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ABSTRACT
Molecular dynamics plays an important role in determining the
shape of molecules. Clustering is often used to extract the main
molecular conformations from simulation trajectories. Although
traditional clustering algorithms, such as K-means, are commonly
used to partition the data, these methods often get stuck on lo-
cal optima. Often times, a priori knowledge such as cluster count
must also be known, which can be prohibitive when dealing with
newfound trajectories. Many metaheuristics do not suffer from
these limitations. Here we review the use of genetic algorithms,
simulated annealing, and artificial immune systems for clustering.
We find that metaheuristics that simultaneously optimise multiple
objective functions to be more promising for the purposes of clus-
tering trajectories due to its ability to cater for properties unique to
different data sets. Interestingly, we also find that the classification
of 3D models through the use of a clonal selection-based algorithm
draws many parallels with the clustering of molecular dynamics
trajectories.

CCS CONCEPTS
•Theory of computation→Unsupervised learning and clus-
tering; • Applied computing → Chemistry; • Mathematics of
computing → Combinatorial optimization.
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1 INTRODUCTION
Molecular dynamics simulates the behaviour of molecules which
are allowed to interact with one another over a fixed period of
time; outputting what is known as the "trajectory" of the behaviour
observed. This trajectory is a record of the movement of every atom
during the simulation, with respective change in positions over time
calculated by solving Newton’s equations of motion [29]. Since the
effects of molecular interactions occur so rapidly, positions are often
updated at the femtosecond timescale [34]. Therefore, trajectories
containing even just a few nanoseconds worth of snapshots amount
to millions of locational data to observe.

Molecular dynamics simulations play an important role for re-
searchers interested in the effects molecular conformations can
have in their applications, some of which include drug-receptor
interaction and protein folding [40]. Consequently, it is important
that effective methods exist to gather insight from trajectories as
efficiently as possible. A common way to do so is through the use
of clustering algorithms that can partition the trajectory into a set
of dominant conformations that are deemed structurally unique
from one other.

Using a set of unlabeled data, clustering is a form of unsuper-
vised learning whereby items deemed similar are grouped together,
with items between groups being seen as dissimilar. Many popu-
lar algorithms are used for clustering in general, let alone just for
molecular dynamics. Although definitions vary, these algorithms
can be broadly classified into three categories: hierarchical, parti-
tional, and overlapping clustering [22, 36].

Hierarchical clustering can take on a divisive (top-down) ap-
proach, or an agglomerative (bottom-up) one [41]. The agglomera-
tive version starts by initially treating each item as its own cluster
before iteratively merging these clusters together on the basis of
proximity. Conversely, the divisive method puts the whole set of
items into one cluster before iteratively splitting them. Both meth-
ods generate a tree structure. Although efficient, these algorithms
tend to be less performant than others and are sensitive to outliers
within the data [40].

Partitional clustering treats the task of grouping as an optimi-
sation problem by minimising or maximising the value of a given
fitness measure. The most common example of such clustering is
the K-means algorithm that attempts to minimise the intracluster
distance of each point to its respective centroid [36]. Like hierar-
chical clustering at any given iteration, each item belongs in one
and only one cluster.

Overlapping clustering, unlike hierarchical and partitional, do
not produce clusters where each item belongs exclusively to just
one of them. Instead, soft clusters (where items belong to one or
more groups) are produced, or fuzzy ones (where each item belongs
to all clusters to some level of degree) [22]. A common algorithm
used for this type of clustering is the fuzzy C-means.

Shao et al. [40] made comparisons between eleven algorithms
used to cluster trajectory data, concluding that no one algorithm
completely dominates the others in every test, and that the user-
determined values such as the cluster count or cluster diameter
(depending on the algorithm), as well as the data itself can signifi-
cantly alter performance. Since the choice of data to cluster cannot
be changed without changing the context of the experiment itself,
this requires the algorithm-specific parameters made by the user
to be a perfect match for the data. This a priori knowledge is often
not present, and so it becomes prohibitive when exploring new
trajectories [34].

Metaheuristics are algorithms that are stochastic in nature, rely-
ing on the use of random initial solutions that are then improved
upon iteratively through local and global search [36]. By balancing
exploration of the search space and exploitation of the highest per-
forming solutions, a metaheuristic’s goal is to converge on a global
optimum. Due to its use in optimisation tasks, metaheuristics used
for clustering problems can be considered to be a form of partitional
clustering. Similar to the K-means method, many metaheuristics
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try to minimise the intracluster distances. This is not always the
case, however, as we shall see with the algorithms discussed.

Metaheuristics are often nature-inspired, with many algorithms
deriving its process from naturally occurring phenomena. This
review explores algorithms from three different class of metaheuris-
tics to ensure appropriate breadth regarding fundamental differ-
ences, while also ensuring depth as we analyse examples of their
implementations and applications. The algorithms in question are
the genetic algorithm (GA), simulated annealing (SA), and artificial
immune system (AIS). These were chosen due to their popularity
in recent studies, with improvements made that may particularly
benefit the clustering of trajectories.

The rest of the paper is organised as follows: we shall first detail
the freely available real-life data sets often used when testing meta-
heuristics in Section 2, followed by reviews of genetic algorithms,
simulated annealing, and artificial immune systems in Sections 3,
4, and 5, respectively. Each section entails a brief exploration of an
algorithms background followed by a few applications, noting any
interesting and unique approaches. A discussion will then follow
in Section 6, relating all the methods mentioned with molecular
dynamics, and finally drawing conclusions in Section 7.

2 DATA SETS
The UCI machine learning repository is a freely available online
collection of databases that contain many real-life data sets used
specifically for the testing of machine learning algorithms [16].
Many of the algorithms discussed in this review utilise data sets
from this repository. Therefore, we shall highlight the characteris-
tics of each data set used.

Connectionist bench contains 208 instances of sonar signals
bouncing off of metal cylinders or rocks at various angles. Each
instance consists of a set of 60 real numbers. Consequently, an
optimal 60 dimensional partition would contain a cluster for metal
cylinder and rock.

Glass is a data set containing 6 types of glass differentiated by
their oxide contents, i.e, Na, Fe, K, etc. There are 10 attributes in
total, leading to an optimal 10 dimensional partition with 6 clusters.

Ionosphere consists of 351 radar returns from the ionosphere.
These instances are described by 2 integer attributes per pulse
number, of which 17 exist. This would lead to a 34 dimensional
partition containing 2 clusters: both "good" and "bad" radar returns.

Iris is a data set containing 3 classes of iris flowers with 50
instances each. There are 4 attributes: sepal length in cm, sepal
width in cm, petal length in cm, and petal width in cm. This infers
an optimal partition of 3 clusters containing 150 data points in a
4 dimensional space. Along with Wisconsin Breast Cancer, these
2 data sets are most the commonly used among the algorithms
reviewed.

Lung cancer describes 32 instances of pathological lung cancers
that fall under 3 types, and are characterised by 57 integer-based
attributes. The low amount of data points in this data set could
pose a unique challenge for algorithms. An optimal partition would
contain 3 clusters in a 57 dimensional space.

Wisconsin Breast Cancer is a data set that contains 699 data
points albeit with a few missing values. A particular data point is

considered to be benign or malignant based on 10 integer attributes.
An optimal 10 dimensional partition would contain 2 clusters.

Zoo categorises 101 animals into 7 classes based on 17 attributes
that are either boolean (categorical) or integer-based. Examples
include hair, feathers, eggs. An optimal partition would have 7
clusters in a 17 dimensional space.

3 GENETIC ALGORITHM
The GA is considered to be the first nature-inspired metaheuristic,
and it was developed by Holland et al. in 1975 [21]. The algorithm
was then used to guide the first GA-based clustering algorithm
proposed by Bezdek et al. [8]

By following the Darwinian evolutionary theory of "survival
of the fittest", the algorithm starts by generating an initial pool of
random solutions called a population, where each solution called a
gene or individual is encoded into what is known as a chromosome.
Researchers have utilised varying forms of encoding that fall within
three main groups: binary, integer, and real.

Having determined the encoding, the first step of any generation
is to select parent solutions to be used for reproduction. The expec-
tation is that solutions of higher quality are more likely to produce
offspring solutions that yield an even better fitness function (the
measure that is to be maximised or minimised by the algorithm).
There exist many different ways to select these parents, where the
important factor to consider is the trade-off between exploration
and exploitation. Should only the highest quality solutions be se-
lected each generation without fail, the algorithm will converge
on an optimum very quickly but at the cost of it likely being a
local one. By selecting too many weak candidates, the algorithm
will converge very poorly and likely lead to a sub-optimal solution.
Once the parent solutions have been identified, two of them are
probabilistically selected at a time to reproduce in a crossover step.
The goal of crossover is to create two new solutions with chromo-
somes that bear traits from both of their parents. The final step of
each generation is the mutation step which occurs with a very low
probability. The use of mutations is to assist in the escaping of local
optima in favour of global ones by adding this additional variability
to the population.

3.1 Applications
Agustín-Blas et al. [2] developed a genetic algorithm (GGA) with a
variable length chromosome and modified crossover and mutation
operators that follow Falkenauer’s grouping-based methodologies
[17]. The probabilities of crossover and mutation are high in the
beginning of the algorithm to promote exploration and lowers as
generations pass to converge on a global optimum. The algorithm
also makes use of the DB Index [11] whose value is not mono-
tonic for varying number of clusters, allowing it to determine the
optimal amount of clusters to be used. The algorithm was tested
against K-means and DBSCAN using artificial data consisting of
two-dimensional spherical, structured and unbalanced data with
300, 400, and 200 data points respectively. The authors also tested
with the UCI data sets Iris and Wine. Using the Rand Index [37],
the GA was found to outperform both K-means and DBSCAN in all
tests. A summary of the algorithm, along with the others discussed
in this review, can be found in Table 1.
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An automatic GA called AGCUK using a unique mutation op-
erator was designed by Liu et al. [30]. Two types of solution are
present in any given generation: the best individual with the correct
number of clusters (determined by the DB Index) and the rest of the
population. Non-best solutions are subject to a division-absorption
mutation whereby individuals are randomly partitioned or merged.
A noising method is also used to explore the search space further,
probabilistically accepting poor individuals and rejecting good ones
to escape local optima. The algorithm was tested using a subset of
the 100 synthetic two-dimensional data proposed by Lin et al. [28].
Comparisons were made against four other genetic algorithms pro-
vided by Bandyopadhyay and Maulik [5, 6], Lai [26], and Lin et al.
[28]. It was found that the AGCUK method outperforms the other
algorithms in most cases, exhibiting lower misclassification rates us-
ing the optimal amount of clusters. The Breast Cancer data set was
also used to test the algorithms. Even though the correct number of
clusters were found by AGUCK and Bandyopadhyay’s method, no
algorithm correctly partitioned the data. Liu et al. specifically point
out that the use of only one validity index makes it difficult when
clustering different data sets. It was also noted that although the
time complexity of AGCUK was comparable to the other three, the
noising method may stochastically cause the algorithm to converge
very late due to its tolerance for weaker individuals.

He and Tan [20] tested a two-stage genetic clustering algorithm
(TGCA) that can optimise the number of clusters and find the best
partition of a data set. The algorithm continuously looks for both by
using the CH Index [9] based on the internal cluster coherence and
the external cluster separation. The selection and mutation proba-
bilities vary with the number of clusters, with stage one searching
for the number of clusters and stage two locally searching for the
best cluster center. Parent selection made use of roulette wheel
selection where solutions are chosen with a probability propor-
tional to their objective function. Using artificial data and the UCI
data sets Iris, Glass, Breast, Connectionist Bench, ionosphere, Zoo,
and Lung Cancer, the algorithm was compared to a hierarchical
agglomerative K-means hybrid, an automatic spectral algorithm
[42], and standard genetic K-means algorithm. Although the two-
stage GA performed better across the board, its search ability was
reduced when the dimensionality of the data was high. Specifically,
the Connectionist Bench, Ionosphere, and Lung Cancer data sets
(with 60, 34, and 57 dimensions respectively) imposed a challenge
to the two-stage GA.

4 SIMULATED ANNEALING
Simulated annealing is a physical-based algorithm developed by
Kirkpatrick et al. in 1983 [23]. By mimicking the process of anneal-
ing, whereby solids are heated to a sufficiently high temperature to
then be cooled down, SA algorithms find their solutions using the
same paradigm. The algorithm optimises a single solution which
contrasts the other population-based algorithms discussed in this
review.

Having initialised a random starting solution, the system iter-
atively compares this solution to a neighbouring one achieved
through mutation. A neighbouring solution yielding a better fitness
function will always replace the current solution. When faced with
a poor individual, however, it is selected based on a probability

function that takes into account how much worse the new solution
is, as well as the current temperature of the system. A high temper-
ature increases the probability of a worse solution being chosen for
the sake of exploring the search space and escaping local optima,
which is especially important given the single solution approach of
traditional SA. After each iteration, the temperature of the system
decreases by a factor often called the cooling rate. Therefore, as
the temperature lowers, the system becomes more strict regarding
whether a worse solution may replace the existing one. A SA-based
clustering method was first introduced by Selim and Alsutan in
1991 [39].

4.1 Applications
Bandyopadhyay [3] proposed a single-objective, fuzzy clustering
algorithm (SA-RJMCMC) that made use of the homogenous Re-
versible Jump Markov Chain Monte Carlo (RJMCMC) kernel [18].
In short, RJMCMC is used to determine the optimal number of clus-
ters during mutation which minimises the cluster validity index.
In this case, Bandyopadhyay opted to use the fuzzy XB Index [43].
The key advantages SA-RJMCMC has over the traditional fuzzy
C-means algorithm is its ability to determine the right number of
clusters to use for a given data set, as well as its ability to escape
local optima. The algorithm was compared to the standard fuzzy
C-means method using 3 sets of artificial data and 2 real-life sets
Breast Cancer and Kala Azar [33]. Data points ranged from 68 to
900, and dimensions ranged from 2 to 9. Although results were
similar between the 2 methods, the traditional fuzzy C-means ap-
proach required multiple runs as it got stuck at local optima, further
highlighting this weakness. The algorithm was also used to cluster
satellite images and was compared to a GA-based fuzzy algorithm.
SA-RJMCMCwas found to provide more optimal number of clusters
while also differentiating the landscape better.

With data sets becomingmore andmore complex, single-objective
algorithms may no longer be sufficient when determining the best
partition for the problem at hand. The previous algorithms dis-
cussed only optimise one function like the DB or XB index. Multi-
objective optimisation tries to simultaneously optimise many objec-
tive functions or validity indices, acknowledging the fact that one
functionmay not be able to capture all properties a data set contains.
By doing so, multiple global optima may now be present, with the
group of such solutions called the Pareto-optimal set. A solution
is said to be Pareto-optimal if there exists no change that would
improve one index without another index deteriorating. Pareto-
optimal solutions are also non-dominated solutions. A solution is
said to be dominated by another should the latter solution yield
better objective functions across the board.

Bandyopadhyay et al. [7] proposed a multi-objective simulated
annealing-based clustering algorithm called AMOSA. Using the
concept of dominance, non-dominated solutions were stored in an
archive. This archive eventually becomes the Pareto-optimal set
where each individual is a global optimum, varying in the number
of clusters and layout of each partition. A key feature of this algo-
rithm not present in most multi-objective evolutionary algorithms
is its non-zero probability of accepting a dominated solution, allow-
ing for better exploration of the search space. The algorithm has
both a binary and real encoded variation, with both being tested
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against two multi-objective evolutionary algorithms NGSA-II [15]
and PAES [24]. The data used were a collection of test problems
derived from other studies [13, 14]. PAES was found to perform
poorly in general with AMOSA performing better than NSGA-II in
most cases. Most notably, AMOSA provided more distinct solutions
in its set of Pareto-optimal solutions, and it was found to perform
significantly better when using many objective functions.

Another multi-objective SA-based clustering method was pro-
posed by Acharya et al. to specifically cluster tissue samples for
cancer diagnosis [1]. This algorithm was specifically used to cluster
tissue samples for cancer diagnosis. AMOSA was used for its search
capabilities, optimising the XB Index, FCM Index and PBM Index [4]
simultaneously. Interestingly, the algorithm has a choice of 3 muta-
tion operators when generating a neighbouring solution. Mutation
1 changes the cluster center by some small value, and mutations 2
and 3 decrease and increase the size of the string encoding by one
respectively, i.e., the current partition shifts its current cluster con-
figuration or changes its number of clusters by one. The algorithm
was tested using three (non-UCI) real-life cancer data sets: Brain
Tumor (42 samples, 5 dimensions), Adult Malignancy (190 samples,
14 dimensions), and Small Round Blood Cell Tumors (63 samples, 4
dimensions). The algorithm was compared to many others, most
notably K-means, hierarchical average linkage, and self organising
maps. Using the Adjusted Rand Index and Classification Accuracy
as evaluation metrics, the AMOSA-based algorithm performed the
best across all three data sets.

5 ARTIFICIAL IMMUNE SYSTEM
The artificial immune system contains represents a category of
algorithms based on different immunology theories. Based on the
survey on nature-inspired metaheuristics done by Nanda and Panda
[36], the clonal selection algorithm (CSA) approach proposed by
de Castro and Zuben [12] seems to be the most popular for the
purposes of machine learning and optimisation. As such, we will
be exploring applications of AIS algorithms that specifically make
use of the CSA approach.

The clonal selection algorithm is based on a theory developed by
Burnet in the mid 1900’s. The algorithm makes use of the principle
where only antibodies (solutions) that recognise the present antigen
(problems) are allowed to proliferate in the system. An initial pop-
ulation of antibodies is generated, and a calculation is made with
each antibody to check their affinity with the antigen. This affinity,
in the form of an objective function(s) in clustering problems, tells
us how fit a given antibody is for the problem at hand. The N most
fit individuals are cloned a number of times which is proportional
to their respective affinity - an antibody with a high affinity yields
more clones. The clones are then subjected to what is known as
affinity maturation. This is the process of mutating each clone at
a rate inversely proportional to its affinity, i.e., a clone with a low
affinity is mutated more often than a clone with high affinity. The
clone with the best affinity after the mutations is then stored in
a memory pool. The usage of the memory pool, as we shall see,
is different across studies. A portion of the weakest antibodies in
the initial population is then replaced by new randomly generated

antibodies in a step called receptor editing, with the goal of diver-
sifying the population. This process repeats until the termination
criterion is fulfilled.

5.1 Applications
Kuo et al. [25] proposed a CSA-based algorithm (AISK) that inte-
grated the K-means algorithm to perform an additional local search
of each clone after the affinity maturation step. The antibodies were
real-encoded and centroid-based, allowing the usage of Gaussian
mutation which slightly alters each cluster centroid by a Gaussian
random variable. The proposed algorithm is single-objective, where
the affinity is based on minimising the intra-cluster distance. The
memory cells are simply part of the population with no special
characteristics other than not being able to be replaced via receptor
editing. Like the traditional CSA, mutations occur at a rate inversely
proportional to the fitness level of each solution. The algorithm was
applied to 4 UCI benchmark data sets: Iris, Wine, Glass, and Breast
Cancer. Dimensions ranged from 4 to 13, and data points 150 to 683.
When compared to particle swarm optimisation (PSO), a swarm
intelligence-based metaheuristic, the AISK performed better with
higher accuracy rates across all data sets. The convergence rate was
also found to be faster with AISK, highlighting its strong search
capabilities. Although AISK requires the number of clusters to be
known a priori, Kuo et al. also provided a two-stage variant that uses
ART2 [10] in the first stage which finds the optimal number of clus-
ters, performing AISK in the second stage. This method was used
for customer clustering whereby the data set contained 698 data
points and 3 dimensions. The experiment resulted in ART2+AISK
performing better and converging faster than ART2+PSO.

A CSA-based clustering algorithm named MOCLONAL was pro-
posed by Nanda and Panda [35]. Contrasting the AISK algorithm
by Kuo et al., MOCLONAL is inherently automatic, multi-objective,
and uses the K-means algorithm only to generate the initial pop-
ulation. Integer encoding in the form of a locus-based adjacency
scheme [19] is used, optimising 2 objective functions: variance and
connectivity. Variance is a measure of the intra-cluster spread of the
data while connectivity measures the degree to which nearby data is
placedwithin the same cluster. SinceMOCLONAL ismulti-objective
and follows the same concept of domination as AMOSA, the mem-
ory pool in this case is used to store the non-dominated solutions
found. Therefore, as with other multi-objective algorithms, MO-
CLONAL outputs a Pareto-optimal set of results. Unlike traditional
CSA, mutation rates for antibodies occurred at a rate depending on
the amount of data points and the size of the antibody population.
The algorithm was tested on one synthetic data set containing 250
two-dimensional data points that overlap in 5 spherical clusters.
MOCLONAL was also tested on the UCI Iris and Lung Cancer data
sets, comparing performance across all data sets with MOCK - a
multi-objective evolutionary algorithm [19]. Using the Minkowski
score as done by Saha and Bandyopadhyay [38], Nanda and Panda
is able to select a single solution out of the Pareto-optimal set,
which may be useful when only one result is required. It is noted,
however, that this is only applicable when the true cluster for at
least a portion of the data is known beforehand. As the Minkowski
score is the difference between the obtained partition compared to
the true clusters, this value is to be minimised. It was found that
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Table 1: Summary of Algorithms

Algorithm Author/s Metaheuristic Class Objectivity Data Sets Used

GGA [2] Agustín-Blas et al. GA Single 3 artificial,
Iris, Wine

AGCUK [30] Liu et al GA Single 50 artificial,
Wisconsin Breast Cancer

TGCA [20] He and Tan GA Single 4 artificial,
Iris, Glass, Wisconsin Breast Cancer,

Connectionist Bench, Ionosphere, Zoo, Lung Cancer

SA-RJMCMC [3] Bandypadhyay SA Single 3 artificial,
Wisconsin Breast Cancer, Kala Azar, IRS-1A

AMOSA [7] Bandyopadhyaya et al. SA Multi 7 artificial

AMOSA’[1] Acharya et al. SA Multi Brain Tumor, Adult Malignancy,
Small Round Blood Cell Tumor

AISK [25] Kuo et al. CSA Single Iris, Wine, Glass, Wisconsin Breast Cancer

MOCLONAL [35] Nanda and Panda CSA Multi 1 artificial,
Iris, Lung Cancer

AIS-based [27] Li et al. CSA Single DSR472, DBD438, SIL300, RSH136,
nedtORIGINAL544

MOCLONAL performed better in the synthetic and Iris data sets
while matching MOCK in Lung Cancer. The synthetic data caused
the greatest disparity between the two, indicating that MOCLONAL
may be better suited for overlapping data. Both algorithms, how-
ever, did not accurately determine the correct number of clusters
for Lung Cancer and had high MS values (0.79 each). The algorithm
was also used to classify actions of 3D human models. The algo-
rithm was able to determine the 2 clusters by itself, comprising of
normal and aggressive human behaviour.

In a study performed by Li et al. [27], a CSA-inspired clustering
algorithm was proposed for the classification of 3D models. The
algorithm’s novelty lied within its ability to not only cluster 3D
models with an empty database (unsupervised), but also recognise
new incremental models and cluster them with previously seen
models. This is possible due to the algorithm’s particular use of
memory cells, allowing it to reuse previous antibodies with the
best affinity for new antigens. In this case, antigens are the differ-
ent 3D models it has to cluster, and the affinity is determined by
the Euclidean distance between antibody and antigen (intracluster
distance). When a model is presented to the algorithm, the model
is considered as "seen" if it matches one of the clusters already
present in the memory pool via a recognising scope - a function
that determines the similarity to an existing cluster. In this case,
the memory cell is updated with the new model in mind, adjusting
its recognising scope for further new models. If there is no match,
the new model is considered as "unseen" and becomes the base for
a new cluster within the memory pool through the standard use
of affinity maturation, and clonal selection procedures. Although

the number of clones produced is proportional to the affinity of
each antibody, the mutation rate seems to be completely random.
The algorithm was tested with different sets of 3D models, with
dimensions ranging from 136 to 544. When compared to ASCAR
[32] and CAIOC+Kmeans [31], the CSA-based algorithm performed
better overall with the highest consistency, exhibiting above 90%
accuracy for all three cases.

6 DISCUSSION
The methods explored in this paper all have the intrinsic ability of
being able to find the optimal number of clusters without a priori
knowledge of the data set. This is achieved either through two-stage
approaches such as He and Tan’s GA, or continuously through-
out the algorithm like in MOCLONAL. This alone should make
metaheuristics more compelling to use when clustering molecular
dynamics trajectories as little may be known about the behaviour of
the molecules simulated. Both single-objective and multi-objective
methods were covered. Although single-objective algorithms are
easier to understand and implement due to not having to worry
about simultaneous objective function optimisation and Pareto-
optimal sets, it is also less capable because of the very same reason
when handling different data sets. Therefore, multi-objective al-
gorithms will generally be preferred for the purpose of clustering
molecular dynamics trajectories.

With every metaheuristic, the balance between exploration and
exploitation must be considered during its development. An imbal-
ance between the two can lead to wasted computational resources
due to slow convergence or sub-optimal solutions due to premature
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convergence. For genetic algorithms, this balance is mainly brought
about by ensuring its selection, crossover and mutation methods
allow for both performant and weaker solutions for reproduction.
To converge in a reasonable time, adaptive probabilities for these
steps can be taken, as with Agustín-Blas et al.’s approach. Simulated
annealing presents a unique case whereby only a single solution is
optimised in any given iteration. This inherently hinders its scope
when exploring the search space. Multi-objective methods, as pro-
posed by Bandyopadhyay et al., somewhat overcome this limitation
via the use of Pareto-optimal sets in which multiple solutions of
equal solution quality are presented to the user via the optimisation
of multiple validity indices. For the clonal selection-based algo-
rithms, exploitation is achieved through the cloning of solutions
while exploration is performed by affinity maturation and recep-
tor editing. Traditionally, the rate of maturation for CSA-based
algorithms is often inversely proportional to the affinity of each
antibody, presenting a bias towards solutions that display a higher
fitness level. Different approaches have been taken, however, like
with Nanda and Panda’s MOCLONAL.

While most of the algorithms reviewed focus on outputting a
single partition or Pareto-optimal set of partitions for a single prob-
lem, Li et al.’s clonal selection-based clustering algorithm provides
a set of classes for different problems in the form of 3D models.
Even though the algorithm is single-objective, adaptations could
possibly be made to optimise multiple objective functions. The
method can almost be seen as a hybrid between clustering and
classification whereby new unrecognised models generate a new
class, and recognised models are added to these existing classes.
Interestingly, this can be paralleled with the clustering of molecular
dynamics. Each frame from a trajectory can be seen as a 3D model,
and while each frame consists of the same atoms to be examined,
significantly different conformations of these atoms can be trans-
lated as unrecognised models while similar conformations can be
said to belong to one of the existing clusters of models. This makes
Li et al.’s approach particularly appealing when compared the other
algorithms.

7 CONCLUSIONS
Clustering structural conformations from molecular dynamics tra-
jectories is important for researchers to efficiently gather insights
from them. Traditional clustering methods such as K-means are
often used to do so even though many require a priori knowledge
about the trajectories, and produce poor clusters due to getting
stuck in local optima. Metaheuristics have been explored as an al-
ternative due to many implementations that automatically find the
optimal number of clusters while also escaping from local optima.

The genetic algorithm, simulated annealing, and artificial im-
mune system (clonal selection-based) were found to provide promis-
ing results in their respective studies. The implementations all
provided approaches that allowed for the automatic optimising of
cluster count, with single and multi-objective methodologies. Multi-
objective algorithms may be more beneficial for the clustering of
different trajectories as conformations can vary greatly between
them. By simultaneously optimising multiple objective functions
to account for the different properties of each trajectory, better
clusters may be obtained than that of single-objective methods.

Li et al.’s clonal selection-based algorithm is also of particular
interest due the similarities of its use case in analysing 3D mod-
els. Although it is single-objective, the method could possibly be
adapted to cater for multiple objective functions which may make
it even more suitable for MD clustering.
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