130-6146.  https:
//doi.org/10.1021/acs.jctc.6b00757

David A Pearlman, David A Case, James W Caldwell, Wilson S Ross, Thomas E
Cheatham, Steve Debolt, David Ferguson, George Seibel, and Peter Kollman. 1995.
AMBER, a package of computer programs for applying molecular mechanics,
normal mode analysis, molecular dynamics and free energy calculations to sim-
ulate the structural and energetic properties of molecules. Computer Physics
Communications 91, 1-3 (1995), 1-41.

Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch,
Daniel M Greenblatt, Elaine C Meng, and Thomas E Ferrin. 2004. UCSF Chimera-a
visualization system for exploratory research and analysis. Journal of computa-
tional chemistry 25, 13 (2004), 1605-1612.

Information Sciences 324 (2015), 126-145. https://doi.org/10.1016/j.ins.2015.06.039 [19] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find of
[10] Roy Gonzalez-Aleman, David Hernandez-Castillo, Julio Caballero, and Luis A. density peaks. Science 344, 6191 (2014), 1492-1496.
Montero-Cabrera. 2019. Quality Threshold Clustering of Molecular Dynamics: [20] Daniel R Roe and Thomas E Cheatham. 2013. PTRAJ and CPPTRAJ: Software

A Word of Caution. Journal of Chemical Information and Modeling 60, 2 (2019),
467-472. https://doi.org/10.1021/acs.jcim.9b00558

L J Heyer, S Kruglyak, and S Yooseph. 1999. Exploring Expression Data: Iden-
tification and Analysis of Coexpressed Genes. Genome research 9, 11 (1999),
1106-1115.

William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD - Visual
Molecular Dynamics. Journal of Molecular Graphics 14 (1996), 33-38.

Lawrence A. Kelley, Stephen P. Gardner, and Michael J. Sutcliffe. 1996. An
automated approach for clustering an ensemble of NMR-derived protein struc-
tures into conformationally related subfamilies. "Protein Engineering, Design and
Selection” 9, 11 (1996), 1063—-1065.

Sergei V Krivov and Martin Karplus. 2004. Hidden complexity of free energy
surfaces for peptide (protein) folding. Proceedings of the National Academy of

for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of
chemical theory and computation 9, 7 (2013), 3084-3095.

[21] Jianyin Shao, Stephen W. Tanner, Nephi Thompson, and Thomas E. Cheatham.

2007. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Per-
formance of Different Clustering Algorithms. Journal of Chemical Theory and
Computation 3, 6 (2007), 2312-2334. https://doi.org/10.1021/ct700119m
Theoretical and Computational Biophysics Group. 2020. VMD - Visual Molecular
Dynamics. https://www.ks.uiuc.edu/Research/vmd/ Retrieved 12 May 2020.
Thibault Tubiana, Jean-Charles Carvaillo, Yves Boulard, and Stéphane Bressanelli.
2018. TTClust: A Versatile Molecular Simulation Trajectory Clustering Program
with Graphical Summaries. Journal of Chemical Information and Modeling 58, 11
(2018), 2178-2182. https://doi.org/10.1021/acs.jcim.8b00512 PMID: 30351057.


https://www.charmm.org//
https://doi.org/10.1016/j.ins.2015.06.039
https://doi.org/10.1021/acs.jcim.9b00558
https://doi.org/10.1002/jcc.24664
https://doi.org/10.1021/acs.jctc.6b00757
https://doi.org/10.1021/acs.jctc.6b00757
https://doi.org/10.1021/ct700119m
https://www.ks.uiuc.edu/Research/vmd/
https://doi.org/10.1021/acs.jcim.8b00512

	Abstract
	1 Introduction
	2 Clustering Algorithms
	3 Clustering for Molecular Dynamics
	3.1 Main MD Algorithms
	3.2 Software Implementations

	4 Discussion
	4.1 Algorithms
	4.2 Software Usability

	5 Conclusions
	References

