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ABSTRACT
Molecular dynamics plays an important role in determining the
physical behaviour of molecules, and clustering is often used to
extract the main molecular conformations from simulated trajecto-
ries. Here we make use of HDBSCAN to cluster the trajectories of
meningococcal Y and W serogroups. With HDBSCAN known to
have difficulty clustering high-dimensional data due to "the curse
of dimensionality", we also make use of UMAP to preprocess the
trajectories beforehand. The results for clustering with and with-
out this preprocessing step were recorded and analysed. We find
that while HDBSCAN alone can uncover the main conformational
behaviours of meningococcal Y and W, it is unable to reveal each
conformation’s dominance due to too many frames being consid-
ered as noise. With the use of UMAP, HDBSCANwas able to cluster
nearly 100% of the frames, extracting the conformational behaviours
while accurately representing their relative dominance. Notably,
the use of UMAP as a visualisation tool also enables the obtainment
of rudimentary information without having to view the molecules
themselves, which greatly aids cluster analysis.

CCS CONCEPTS
•Theory of computation→Unsupervised learning and clus-
tering; • Applied computing→ Chemistry.

KEYWORDS
Molecular dynamics, clustering, HDBSCAN, UMAP, curse of di-
mensionality, conformational behaviours

1 INTRODUCTION
Molecular dynamics (MD) simulates the behaviour of molecules
which are allowed to interact with one another over a fixed period of
time; it outputs what is known as the "trajectory" of the behaviour
observed. This trajectory is a record of the movement of every atom
during the simulation, with respective changes in position over time
calculated by solving Newton’s equations of motion [11]. Since
the effects of molecular interactions occur so rapidly, positions
are often updated at the femtosecond timescale [14]. Therefore,
trajectories containing even just a few nanoseconds worth of time
frames amount to millions of locational data to observe.

The financial assistance of the National Research Foundation (NRF) towards this study
is hereby acknowledged. Opinions, findings and conclusions or recommendations
expressed in any publication generated by the NRF supported study, is that of the
author alone, and the NRF accepts no liability whatsoever in this regard.

MD simulations play an important role for researchers interested
in the effects molecular conformations can have in their applica-
tions, some of which include drug-receptor interaction and protein
folding [20]. Consequently, it is imperative that effective methods
exist to gather insight from trajectories as efficiently as possible. A
common way to do so is through the use of clustering algorithms
that can partition the trajectory into a set of dominant conforma-
tions that are deemed structurally unique from one other. The main
application for clustering in this paper regards the molecular con-
formations of polysaccharides. The importance of this is derived
from studies suggesting that a polysaccharide’s conformational be-
haviour correlates with its immunogenicity, and therefore efficacy
in vaccines [9, 10]. Specifically, the flexible carbohydrate molecules
of meningococcal Y and W serogroups are clustered.

Using a set of unlabeled data, clustering is a form of unsuper-
vised learning whereby items deemed similar are grouped together,
with items between groups being seen as dissimilar. Many popu-
lar algorithms are used for clustering in general, let alone just for
molecular dynamics. Although definitions vary, these algorithms
can be broadly classified into three categories: hierarchical, parti-
tional, and overlapping clustering [8, 16].

The Hierarchical Density-Based Spatial Clustering of Applica-
tionswithNoise (HDBSCAN) algorithmwas introduced byCampello
et al. [4] as an improvement to the DBSCAN algorithm [18]. As the
naming implies, HDBSCAN makes use of a density-based hierarchy
where the most dominant clusters are extracted, i.e, it clusters based
on regions of high data density and considers areas that are too
sparse as noise. The algorithm is relatively fast when compared to
other clustering methods and has already seen experimentation in
the field of biochemistry [14, 15]. Therefore, it has been chosen for
our purposes of clustering MD trajectories.

One issue with HDBSCAN, however, is that it suffers from "the
curse of dimensionality" [19]; a term coined by Bellman in 1957
[3]. The phenomenon is observed in the case where some high-
dimensional data has an insufficient amount of recorded data points.
When dimensionality becomes increasingly large, the amount of
data required to form the same meaningful patterns and groups
as lower dimensions increases at an exponential rate. This occurs
because the feature space itself increases exponentially, so the prob-
ability of two data points being similar experiences exponential
decay - the data simply becomes too sparse. Since each frame of
an MD trajectory consists of a molecule’s locational data in a three
dimensional space, the number of dimensions for a given frame is
3N, where N is the number of atoms present in the molecule. Frames
can often contain hundreds if not thousands of atoms, which gives
rise to this phenomenon.



Uniform Manifold Approximation and Projection (UMAP) is a
state-of-the-art dimensionality reduction technique developed by
McInnes et al. in 2018 [13]. UMAP looks to estimate the underlying
topology of some given data and project it to a manifold at some
lower dimension, i.e., it aims to preserve as much of the variance
explained in the original data while reducing its dimensional com-
plexity. Recent experimentation with UMAP has shown that it is
able to improve the clustering performance of algorithms that suffer
from high dimensionality [1].

This paper explores HDBSCAN’s performance in finding the
dominant conformation(s) of meningococcal Y and W, and whether
UMAP is able to improve results by using it first as a preprocessing
step. Parametric algorithms have been seen to output very different
results depending on their given values [20], so there is additional
focus on the parameters for both HDBSCAN and UMAP.

2 RELATEDWORK
Melvin et al. made use of HDBSCAN and Intelligent Minkowski-
Weighted K-Means (iMWK-Means) to discern stability of MD tra-
jectories and detect conformational changes [14]. The focus was
to cluster conformations in a non-parametric fashion. To achieve
this, the parameters of HDBSCAN and iMWKK-Means were left
constant. Notably, the notion of using a dimensionality reduction
technique was forgone as the clustering algorithms were consid-
ered efficient enough. The authors found that HDBSCAN was good
for detecting large-scale structural changes while iMWK-Means
was better suited for finer differences in stable systems. The study
suggested that the combination of the two algorithms may prove
fruitful for even better results.

A comparative study utilising UMAP to preprocess data before
clustering was performed by Allaoui et al. [2]. The difference in
clustering performance between using and not using UMAPwith ei-
ther K-Means, Agglomerative Hierarchical, HDBSCAN, or Gaussian
Mixture Model (GMM) showed that in all cases, the use of dimen-
sionality reduction improved clustering accuracy. The improvement
was associated with the decrease in dimensional complexity after
using UMAP.

3 METHODOLOGY
The (general) steps for clustering MD trajectories with HDBSCAN
and testing the effects of UMAP are as follows:

(1) Select the atoms of interest to cluster on if they are only a
subset of the entire structure. Not only does doing so reduce
the noise generated by uninteresting atoms, the reduction
in coordinates reduces the number of dimensions for each
frame. This helps improve the efficiency of our algorithms.
Let this number of atoms be N.

(2) Use UMAP to perform dimensionality reduction on the tra-
jectory. The dimensions of the data, initially being 3N (x, y,
and z coordinate of each atom), are reduced to some lower
value.

(3) Cluster the preprocessed trajectories with HDBSCAN, gen-
erate relevant output, and create .pdb files of the dominant
conformations.

(4) Repeat steps (1) and (3) to get the results of using HDBSCAN
without dimensionality reduction.

(5) Analyse and compare the HDBSCAN results when used with
and without UMAP.

To assist in running consecutive automated clustering jobs of var-
ious input data, a clustering framework was developed to satisfy
the need for such a streamlined approach. Python was selected as
the programming language as it has access to many data science
and machine learning libraries, including the algorithms needed.

3.1 Framework
The framework, colloquially named "ClusterMol" during develop-
ment, makes use of standard object-oriented design practices. A
parser takes in user-inputs and calls the appropriate methods to
perform processing and/or clustering jobs. ClusterMol implements
7 algorithms along with a diverse collection of testing data consist-
ing of real-world and artificially generated datasets. Each clustering
job can produce various outputs such as resulting cluster labels,
visualisations of clusters when dimensionality reduction is used,
cluster validity indices, pdb files in the case of MD, etc. Figure 1
illustrates the pipeline of a typical clustering job using ClusterMol.

Since the configuration of each job is entirely dependant on the
user’s input, doing so can be very time consuming. With this in
mind, the framework also allows one to run jobs by creating and
inputting the location of a configuration file. Doing so allows for not
only easy repetition and adjusting of jobs, but more importantly the
automation of them. Each section in a configuration file represents
a job with the required parameters from the initial preprocessing (if
used) to production of output. Multiple sections can then be written
to one file so that ClusterMol is able to read and perform many jobs
in succession without user interference.

Figure 1: Clustering pipeline using ClusterMol framework.

3.2 HDBSCAN
The HDBSCAN implementation used in ClusterMol was attained
from the Python package of the same name based on the works of
Campello et al. [4, 12]. The algorithm has two main parameters that
heavily influence the output of results. The first is min_cluster_size
which changes the size grouping of what we consider to be the
minimum for a cluster. The higher the value, the more data points
are required in a region for it to be considered a cluster, resulting
in fewer of them overall.

The second parameter is min_samples which deals with how
HDBSCAN handles noisier data points. Higher values make the
algorithm more conservative while clustering, treating more erratic
data points as noise. Lower values make the algorithm more oppor-
tunistic as it tries to fit noisier data into their own clusters or in an
existing one.
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3.3 UMAP
The UMAP algorithm, also available as a Python package [13], has
two parameters that affect its output in a substantial way. The first
is n_components. This parameter is the number of dimensions that
UMAP is reducing the data to. While this value requires experimen-
tation for the purposes of clustering, n_components can be set to 2
for the purposes of visualisation. By reducing the dimensionality of
a dataset to 2, we are able to plot each feature on a 2D plane. The
labels resulting from clustering can then be used to differentiate
the data points by colour, as seen in Figure 2.

The second parameter is n_neighbours. This parameter tells the
algorithm how to balance its focus between the local and global
structure of the presented data. A higher value tells UMAP to focus
more on global structure so that groups of data points are placed
in such a way that the distance between the groups tell us how
different they are, i.e., a group placed far away from another is
considered "more different" than if it were placed closer. This feature
comes at the detriment of individual data points within the same
group not necessarily being closest to other points most similar to
them. By focusing on local structure, with a lower n_neighbours
value, UMAP ensures that data points within groups that are most
similar are close together on the embedding. This, naturally, comes
with the trade-off of resulting groups not always being placed in
meaningful ways.

3.4 Validation Data
Before clustering MD trajectories, we first clustered test datasets
popular in the literature as part of preliminary exploration and
validation. The UCI machine learning repository is a freely available
online collection of databases that contain many real-life datasets
used specifically for the testing of machine learning algorithms [7].
Breast Cancer, Digits, Iris, and Wine were the four datasets chosen,
and each dataset has a known number of classes. A summary of
them can be found in Table 1.

The four datasets cover a variety of different possible clustering
behaviours. This ensures we gain broader insight as to how our
techniques approach different kinds of problems. This is especially
beneficial with regards to MD, as conformations can often have
wildly varied shapes and sizes.

Breast Cancer contains 569 instances of 30 features derived from
digitized images of fine needle aspirates of breast mass. There are
two classes that can result from these attributes: malignant and
benign. The dataset has been chosen for its relatively high feature
count.

Digits is a 64-dimensional dataset derived from 8x8 bitmaps of
handwritten images. The reduced dataset contains 1797 instances
and 10 classes, where each class is a digit from 0 to 9. Digits is being
used due to its higher dimensionality and class count.

Iris is a dataset containing three classes of iris flowers: Iris Setosa,
Iris Versicolour, and Iris Virginica with 50 instances each. Each
instance contains four features. Iris has been selected due to overlap
between Iris Versicolour and Iris Virginica as both species have
similar attributes.

Wine contains 179 instances of wine cultivated in Italy that
belong to one of three types. Each wine has 13 features. The dataset

has been chosen due to its well structured classes, so there should
be little trouble in differentiating them.

Table 1: Summary of test datasets

Dataset Instances Features Classes

Breast Cancer 569 30 2
Digits 1797 64 10
Iris 150 4 3
Wine 178 13 3

3.5 Molecular Dynamics Data
TheMD data used for clustering were the pre-aligned trajectories of
meningococcal Y (MenY) and W (MenW) capsular polysaccharides
(CPS). These carbohydrate molecules are considered flexible and
have varying conformations. The two serogroups along with others
are used in polysaccharide vaccines to provide protection against
Neisseria meningitidis based diseases. A summary of the data can
be found in Table 2. These trajectories were treated as "unseen" data
with no known number of classes/conformations for the purposes
of experimenting with the different parameters of HDBSCAN and
UMAP.

Both MenY and MenW trajectories originally contained over
40000 frames but were downscaled to new trajectory files retaining
every tenth frame, thus arriving at 4003 frames for each serogroup.
This was done for the purpose of expediting clustering and process-
ing jobs while keeping enough meaningful data. 351 atoms were
present in each trajectory, of which 56 were selected to cluster. This
selection was made so that the atoms we were not interested in
did not contribute as noise in the data, i.e., we would not want the
same conformation of atoms in our scope of interest to be split into
multiple clusters due to the conformations of atoms out of scope.

Table 2: Summary of meningococcus trajectories

Serogroup Frames Atoms Atoms Features Average
Selected RMSD (Å)

Y 4003 351 56 168 2.18
W 4003 351 56 168 3.29

3.6 Evaluation
The Silhouette score (S) [17] and Davies-Bouldin Index (DB) [6]
have been chosen as internal metrics to gauge how well our im-
plementations partition the presented data. Both metrics look to
examine the ratio between cohesion within clusters and separa-
tion between clusters. Values close to 1 for the Silhouette score
indicate good clustering. Scores near 0 indicate overlapping clus-
ters, while a score close to -1 suggests incorrect clustering. For the
Davies-Bouldin Index, values closer to 0 indicate good clustering,
and values above 1 are considered very poor. Since these metrics
require no knowledge of the data’s actual classes, they are usable
for both the test datasets as well as MD data.
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Figure 2: UMAP plots (n_components = 2, n_neighbours = 80) of clustering test data using HDBSCAN with and without dimensionality reduction. The top
row is HDBSCAN results, the middle is UMAP+, and the bottom row contains the known classes for each dataset. Columns (a), (b), (c), and (d) illustrate the
Breast Cancer, Digits, Iris, and Wine datasets, respectively. Data points belonging to the -1 label are noise found by HDBSCAN. UMAP’s ability to be used for
visualisation purposes and assist in cluster analysis is highlighted here. Note that the axes for each plot are not meant for interpretation; the points are simply
a projection onto a two-dimensional plane.

The Silhouette and Davies-Bouldin Index were adjusted to ignore
noise if HDBSCAN found any as it would negatively impact the
metrics otherwise. We then called the proportion of data placed
into clusters "coverage" (cov.), with a minimum value of 0 (all noise),
and a maximum value of 1 (no noise). Regarding the test datasets,
the number of clusters found by each method was recorded as
k. For MD trajectories, however, the total number of clusters is
irrelevant when compared to the number of dominant clusters,
as those represent the main conformations present for a given
molecule. For clustering meningococcal Y and W, we considered k
to be the number of clusters which occupied more than 10% of the
total trajectory.

While the Silhouette and Davies-Bouldin Index metrics for MD
trajectories can give an indication of overall clustering performance,
the average root-mean-square deviation (RMSD) for each result-
ing cluster was calculated to give us actual information about the
variation within each cluster. Higher values indicate disorder and a
noisier cluster, and lower values indicate an ordered cluster with
minimal difference between each frame. It is important to note,
however, that getting the lowest possible value was not the aim. A
trade-off between cluster count and noise within each cluster had
to be made. Should we have focused too much on getting a low
RMSD value, the number of clusters produced would increase to

meaningless levels as the smallest of differences between frames
would result in them being considered as separate conformations.

For clustering the test datasets, all but one parameter from our
algorithms were tweaked in such a way as to provide as close to
the actual number of classes present in each dataset. This was to
show a best-case scenario for clustering with and without UMAP.
The only parameter left fixed at 1 was min_samples for HDBSCAN.
Since every instance in each dataset has a known class, we wanted
as few data points to be considered as noise.

Since we are considering the carbohydrate molecules of the
MD data to be unseen, multiple configurations of parameters for
both HDBSCAN and UMAP had to be considered as we could
no longer base them on how many clusters each produced. Like
the validation testing, min_samples for HDBSCAN was set to the
minimum value of 1 again. The rationale for this is that although
each resulting cluster may be slightly more unstable due to the
tolerance of noisier frames, the dominance of each conformation is
much more accurately represented. Should too many frames in the
trajectory be considered as noise, the ability to infer which clusters
are more prominent would be lost.

Clustering with and without dimensionality reduction were re-
ferred to as "UMAP+" and "HDBSCAN" methods, respectively. The
parameters when naming each configuration for HDBSCAN were
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Figure 3: Plots showing clustering results of the test datasets. (a) is the Silhouette Score, (b) is the the Davies-Bouldin Index, (c) is the coverage, and (d) is the
number of clusters found. The datasets are labeled in order of increasing dimensionality.

ordered as <min_cluster_size> - <min_samples>. For the UMAP+
approach: <min_cluster_size> - <min_samples> - <n_neighbours>
- <n_components>.

4 RESULTS
We first discuss the results from validation with the test datasets
and then the clustering of the flexible meningococcus carbohydrate
molecules.

4.1 Validation
Figure 2 shows plots of clusters found for each test dataset. Each
column represents a specific dataset and is labeled from a to d.
Metric scores are listed in Table S1.

4.1.1 Breast Cancer: Figure 2a. UsingHDBSCANon its own yielded
S and DB scores of 0.66 and 0.32, respectively. S scores close to 1,
and DB scores close to 0 indicate good clustering, so the metrics
from HDBSCAN are fair. The HDBSCAN scores were better than
the UMAP+ approach, and this is the only dataset where this occurs
(Figure 3a and Figure 3b). However, HDBSCAN only managed to
cover 89% of the data points, while UMAP+ covered 100% (Figure
3c).

In Figure 2a, although both methods found the correct number
of clusters (two), UMAP+ (middle row) allocated the data points
far better than HDBSCAN (top row). HDBSCAN was unable to
find the cut-off region between the two clusters in the middle of
the parabolic shape. UMAP+ clustered each half of the parabola
correctly, making it much closer to the known classes (bottom row).
Notably, some of the data points in Breast Cancer do not conform
to the differentiation between the two classes, and so UMAP+ was
unable to separate the overlapping portion in the right half of the
parabola.

4.1.2 Digits: Figure 2b. This dataset shows the largest discrepancy
in metrics between the two methods. Both approaches attained the
correct number of clusters, but metrics using HDBSCANwere much
poorer than using UMAP+ (Figure 3a and Figure 3b). In Figure 3c, we
see that there is an inverse correlation between the dimensionality
of each test data and the coverage of HDBSCAN. The Digits dataset
has the highest number of dimensions of the four test datasets, and
it causes the HDBSCAN method to yield the lowest coverage of
80%, opposed to the 99% of UMAP+.

The data points in clusters were allocated well with both meth-
ods. However, much of the data classified as noise in the HDBSCAN
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Figure 4: UMAP plots (n_components = 2, n_neighbours = 80) visualising MenY and MenW results using HDBSCAN (min_cluster_size = 50, min_samples =
1). Data points belonging to the -1 label are noise found by HDBSCAN. UMAP’s ability to estimate the topology of the data reinforces the results found
through clustering. MenY seems to have one extremely dominant conformation while MenW has a few. Note that the axes for each plot are not meant for
interpretation; the points are simply a projection onto a two-dimensional plane.

method belonged to one of the classes of Digits, as seen when com-
paring the top and bottom row of Figure 2b. This further suggests
that HDBSCAN’s ability to cluster suffers when dealing with high
dimensionality.

4.1.3 Iris: Figure 2c. Both HDBSCAN and UMAP+ had reasonable
metric scores for this dataset (Figure 3a and Figure 3b). Interestingly,
HDBSCAN was unable to find the correct the number of clusters
(three) as it was unable to differentiate between the two Iris species
that were very similar. UMAP+ correctly defined all three clusters,
albeit not allocating all instances correctly. Both methods covered
100% of the data, and this dataset is the only one where HDBSCAN
achieved full coverage for. This, again, reinforces the idea of dimen-
sionality affecting HDBSCAN’s performance, as the Iris dataset is
only four-dimensional (Figure 3c).

4.1.4 Wine: Figure 2d. The UMAP+ method yielded better metric
scores (S = 0.76, DB = 0.34) than HDBSCAN (S = 0.52, DB = 0.50) and
attained the correct number of classes (three). HDBSCAN found
four classes and covered 84% of the data (Figure 3c). UMAP+ had
100% coverage, but neither approach allocated the data points well.
We found that although the classes themselves are well defined,
not all instances of wine seem to conform to them, suggesting that
perhaps not every feature is relevant in class definition.

4.1.5 Summary: Figure 3. Excluding the Digits dataset, the Silhou-
ette and Davies-Bouldin metrics from HDBSCAN were competitive
with UMAP+, even though HDSCAN did not find the correct num-
ber of clusters for Iris and Wine. This suggests that while the two
metrics are good for gauging overall cluster performance, it alone
cannot be used to determine the number of clusters present in a
dataset. UMAP+ was able to find the correct number of clusters for
all four datasets (Figure 3d).

Figure 3c clearly indicates an inverse correlation between the di-
mensionality of a dataset to HDBSCAN’s coverage. Using UMAP+,

this relationship no longer exists, as reducing the number of dimen-
sions first with UMAP allows HDBSCAN to cover 99%+ of each
dataset.

4.2 Clustering MenY and MenW
Metric scores and average RMSD values for clustering theMenY and
MenW datasets are shown in Table S2, Table S3, Table S4, and Table
S5 under Supplementary Material. For each table, each row repre-
sents a clustering outcome using one particular configuration of
parameters, which follows the naming schemementioned at the end
of Section 3.6 - HDBSCAN: <min_cluster_size> - <min_samples>,
UMAP+: <min_cluster_size> - <min_samples> - <n_neighbours> -
<n_components>. Plots showing these metrics are also in Supple-
mentary Material in Figure S1.

4.2.1 MenY. HDBSCAN obtained very interesting results for this
trajectory. While configurations with min_cluster_size = 25 and 50
(25-1 and 50-1) yielded poor metrics (Figure S1a and Figure S1c)
and coverage above 90%, configurations with min_cluster_size >
50 (75-1 and 100-1) allocated none of the frames to clusters (Fig-
ure 5a). Using UMAP+ produced slightly improved metric values
overall but achieved close to 100% coverage for every configuration.
UMAP+ had no cases of 0% coverage even when using the same
min_cluster_size value of 100 as HDBSCAN (Figure 5a). Excluding
HDBSCAN’s configurations with min_cluster_size > 50 (75-1, 100-
1), every other parameter configuration used for HDBSCAN and
UMAP+ resulted in one dominant conformation (Figure 4c).

UMAP’s ability to visualise high-dimensional data was used to
assist in cluster analysis (Figure 4a). Using HDBSCAN with pa-
rameter min_cluster_size = 50, there is a very large central cluster
(cluster 1), which again suggests that there is one dominant con-
formation of MenY. The only other cluster found (cluster 0) is very
small in comparison and suggests that the dominant conformation
takes up the majority of the MenY trajectory.
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Figure 5: Plots showing clustering results of MenY and MenW. (a) and (b) illustrate the % coverage attained in MenY and MenW, respectively. (c) and (d) show
the number of dominant clusters/conformations (k) found in MenY and menW, respectively. The x-axis for each plot consists of the parameter configurations
used, and follows the naming scheme mentioned at the end of Section 3.6. HDBSCAN: <min_cluster_size> - <min_samples>. UMAP+: <min_cluster_size> -
<min_samples> - <n_neigbours> - <n_components>.

The average RMSD value for the dominant MenY conformation
per configuration is in agreement between HDBSCAN and UMAP+.
The trajectory’s original average of 2.18Å is reduced to between
1.89Å and 2.13Å for the dominant conformation by our methods,
excluding the results with min_cluster_size > 50 (75-1 and 100-1)
from HDBSCAN. This means that the average difference between
frames in the dominant conformation was reduced by 3.3% - 13.3%.
While the reduction is not dramatic, this is not surprising given that
the dominant conformation consists of nearly the entire trajectory
itself.

4.2.2 MenW. HDBSCAN was able to cluster MenW in a consistent
manner in terms of metric performance. Silhouette and Davies-
Bouldin scores were poor (Figure S1b and Figure S1d), but coverage
was maintained at an average of 70%, with the highest coverage
being 73% with min_cluster_size = 75 (Figure 5b). UMAP+ was not
only able to yield improved metrics compared to HDBSCAN, but
also covered close to 100% of the frames present in all configurations.

This difference in coverage is illustrated in Figure 5b. Figure 5d
shows us the number of dominant conformations found in MenW
per configuration. We see an indication of there being around 3 of
such conformations. This result is reinforced when examining the
UMAP embedding of MenW in Figure 4b. There are large clusters in
the top left and right corner, as well as in the middle of the plot. The
vast number of red data points that should belong to nearby clusters
is a result of poor coverage, where 33% of the data was categorised
as noise by HDBSCAN (min_cluster_size = 50 and min_samples =
1).

Once again, there were similar average RMSD values of dominant
conformations between HDBSCAN and UMAP+.The original RMSD
of the trajectory was reduced from 3.29Å to below 2.78Å at all times,
with many conformations having an RMSD near 2Å, which is a
39.2% reduction in noise. This suggests that while HDBSCAN was
unable to cover the MenW trajectory well, it was able to correctly
allocate the frames it did cluster. Had it not, the average RMSD in
each cluster would be near the original value of 3.29. For UMAP+,
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it shows us that UMAP allows HDBSCAN to cover nearly 100% of
the trajectory without significantly increasing noise within each
cluster.

In Figure 6, we now compare the conformations found between
MenY and MenW using UMAP+ with min_cluster_size = 100, min_-
samples = 1, n_neighbours = 50, and n_components = 30 (100-1-50-
30). MenY’s dominant conformation lasts for 95% of its trajectory
whereas MenW’s dominant conformations cumulatively last for
78%. Although the structure of MenW is clearly more variable than
MenY, it is interesting to note that the most dominant conformation
for MenW (29%) is extremely similar to that of MenY. These results
fall in line with findings in the literature. Kuttel et al. had also
found that MenY consisted of one dominant conformation that
took up 88% of the trajectory. MenW was also found to have four
dominant conformations that each consisted of more than 10%
of the trajectory (44%, 15%, 11%, 11%), with the most dominant
conformation of MenW being similar to that of MenY [10]. The
differences in cluster sizes with our findings can be attributed to
the use of a different clustering algorithm [5] by Kuttel et al.

Figure 6: Comparison between the dominant conformations of MenY
and MenW found with the UMAP+ method. The parameters used were
100-1-50-30. The proportion that each conformation lasts for per trajectory
is expressed as a percentage. We see that the most dominant conformation
of MenW is very similar to that of MenY.

5 DISCUSSION
From the test data, UMAP+ achieved almost 100% coverage across
all four cases while also delivering better clustering results than
HDBSCAN. The inverse correlation between dimensionality and
coverage was evident in Figure 3c, and suggested that our experi-
mentation with MD trajectories should see similar trends.

HDBSCAN’s inability to cluster MenY with min_cluster_size
set to 75 and 100 suggested that the data was too sparse for those
parameters to be effective. We saw, however, that preprocessing
MenY first with UMAP allowed HDBSCAN to cluster with the same
min_cluster_size values. We intuit that "the curse of dimensional-
ity" was indeed in effect, and that by reducing the dimensionality,
HDBSCAN was then able to find the appropriate conformations.
This was further reinforced when we found that the coverage for
MenW increased from an average of 70% to near 100% when UMAP
was used.

The combination of different parameters for the HDBSCAN
method showed that the algorithm was quite sensitive to them,
at least when regarding MenY. For UMAP+, however, this sensitiv-
ity was generally reduced even with varying UMAP parameters.
There was no single parameter configuration that completely out-
performed the others. While the method is still parametric, UMAP
seems to provide robustness when clustering for exploratory anal-
ysis.

The lack of meaningful difference in RMSD values achieved be-
tween HDBSCAN and UMAP+ suggests that UMAP was able to
improve the coverage of HDBSCAN clustering without introducing
levels of noise that inhibit accurate cluster analysis, i.e., UMAP
allowed HDBSCAN to more accurately determine the dominance
of each conformation present. Interestingly, the RMSD values at-
tained by the HDBSCAN method contradict the poor clustering
performance suggested by the Silhouette score and Davies-Bouldin
Index. As such, this bears further investigation in future work.

UMAP has also shown that apart from improving clustering
results, it is immensely useful in cluster analysis as a whole due
its ability to visualise high-dimensional data. As such, it may be
used to gain rudimentary knowledge about MD trajectories without
having to view the molecular structures themselves.

6 CONCLUSIONS
Clustering structural conformations from molecular dynamics tra-
jectories is important for researchers to efficiently gather insights
from them. The applications of HDBSCANwith and without UMAP
preprocessing were compared to determine if HDBSCAN could find
the dominant conformations of meningococcal Y andW serogroups,
and if UMAP would be able to improve its clustering performance.

Without UMAP, HDBSCAN was found to provide good confor-
mational results but was unable to accurately determine dominance
due to its inability to cluster many of the frames. By using UMAP
to preprocess the trajectories beforehand, HDBSCAN was able to
cluster almost all of the frames present in both meningococcal Y
and W trajectories while still accurately determining their confor-
mational behaviours, allowing us to deduce the dominance of each
conformation present. These findings suggest that using UMAP as a
preprocessing step greatly benefits the clustering of MD trajectories
with HDBSCAN, as it no longer suffers from sparse data resulting
from high dimensionality.
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Figure S1: Plots showing clustering results of MenY and MenW. (a) and (b) illustrate the Silhouette Score (S) attained in MenY and MenW, respectively.
(c) and (d) show the Davies-Bouldin Index (DB) found in MenY and menW, respectively. The x-axis for each plot consists of the parameter configurations
used, and follows the naming scheme mentioned at the end of Section 3.6. HDBSCAN: <min_cluster_size> - <min_samples>. UMAP+: <min_cluster_size> -
<min_samples> - <n_neigbours> - <n_components>.

Table S1: Metrics from clustering test datasets

HDBSCAN UMAP+

Dataset S DB cov. k S DB cov. k

Breast Cancer 0.66 0.32 0.89 2 0.61 0.62 1 2
Digits 0.22 1.61 0.80 10 0.81 0.29 0.99 10
Iris 0.69 0.38 1 2 0.77 0.32 1 3
Wine 0.52 0.50 0.94 4 0.76 0.34 1 3
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Table S2: Metric scores of HDBSCAN results
clustering meningococcal Y and W

MenY MenW

Parameters S DB cov. k S DB cov. k

25-1 0.11 1.11 0.91 1 0.17 1.31 0.68 2
50-1 0.55 0.75 0.99 1 0.18 1.36 0.67 2
75-1 - - 0 0 0.17 1.49 0.73 3
100-1 - - 0 0 0.27 1.45 0.71 3

Table S3: Metric scores of UMAP+ results
clustering meningococcal Y and W

MenY MenW

Parameters S DB cov. k S DB cov. k

50-1-50-2 0.16 0.49 0.99 1 0.53 0.58 0.98 2
50-1-100-2 0.07 0.55 0.99 1 0.51 0.54 0.99 3
100-1-50-2 0.45 0.48 0.94 1 0.56 0.50 1 3
100-1-100-2 0.40 0.51 0.95 1 0.51 0.54 0.99 3
50-1-50-30 0.44 0.39 0.98 1 0.51 0.52 0.98 4
50-1-100-30 0.34 0.49 0.98 1 0.59 0.61 0.98 3
100-1-50-30 0.56 0.61 1 1 0.53 0.57 0.98 4
100-1-100-30 0.42 0.53 0.96 1 0.60 0.61 0.98 3

Table S4: Average RMSD values (Å) for the top 4 dominant
conformations found per HDBSCAN configuration

MenY MenW

Parameters 1 2 3 4 1 2 3 4

25-1 1.89 1.95 2.28
50-1 2.13 1.95 2.28
75-1 2.18* 1.95 2.48 2.71 2.59
100-1 2.18* 2.13 2.48 2.71 2.59

Table S5: Average RMSD values (Å) for the top 4 dominant
conformations found per UMAP+ configuration

MenY MenW

Parameters 1 2 3 4 1 2 3 4

50-1-50-2 1.99 2.83 2.07
50-1-100-2 1.99 2.85 2.07 2.82
100-1-50-2 1.99 2.83 2.07 2.78
100-1-100-2 1.99 2.85 2.07 2.82
50-1-50-30 2.02 2.05 2.78 2.12 2.56
50-1-100-30 2.10 2.23 2.78 2.12
100-1-50-30 2.07 2.05 2.78 2.28 2.56
100-1-100-30 2.02 2.23 2.78 2.27
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