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ABSTRACT
Molecular Dynamics (MD) is a computer simulation method for
generating and analysing the physical behaviours of molecules
over time. As simulations increase, the amount of data needing to
be analysed also increases. Manual comparisons between visual
structures are rarely reliable on such a large scale and extremely
time-consuming. Clustering analysis provides a means to classify
similar molecular conformations into a limited number of district
groups thereby reducing the amount of information to be manu-
ally analysed. A wide variety of readily available clustering algo-
rithms have not been implemented and tested on highly �exible
molecules such as carbohydrates. Hierarchical clustering provides a
well-known approach to classify underlying cluster structures. The
Quality Threshold (QT) algorithm guarantees that no cluster ex-
ceeds a speci�ed similarity quality threshold. Our �ndings indicate
that QT performs as expected in classifying noise and producing
clusters of high similarity while hierarchical clustering is unable to
distinguish noise. A major limitation of hierarchical clustering is
the high sensitivity to outliers. Although the algorithms performed
well, it is important to understand the limitations of clustering.
Results are signi�cantly dependent on the selection of atoms for
pairwise comparison. Numerous algorithms and validation metrics
should be evaluated to determine which clustering algorithm may
be most suitable for the speci�c data set.

CCS CONCEPTS
• Applied computing→ Computational biology; •Mathematics
of computing→ Cluster analysis; • Theory of computation→
Unsupervised learning and clustering.

KEYWORDS
clustering analysis, molecular dynamics (MD) simulations, carbo-
hydrate molecules, dominant conformations

1 INTRODUCTION
Molecular Dynamics (MD) simulations allow researchers to anal-
yse the conformations of molecular structures over time to better
understand the various macro-molecular structures that may occur.
The use of unsupervised learning techniques, speci�cally clustering
analysis has been utilised to deal with the growing amount of data
needing to be processed and analysed. Simulation data now exceeds
the size where manual analysis of conformations can be reliably
performed. Clustering analysis of MD simulation data focuses on
grouping similar molecular conformations into well-de�ned clus-
ters.

Previous clustering analysis of MD simulation data focuses on
nucleic acids and proteins, which are not �exible molecules. Highly
�exible molecules such as carbohydrates have an extensive domain
of possible conformations.While some carbohydrate molecules may
remain in stable states with relatively few conformation changes,
others may yield many conformations that change multiple times
throughout the simulation. The range of possible conformations
in �exible molecules will test the capabilities and limitations of
di�erent clustering algorithms in dealing with a variety of data.
Clustering analysis is inherently data speci�c and each all results
should be evaluated individually.

There are a wide variety of algorithms already adapted to work
with MD data, however, there is no single framework which incor-
porates pre-processing, clustering and post-processing analysis. As
a result, a framework was developed for researchers to easily inte-
grate other algorithms, validation measures and useful functions
into one package. The framework will allow us to test a variety of
algorithms while consolidating additional functions.

Hierarchical clustering is a well-developed clustering technique
with numerous resources available. We utilise four di�erent linkage
criteria for hierarchical clustering - single, complete, average and
Ward’s method. By exploring a range of linkage criteria we can de-
termine which will be most suitable for MD simulation data. These
are standard, widely available methods that provide an intuitive
understanding of how clusters are formed. This method produces
a hierarchical tree (dendrogram) which allows us to understand
possibly underlying structures of the data while also providing
control over the number of clusters to produced.

The Quality Threshold (QT) algorithm [12] aims to generate
high-quality clusters by iteratively adding observations to a cluster
while not exceeding the pre-de�ned cluster diameter or threshold.
Observations are added to minimise the cluster diameter. The Qual-
ity Threshold (QT) algorithm has previously been implemented for
clustering a range of MD data, however, there are some inconsis-
tencies related to certain implementations [8]. We, therefore, aim
to make use of the implementation from González-Alemán et al.
which is in line with the originally proposed algorithm from Heyer
et al. In addition we make use of a vectorised version by Melvin
et al. [19]. This will allow us to determine the e�ectiveness of the
two variations when clustering highly �exible molecules while also
illustrating any di�erences that may arise.

Overall we aim to determine if any of our implementations can
e�ectively cluster highly �exible molecules. Speci�cally, we aim to
determine which hierarchical linkage criteria may be most suitable
in clustering highly �exible molecules as well as any limitations
that may arise. Additionally, we aim to determine whether the QT
algorithms can produce clusters of high quality (high similarity
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between conformations). Finally, if there is a signi�cant di�erence
between the original QT implementation by González-Alemán et
al. and the QT vector implementation by Melvin et al.

2 BACKGROUND
2.1 Molecular Dynamics Simulations
Molecular Dynamics (MD) is a computer simulation method for
generating and analysing the trajectories of atoms and molecules
over a period of time [3, 4, 11, 22]. This is a numerical method
whereby atoms positions are recalculated over extremely small pe-
riods of time to generate an overall motion picture of the molecular
system for an extended period of time. Simulations produce ex-
tremely large amounts of data due to the increase in computational
power [18], size of molecular systems and length of simulations. By
simulating these complex interactions of molecules and atoms we
can develop a better understanding of their various characteristics
and behaviours. These simulations play an important role in deter-
mining the characteristics of a molecule, speci�cally uncovering
conformational change in the molecular system.

Di�erences between frames within a simulation are calculated
using the root-mean-square-deviation (RMSD) of selected atom
positions. The selection of atoms used in the RMSD calculation
is either a backbone structure, residuals or a speci�c choice of
atoms that have certain behaviours. Using all atoms in the RMSD
calculation will likely not produce meaningful pairwise di�erences
due to the number of atoms and the complexity of molecules in a
simulation. Each frame di�erence is calculated against every other
frame in the simulation which generates a pairwise distance matrix
or RMSD matrix. This similarity metric allows for the comparison
of molecular structures for each frame which is required for many
clustering algorithms. Equation 1 is a generalised version of the
calculation between to frames u and v. The distance between atoms
is usually returned as length units Angstroms, Å or 10-10 meters.

RMSD(u,�) =
vt

1
N

n’
i=1

| |ui ��i | | (1)

Trajectories of �exible molecules will di�er from those of more
stable molecules such as nucleic acids and proteins. Highly �exible
molecules, such as carbohydrates will usually have many di�er-
ent shapes or conformations. The understanding of these macro-
molecular structures is important for many applications, speci�cally
vaccinology. These molecules are usually highly �exible and can
change conformations multiple times throughout a simulation. We
will focus on well know carbohydrate simulations from previous
literature. Namely Meningococcal Y (MenY), Meningococcal W
(MenW) [16] and variations of Shigella �exneri [13].

2.2 Clustering Molecular Dynamics
Simulations

Cluster analysis is a technique for grouping a set of data objects
into distinct sets of di�erent dissimilar partitions. A cluster is de-
�ned as a collection of data objects where objects within the same
cluster are similar to one another while dissimilar to data objects in
other cluster formations. Clustering analysis with MD simulations
is typically used to group similar molecular conformations into

partitions for analysis. Conformations refer to the overall structure
of a molecule due to the spatial arrangement of atoms.

2.2.1 Hierarchical Clustering.
Hierarchical clustering is a type of agglomerative clusteringwhereby
initially each data object is a single cluster. These clusters are then
iteratively merged according to some distance linkage criteria. This
process continues until one homogeneous cluster has been formed.
Hierarchical clustering produces a dendrogram which illustrates
how the cluster formations merge over iterations. This can be used
to investigate similar conformations and determine levels of simi-
larity during iterations as clusters are merged.

There are four types of linkage criteria we will investigate when
using hierarchical clustering. These linkage criteria outline what is
de�ned as the minimum distance between two clusters. These in-
clude - single, complete, average and Ward’s linkage. It is important
to note that single and maximum/complete linkage only take single
points within a cluster into account when determining this mini-
mum distance while average and Ward’s method takes all points
within a cluster.

Single-linkagemerges two clusters based on the shortest distance
between a pair of points within the two clusters, searching for the
minimum distance between a pair of elements within two sets
before merging. Given clusters u and v, single linkage is de�ned as
follows 2.

d(u,�) = min(dist(u[i],�[j])) (2)
Maximum-linkage or complete-linkage focuses on searching for

the maximum distance between a pair of elements from two sets to
de�ne the distance between two clusters. Given clusters u and v,
complete linkage is de�ned as follows 3 .

d(u,�) = max(dist(u[i],�[j])) (3)
Average-linkage calculates the minimum distance between two

clusters as the average distance between each point in one cluster
to another. Given clusters u and v, average linkage is de�ned as
follows.

d(u,�) =
’
i j

d(u[i],�[j])
(|u | ⇤ |� |) (4)

Ward’s method aims to minimise the total variance between
clusters merging. At each iteration it determines which two clus-
ters once merged will have the smallest variance increase. This
continues until we have one homogeneous cluster. Ward’s variance
minimisation algorithm is de�ned as follows (5). Where u is a newly
formed cluster from clusters s and t and v is previously unused
cluster and T is de�ned as 6.

d(u,�) =
r

|� | + |s |
T

d(�, s)2 + |� | + |t |
T

d(�, t)2 � |� |
T

d(s, t)2 (5)

T = |u | + |� | + |t | (6)
As we can see the linkage criteria de�nes the minimum dis-

tance between two clusters. Hierarchical clustering allows users
to produce clusters based on the k, the number of required clus-
ters. Distance measure d, whereby each cluster does not exceed a
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maximum cophenetic distance of d is used to form clusters. A den-
drogram illustrates how the clusters are formed and merged over
time and aid us in selecting appropriate values for these parameters.

2.2.2 �ality Threshold Algorithms.
The Quality Threshold algorithm was original proposed by Heyer
et al. [12] to group genes into high-quality clusters. The “quality”
of the clusters produced is ensured by �nding large clusters where
the diameter does not exceed a user-de�ned similarity threshold.
This is also referred to as the cuto� value. The algorithm was origi-
nally used to �nd extremely large clusters of genes while ensuring
dissimilar genes are not forced into a cluster as would be the case
with other types of clustering algorithms.

The Quality Threshold algorithm requires two users speci�ed
parameters, similarity threshold/cuto� value and the minimum
amount of elements in each cluster. A candidate cluster is formed
from the �rst data object in the data set, then iteratively every data
objects similarity measure is compared, those below the threshold
are added to the cluster. Only data objects with similarity a measure
di�erences below the threshold for all current data objects in the
cluster will be added. Once this step is complete, we proceed to do
this for all data objects in the data set. The is a computationally
expensive process. Consequently, each data object forms a cluster.
All data objects are candidates for all clusters at this stage.

Once this process has been completed, we take the largest cluster
and remove it from the data set. Iteratively removing the next largest
cluster from the pool until we reach the minimum user-de�ned size
of a cluster. A data object may only be associated with one cluster,
therefore should a data object belong to more than one cluster it
will only be in the larger cluster. At this point, there may be data
objects that do not belong to any cluster (noise). It is important to
note that we may set the minimum size extremely low to generate
a signi�cant amount of clusters. This will allow all data objects to
be assigned to a speci�c cluster, albeit we will have many more
cluster formations - particularly those of a smaller size that would
be deemed insigni�cant. The minimum size parameters allow for
only signi�cant clusters to be returned while labelling the rest as
outliers.

There have beenmultiple implementations of the Quality Thresh-
old algorithm [15, 19]. Many of these already work with a range
of MD data. Most notably, the Visual Molecular Dynamics (VMD)
package’s [14] internal clustering function makes us of the Qual-
ity Threshold algorithm. Additionally, clustering plugins for VMD
such WMC PhysBio clustering GUI [9] use this internal cluster-
ing function. However, there are some inconsistencies related to
certain implementations [8]. González-Alemán et al. outline numer-
ous implementations and their shortcomings against the originally
proposed algorithm.

2.3 Validation Techniques for Clustering
Molecular Dynamics Simulations

We outline some notable validation techniques and indices imple-
mented in previous research with MD simulations.

Shao et al. [21] use several validation metrics such as the pseudo-
F statistic, Davies-Bouldin index (DB) [6], SSR/SST ratio and the
"critical distance" when the clustering of MD simulations. The DB
and pseudo-F statistic are used to determine the overall compactness

and separation of all the clusters. Compactness representing how
similar items within a cluster are while separation deals with how
dissimilar clusters are from one another. The SSR/SST and critical
distance are used to determine the ideal cluster count through
iterations with di�erent cluster parameters. It is shown that low DB
values and high pseudo-F values indicate good partitions of the data.
The validation indices behaved as expected, with high pseudo-F
statistic and low DB values for good cluster formations. They also
observe a constant SSR/SST ratio when the ideal cluster count is
reached. Together these metrics provided comprehensive validation
of the algorithms implemented for the given data, however, none
should be used as a metric individually.

Abramyan et al. [1] make use of three internal cluster valida-
tion measures; Calinski-Harabasz (CH), Davies-Bouldin (DB), and
Silhouette (S) indices when clustering of MD simulations. These
simulations focus on clustering protein adsorptionMMD simulation
data. High Calinski-Harabasz, Silhouette indices and a low Davies-
Bouldin index indicate good cluster formations and separation. All
the indices implemented by Abramyan et al. are internal validation
measures. These indices are used to determine the compactness
and overall separation of clusters formed.

Melvin et al. [18] implement a wide variety of di�erent algo-
rithms however, only make use of the Silhouette index [10] as
their basis of comparison. The high Silhouette index indicates ideal
cluster formations with high intra-cluster similarity and low inter-
cluster similarity.

2.3.1 Cluster Validation Indices.
There are numerous cluster validation indices (CVI’s) in addition to
those mentioned. The variety in clustering validation indices arises
as no single measure can capture all aspects of the clustering prob-
lem [2, 7]. This reinforces the idea that multiple indices should be
used to better understand the cluster analysis output. We make use
of the Calinski-Harabasz (CH), Davies-Bouldin (DB) and Silhouette
(S) indices to better understand our results and their signi�cance.
These indices are already widely used in clustering analysis as well
as in MD clustering analysis.

Calinski-Harabasz index is a ratio type index where high values
represent ideal cluster formations. The compactness of a cluster is
determined by the sum of distances between all objects in the cluster
to the local centroid while the cluster separation is calculated by
the distances between the local centroids and a globally speci�ed
centroid.

Davies-Bouldin index is summation based index where low val-
ues represent well-formed clusters. The cluster compactness is
calculated as the distance from all the points in a cluster to the
centroid. The cluster separation is then determined by the distance
between all centroids from the clusters.

Silhouette index is a summation type index that ranges between
-1 and 1, with high values representing good cluster formation and
separation. The cluster compactness is determined by the sum of the
distances between all the points in the same cluster. The separation
is estimated by the nearest neighbour distance, this is the distance
between the two closest points between the two clusters.
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3 DESIGN AND IMPLEMENTATION
We outline the implementations of the Hierarchical and Quality
Threshold algorithms. This includes the sources for these algo-
rithms and how they were integrated into the larger framework.
We brie�y outline the extensive framework developed and some of
the key functionality. We present the MD data sets and the method-
ology we follow in order to obtain results.

3.1 Clustering Algorithms
3.1.1 Hierarchical Clustering.
Implementations of the Hierarchical clustering algorithm with var-
ious linkage criteria are available in the python SciPy library [25].
We extended this existing code to allow for clustering of MD simu-
lation data. By reducing the complex trajectories �les to the desired
RMSD matrix which quantify the similarity/dissimilarity between
frames we were able to generate results with this existing clustering
package.

Hierarchical clustering has previously been implemented with
MD simulations [1]. Hierarchical clustering allows us to grasp the
general structure of the data and how these clusters are formed and
merged as we iterate through the process. It is important to note
that there is no objective way to initially determine the number
of clusters present. The number of clusters will depend on where
the tree or dendrogram is “cut.” By specifying the number of clus-
ters to return, the SciPy library [25] will determine the minimum
cophenetic distance threshold value between any two data points
within the same cluster. This ensures that the exact number of
user-speci�ed clusters will be returned.

Four linkage criteria - single, complete, average andWard’smethod
are used to generate results. The cophenetic distance measures how
well the clustering preserves the original data points pairwise dis-
tance once a single cluster is formed. Higher cophenetic values are
favourable.

An additional advantage of hierarchical clustering is the output
of a dendrogram. Dendrograms give the overall structure of the
cluster formations and provide an intuitive understanding of possi-
ble underlying clusters. However, this should be used cautiously
when determining the number of clusters. Hierarchical clustering
is also unable to classifying noise into a separate cluster, as all data
points belong to a cluster.

3.1.2 �ality Threshold Algorithms.
TheQuality Threshold algorithm implemented byGonzález-Alemán
et al. [8] and vectorised version by Melvin et al. [19] are publicly
available. These algorithms were slightly adapted to work with a
pairwise distance matrix from di�erent sources (Molecular Dynam-
ics trajectories, pre-processed data generated by UMAP [17], T-SNE
[23] and test data).

González-Alemán et al. outline numerous faults in many avail-
able implementations of the QT algorithm. They detail how their
in-house implementation is in line with the correct Quality Thresh-
old algorithm originally proposed by Heyer et al. [12]. In addition,
they outline how the vectorised version by Melvin et al. [19] is an
implementation of an algorithm proposed by Daura et al. [5] rather
than the QT algorithm.

The original Quality Threshold algorithm ensures that all data
items within a cluster do not exceed the threshold value between ev-
ery data point within a cluster. The vectorised version only ensures
that no data item exceeds the threshold value against the original
seed data point for each cluster. The seed is an initial data point
as the algorithms iterates. The QT algorithm has more stringent
constraints compared to the vectorised version.

3.2 Molecular Dynamics Data Sets and Methods
3.2.1 MenW and MenY.
MenW and MenY are two similar molecules that have di�erent
conformations characteristics [16]. MenY represents a molecule
that is relatively stable with one single very dominant conformation
throughout the simulation. MenW has numerous conformations
with varying cluster sizes including the dominant conformation
that is present in MenY. MenW is seen as a �exible molecule while
MenY is stable with one frequent conformation.

MenW and MenY were initially aligned on two central residues
in the 3RU chains before performing clustering. Alignment and
select statements are outlined in Table A13. Alignment ensured
that each frame is essentially superimposed onto one another to
ensure that co-ordinate di�erences from one frame to another will
have meaning. The selection allows us to cluster on only the atoms
of importance which are expected to a�ect the conformation change
throughout the simulation. Clustering was performed on ever 10th
frame for both simulations, leading to a total of 4003 frames to be
clustered.

By using the same alignment and selection statements we can
determine how the clustering algorithms handle both stable and
�exible molecules with similar parameters.

The only parameter required for Hierarchical clustering (number
of clusters) was set to 10 for both MenW and MenY. The Quality
Threshold algorithms required two parameters, minimum cluster
size and cuto�/threshold value. The minimum cluster size was set as
100 data objects to ensure that only signi�cant clusters are returned.
The following cuto� values were selected: 1.5, 2.5, 3.5, 4.5 (Å). The
range of values illustrates the di�erent performance characteristics
of the two QT variants

3.2.2 Shigella flexneri.
The S. �exneri molecules represent simulations with many di�er-
ent conformations and deemed highly �exible. Clustering of the
Shigella �exneri molecules was only performed with the two QT
variations. We make use of the S. �exneri Y molecule with three
repeating units, selecting everything 10th frame (4002 total frames).
Frames are again aligned on a selection of atoms outline in Table
A13. Once all frames were aligned clustering was performed on a
selection of atoms outlined in Table A13. Using all atoms when clus-
tering will not produce results of signi�cance as these molecules
are too complex and the calculated RMSD values would not be
representative of the structures in focus. For example, some sim-
ulations contain Sodium and Hydrogen atoms which are deemed
insigni�cant when clustering. The Quality Threshold algorithms
required two parameters. The minimum cluster size was set at 100
while the following cuto� values were selected: 2.5, 3.5, 4.5 (Å) to
illustrate the change in results with S. �exneri Y.
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In addition, we cluster S. �exneri 6 with six repeating units. This
molecule represents a simulation that has a large number of atoms
and residuals, while also being highly �exible. Once again, every
10th frame was selected leading to a total of 3602 frames to cluster.
The S. �exneri 6 with six repeating units was clustered with a higher
cuto� value ranging between 6.5 and 7. 5 (Å). These cuto�s were
selected by looking at the mean and median values in the RMSD
matrix as well as recommendations from researches familiar with
this molecule. Selection and alignment statements are outlined in
Table A13.

3.3 Framework
A framework was developed in order to accommodate the various
processing and individual requirements for each clustering job.
The framework was developed in python [24] and makes use of
standard object-orientated practices. A total of 7 di�erent clustering
algorithms were implemented with a range of preprocessing and
post-processing functions. Trajectories in the form of a protein data
bank �le (.pdb) are the main input for the framework in addition to
various cluster-speci�c parameters and preprocessing parameters.
Various outputs are produced such as cluster validation indices
(CVI’s), MD data �les of the largest n clusters and cluster labels.
Figure 1 gives a general overview of the framework.

Figure 1: Pipeline of framework design.

4 TESTING AND VALIDATION
Unit testing was performed on all helper functions implemented
within the Hierarchical and Quality Threshold algorithm scripts.
This ensured that these functions execute as expected. Testing was
not performed on graphic output functions such as graphs and
plots. The Hierarchical and Quality Threshold algorithm implemen-
tations were validated with generated data sets (Figure 2). The data
sets have known cluster characteristics and counts (Table A1). We
outline the steps taken to validate each algorithm in the sections
below while �ndings are discussed in the Results and Discussion
section. Furthermore, we outline steps taken to ensure that the
framework performs as expected.

4.1 Framework Validation
The framework has multiple input parameters and requirements
for each clustering job. To ensure that all paths produce the ex-
pected results a parser was implemented for parameter selection.
This enabled us to restrict the selection, type and requirement of
parameters while raising errors on incorrect usage. In addition, we
implemented error handling when parameters do not satisfy the
requirements for speci�c algorithms - an error will be raised if the
entire distance matrix (RMSD matrix) is empty due to extremely

low cut-o� values. The user will be unable to continue with the
clustering or processing jobs unless the required parameters are
satis�ed.

We encountered some issues when running the framework on
di�erent operating systems due to di�erent package requirements
and dependencies. The framework requires several Python pack-
ages that are not previously installed. We, therefore, implemented
a setup script that installs all package dependencies for the frame-
work. Additionally, this deals with any directory issues. Although
extensive testing was implemented we were unable to exhaustively
test and validate all functions with various types of data sources.
Users should validate and test various data sets against the frame-
work to determine its e�ectiveness and whether it is useful for their
application.

4.2 Validation Data Sets
In order to validate the clustering algorithm implementations, we
made use of the Python sci-kit-learn library [20] to generate random
data sets. Data set 1 (a) has distinct clusters of data with a low intra-
cluster variation. This enabled us to test whether the algorithms
can correctly cluster district separate data in addition to the correct
number of clusters. Data set 2 (b) consists of noise or random
data in order to understand how the algorithms handle highly
dissimilar data with no underlying structures. Data set 3 (c) contains
clusters with a varied and high intra-cluster variation.Many of these
clusters are overlapping which demonstrates the performance of
the algorithms when there is a high amount of similarity between
clusters. Figure 2 illustrates the overall structure of the data sets.
Table A1 outlines the parameters used for each data set.

Additionally, data sets from sci-kit-learn such as Iris,Wine, Digits
and Breast Cancer data [20] are available in the framework for
further testing and validation. We include results from the Iris
data set (d) which has three clusters, however, the global structure
only has two clear partitions. This is real-world data rather than
arti�cially generated data such as data sets 1, 2 and 3.

4.3 Hierarchical Clustering Validation
To ensure that our Hierarchical clustering implementations produce
expected results, wemade use of data sets with know characteristics
and outputs. Firstly, data set 1 with distinctly di�erent clusters
allowed us to tests the algorithms ability to produce the correct
clusters. Data set 3 has the same amount of clusters but a higher
intra-cluster variation. This ensures that the implementations can
deal with overlapping clusters. Iris only has two distinct clusters,
yet three correct clusters. We expect the implementations to only
classify the global structure with outliers as separate clusters. Data
set 2 tests the linkage criteria ability to handle unstructured data.
The only input parameter required by our Hierarchical clustering
implementation is k, the number of clusters. For each data set, we
will use the correct number of clusters (Table A1) as the input
paraeneters. This allows us to see how the clusters are formed and
whether they the same as the correct cluster formations.

4.4 Quality Threshold Clustering Validation
To validate that both QT algorithms can produce acceptable clusters,
we made use of the four aforementioned data sets. The data sets



Developing a Framework to Analyse Clustering Algorithms for Molecular Dynamics Trajectories

Figure 2: Test Data sets. Data set 1 (a) represents distinct compact
clusters. Data set 2 (b) represents random noise data with no un-
derlying clusters. Data set 3 (c) represents clusters with varying
variance and overlapping clusters. The Iris data set (d) represents
three di�erent types of iris �owers based on length and width of
the sepals.

aim to test how the algorithms perform with distinct low intra-
variance clusters (Figure 2a), highly similar clusters (Figure 2c) and
more natural data with overlapping clusters (Figure 2d). In addition,
we make use of random data set (Figure 2b) with no underlying
characteristics. These implementations require two parameters, a
cuto�/threshold value and minimum cluster size (Table A2). As
mentioned previously a cuto� value ensures that clusters have an
acceptable level of intra-cluster variation that does not exceed when
generating a cluster (this ensures that clusters are similar) while
only clusters that have a greater member tally than the minimum
cluster size are returned. Clusters that are smaller than the cluster
size threshold are discarded as noise.

5 RESULTS AND DISCUSSION
We outline the results obtained when clustering the validation data
sets and discuss the implications. Most importantly, we outline the
various results obtained when performing clustering analysis on
MD simulation data. Characteristics of the MD data sets were dis-
cussed above. Results for the following MD simulations are shown
- Meningococcal Y (MenY), Meningococcal W (MenW) [16] and
variations of Shigella �exneri [13].

5.1 Validation
5.1.1 Hierarchical Clustering.
Hierarchical clustering requires a linkage criterion, this de�nes
the distance between two clusters. We implemented four linkage
criteria - single, average, complete andWard’s. The theory and imple-
mentation of this algorithm including the various linkage criteria
are discussed above.

Tables A3, A4, A5 and A6 in the Supplementary Material sum-
marise the various parameters and results obtained for each linkage

criterion. All linkage criteria were able to correctly clusters data
set 1 with 5 distinct sets of data. This is evident in the correct clus-
ter counts as well as with positive values for the Silhouette score,
Davies-Bouldin index and Calinski-Harabasz index. The single link-
age criterion produces a single large cluster for data sets 2 and 3,
in addition to smaller insigni�cant clusters. This is expected, as
the distance between two clusters when merging is de�ned as the
shortest distance between two clusters in the previous iteration. As
a result of the requirement to return a set number of clusters (5),
these smaller clusters are merely placeholder elements in order to
satisfy this parameter. The Iris data set produces results that are
in line with the global structure of the data set, with two signi�-
cant clusters and a third smaller cluster when usingWard’s linkage
criterion (Figure 3a).

Figure 3: Clusters produced by the Hierarchical clustering -Ward’s
method (a), Quality Threshold algorithm (b) and theQuality Thresh-
old vectorised algorithm (c) on the Iris data set.

Ward, average and complete linkage all produce similar results,
but average produces better CVI values for all datasets, followed
closely by Ward. This is expected, as both average and Ward’s
linkage criteria take multiple data points in a cluster into account
when performing the linkage calculation, while complete and single
only take a single point.

All algorithms produce random clusters from data set 2. These
clusters are insigni�cant due to their high intra-cluster variation.
This indicates that the clusters are not compact or similar but rather
spread throughout the sample space. The clusters produced are
based more on arbitrary points from the data rather than any un-
derlying clusters which are not present in the random data.1

5.1.2 �ality Threshold Clustering.
Table A2 in the Supplementary Material summaries the testing
results obtained for both algorithms. Both algorithms were able to
deal with distinctly di�erent clusters even with a low cuto� value.
Data set 3 provides clusters with higher intra-cluster-variance. Re-
sults indicate that both algorithms were unable to produce all 5
correct clusters. QT original only produced 3 clusters while the
vectorised version only indicating 2 clusters were found. Both algo-
rithms were still able to cluster the general structures of the data
with an increased cuto� value. Data set 2 or noise is classi�ed as
a single cluster by the vectorised version while the original ver-
sion produced a signi�cant amount of noise and two clusters. The
vectorised versions single cluster has a low intra-cluster similarity
and could therefore be considered as noise due to the data points
being widely spread throughout the cluster. Figure B1 illustrates
1Dendrogram, the resulting CVI’s and scatter-plots for all testing are available at
[http://projects.cs.uct.ac.za/honsproj/2020/].

http://projects.cs.uct.ac.za/honsproj/2020/
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Figure 4:Cluster validation indices for Hierarchical clustering with
various linkage criteria. Figure 4a shows the Cophenetic distance,
while Figure 4b shows the Silhouette score for each criterion. Figure
4d shows the Calinksi-Harabasz scores. Higher values indicate
better clustering for these indices. Figure 4c shows the Davies-
Bouldin index in which lower values are good.

the global structure and partitioning of the data when using the
original Quality Threshold algorithm. It is evident that no mean-
ingful clusters are produced due to the spread and intersection of
the clusters.

Figure 3b and 3c show the partitions of the data points for the
Iris data set. Interestingly, for the Iris data set, both algorithms
produced a total of four clusters. Noise accounted for more than
30 per cent in the original algorithm compared to 5 per cent in the
vectorised version. It is evident that both algorithms have parti-
tioned the global clusters even though these may not be the correct
clusters. Note that the Quality Threshold algorithms aim to produce
clusters where the cut-o� of the threshold value for a cluster is not
exceeded. This vital characteristic ensures that when clustering MD
data no conformations exceeding the root-mean-square-deviation
di�erence between all the frames in a cluster are added.

5.2 Molecular Dynamics Hierarchical
Clustering Results

5.2.1 MenW and MenY.
Ten clusters for both MenW and MenY were returned along with
their respective CVI’s. This value was chosen to allow for a number
of clusters to be returned even though some clusters may be in-
signi�cant due to their cluster counts. Comparisons of CVI values
between MenW and MenY are shown in Figure 4.

Supplementary information for MenW and MenY can be found
in Table A7 and A8 respectively. This outlines the various results
from Hierarchical clustering performed. Dendrograms for both

MenW (B2, B3, B4, B5) and MenY (B7, B6, B8, B9) can be found in
the Supplementary Information.

Results show that single linkage is unable to cluster both MenW
and MenY, producing a single cluster containing almost all data
objects. This is further indicated by poor values for both the Silhou-
ette score (positive values indicate good cluster formations) and
Calinski-Harabasz index (higher values indicate compact clusters).
The single linkage also performed worse than all other linkage cri-
teria. We suspect that no meaningful clusters were produced as
evident from the results.

The additional linkage criteria all produce similar CVI’s for
MenW, with average andWard’s method having more favourable
Silhouette scores, Davies-Bouldin and Calinski-Harabasz indices.
Cluster counts suggest that there are signi�cantly larger clusters
(meaning a conformation is more prevalent). Complete has a clus-
ter with 40 per cent of frames, average 32 per cent while Ward’s
largest cluster is approximately 17 per cent of the total clusters.
Ward’s methods produce resulting cluster counts that are more
evenly spread, this is in line with the methodology as it attempts to
minimise the variance within a cluster when merging and forming
new clusters. The 10 conformations using the average linkage are
shown in Figure 5. Average linkage criterion produces clusters with
signi�cantly better CVI’s than other methods for MenW, however
as there is no cluster for noise/outliers, we suspect some clusters
to contain conformations that aren’t similar to others.

Disregarding the results from single linkage, average produces
one single dominant cluster for MenY.Ward’s method and complete
linkage produce results that indicate two dominant conformations.
Figure 6 outlines the top conformations produced by average, com-
plete andWard’s method. Once again the average linkage has the
best validation indices apart from the Calinski-Harabasz index. The
value is likely low due to one large cluster with high intra-cluster
variance. The signi�cant cluster produced by complete linkage in 6
contains an anomaly conformation that does not match the other
conformations. This is probably due to complete using a single data
point when merging clusters rather than multiple data points as is
the case with average andWard’smethod. Dissimilar conformations
are thus more likely to be grouped into incorrect clusters.

The overall results obtained from the majority of hierarchical
clustering for MenW and MenY indicate that no individual linkage
criterion produces signi�cantly better results. When inspecting the
clusters visually through VMD it is evident that many clusters con-
tain outliers and signi�cantly di�erent conformations. This would
negatively impact the CVI’s values and indicate why the values
are relatively poor. The validation indices should only be used to
compare results with an individual varying parameter, in our case
this would be the linkage criteria. While this allows us to determine
which linkage may be most suitable it does not thoroughly verify
or validate our results.

Our results demonstrate that some linkage criteria are more
acceptable than others however do not produce clusters to the
standard of the previous implementations of the Quality Threshold
algorithm.We now take a look at how the QT algorithms can cluster
a range of carbohydrate molecules.
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Figure 5: Dominant conformations produced by Hierarchical clustering (average linkage) for MenW

Figure 6: Conformations produced by Hierarchical clustering on
MenY.

5.3 Molecular Dynamics Quality Threshold
Results

5.3.1 MenW and MenY.
Analysis of MenW and MenY trajectories was performed on every
10th frame, with the trajectory being aligned on two central residu-
als before clustering. Clustering was then performed using a range
of cuto� values for both QT and QT vector. CVI’s are generated
for all results. Results are given in Table A9, A10 and summarised
in Figure 8. Note that CVI calculations do not include the noise
cluster which is denoted by a negative value. Including noise would
severely a�ect the resulting CVI’s as this cluster does not represent
meaningful clustered data.

Results obtained for MenW show that smaller cuto� values have
extremely large noise clusters, sometimes more than 50 per cent of
the entire data set. When the cuto� value increases, we see cluster
counts increase and the noise cluster decrease. However, once the
cuto� value is too large, data points tend to fall into only a few
clusters. This is shown by the reduced number of clusters for larger
cuto� values in Figure 8d. Although lower cuto� values have more
favourable CVI’s, these values cannot be taken at face value when
themajority of data is classi�ed as noise. Noise in simulations can be
seen as the change from one stable conformation to another while
dominant conformations are relatively stable and hence produce
clusters with higher counts. The trade-o� between the size of noise
data and CVI’s should be evaluated carefully when selecting the
�nal parameters for QT clustering.

QT original produces the best results with a cuto� value of
3.5 Å (Figure 7a). It has a high Calinski-Harabasz index, and a
relatively low amount of noise compared to lower cuto� values.
The vectorised version produces a smaller number of clusters for
the same cuto� values. Overall the original version produces more
favourable CVI values and cluster counts for all cuto� values when
compared to the vectorised version. It is evident that MenW has
numerous dominant conformations - this is in line with previous
research [16] and validates the e�ectiveness of QT algorithms with
�exible molecules.

MenY represents a more stable molecule where previous research
[16] has indicated that only one dominant conformation is evident
throughout the simulation.

Analysis performed on MenY shows that there is consistently
an individual large cluster with one smaller yet signi�cant cluster
also present. Noise is again higher for low cuto� values which is
expected with a stricter constraint. This reinforces the idea that
as cuto� values increases, noise decreases. Notably, the vectorised
version produces only one cluster with a cuto� value of 4.5Å and an
extremely large single cluster for 3.5Å. All evidence from both QT
andQT vector suggests that there is a single dominant conformation
present for MenY. QT vector CVI’s show that a cuto� value of 1.5Å
and 2.5Å produce more accurate results. This lower cuto� value
may be more useful for molecules in a stable state, as evident from
the results. Cuto� values can be decreased when the RMSD values
are lower due to a high amount of similarity in conformations
throughout a simulation.

Figure 7: Dominant confrontations produced by QT algorithm for
MenW (a) and MenY (b) with a cuto� of 3.5 Å.

Additionally, the original version produces dominant confor-
mations with some additional less signi�cant conformations. The
spread of clusters is higher for the original version. Once again a cut-
o� value of 3.5Å for the original version produces more favourable
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CVI’s with a reduced amount of noise. The Calinski-Harabasz index
is high with lowered values for the Davies-Bouldin index. The two
dominant conformations of MenY are shown in Figure 7b. Visually
these conformations appear very similar.

Figure 8:Cluster validation indices for QT andQTVector clustering
with varying cuto� values for MenW and MenY.Figure 8a shows
the Silhouette score, while Figure 8c shows the Calinksi-Harabasz
scores. Higher values indicate better clustering for these indices.
Figure 8b shows the Davies-Bouldin index in which lower values
are good. Number of cluster (Figure 8d).

5.3.2 Shigella flexneri Y 3RU and 6 6RU.
Detailed results for S. �exneri Y 3RU (Table A11) and S. �exneri
6 6RU (Table A12) are available in the Supplementary Material.
Results are summarised in Figure 9. S. �exneri Y 3R has higher
amounts of noise generated from lower cuto� values for both the
original and vectorised version albeit the noise produced by the
original algorithm is extremely high being more than 60 per cent
of the data. The trade-o� between noise and CVI values is evident.
When there are fewer, highly correlated clusters, the CVI’s are
higher even though much of the data is classi�ed as noise. The
original version with 4.5Å and the vectorised version with 2.5Å pro-
duce extremely similar CVI values, however, the original produces
slightly less noise.

The vectorised version produces larger clusters for high cuto�
values, possibly grouping non-similar conformations into clusters
due to relaxed constraints. The vectorised results obtained with
a low cut-o� of 2.5Å show promising CVI’s and cluster counts.
Although, the Silhouette index is low compared to higher cuto�
values; the Calinski-Harabasz is substantially higher indicating
good cluster formations. The top three conformations produced by
the vectorised version with a cuto� value of 2.5Å are outlined in
Figure 10a.

Figure 9: Cluster validation indices for QT and QT Vector with
varying cuto� values for S.�exneri Y 3RU and 6 6RU. Figure 9a
shows the Silhouette score, while, Figure 9c shows the Calinksi-
Harabasz scores. Higher values indicate better clustering for these
indices. Figure 9b shows the Davies-Bouldin index in which lower
values are good. Noise per cent of data (Figure9d).

Figure 10: Dominant conformations produced by QT Vector algo-
rithm for Shigella �exneri Y 3RUwith a cuto� of 2.5 Å(a). Dominant
conformations produced by QT algorithm for Shigella �exneri 6
6RU with a cuto� of 7.5 Å(b).

The results obtained for S. �exneri 6 6R with the vectorised
version indicate clusters with higher candidate counts and fewer
outliers. Most CVI’s indicate that the vectorised version performed
slightly better than the original version with similar cuto� values.
The reduced number of clusters produced could indicate why bet-
ter CVI’s were achieved as there aren’t many clusters to take into
account during the calculations. The original QT algorithm with a
cuto� value of 7Å produces positive results, achieving lower Davies-
Bouldin values compared to other cuto� values. The Calinski-
Harabasz index is also slightly higher. There are four dominant
conformations that are more than 8 per cent of the frames (Figure
10b). While the original version produced a higher number of clus-
ters with similar parameters many of these clusters are not deemed
signi�cant as they are less than 8 per cent of the simulation data.

These molecules are highly �exible with many di�erent con-
formations. S. �exneri 6 6R has many more atoms to cluster on
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compared to S. �exneri Y 3RU. Visual representations indicate that
both algorithms can produce acceptable clusters of con�rmations
provided the correct cuto� values are selected.

5.4 Discussion
Hierarchical clustering is unable to classify noise separately, how-
ever, it is still able to produce clusters with relatively good CVI
values. A limitation toHierarchical clustering is that it requires prior
knowledge about the number of conformations within a simula-
tion. This information is usually not available unless prior research
has been conducted on the speci�ed data set. As expected, single
linkage is unable to produce clusters of signi�cance and merges
most frames into one cluster. Complete, however can produce rea-
sonable results given that only a individual data points are taken
into account when merging clusters. Complete also has better CVI
values and a greater cluster count spread to those produced by
single linkage.

CVI values for Ward’s method and average linkage are much
higher in comparison to single and complete linkages. Visually the
larger clusters produced by these methods show distinct confor-
mation di�erences (Figure 5, 6). Linkage criteria that take multiple
data points into account produce signi�cantly better results and
should be implemented when using Hierarchical clustering.

Noise is a major issue in hierarchical clustering. A possible so-
lution is to use two-pass clustering analysis, where two di�erent
clustering algorithms are implemented. For instance, running the
Quality Threshold algorithm on larger clusters produced by hier-
archical clustering in order to distinguish and classify noise. We
suspected that should these non-similar conformations be removed
from the clusters produced by hierarchical clustering the CVI values
would improve signi�cantly.

These results con�rm that although Hierarchical clustering al-
lows us to generate a good understand of the general structure of
underlying clusters, it cannot produce accurate results with highly
�exible molecules, exclusively.

It is important to note that we cannot compare CVI values be-
tween QT and Hierarchical results as these are internal validation
indices (only measuring one common variable change). Cluster
formations cannot be compared as we are testing algorithms with
di�erent characteristics and parameters.

QT results produce good clusters for highly �exible molecules
as is evident front the results obtained for S. �exneri, MenW and
to an extent MenY. MenY is not highly �exible, however, both QT
and QT vector were able to determine the single conformation in
the data. Notably, results are only informative once the correct
cuto� value has been found. Lower cuto� values impose a stricter
constraint on the QT variations and produce more noise data. A
balance between clusters produced and noise should be determined.
Minimising noise by increasing the cut-o� value leads to larger
clusters containing dissimilar conformations.

The original Quality threshold algorithm proposed by Heyer et
al. has stricter constraints compared to the version by Daura et al.
This is evident from the increased noise clusters in the original ver-
sion compared to the vectorised version throughout the results for
similar cut-o� values. The original Quality Threshold algorithm en-
sures that all data items within a cluster do not exceed the threshold

value between every data point within a cluster while vectorised
version only ensures that no data item exceeds the threshold value
against one data point for each cluster.

It is evident that both QT variants can cluster highly �exible
molecules and can produce high-quality clusters withminimal noise
albeit the correct cut-o� values have to be determined. Selection of
a cuto� value should be based on iteratively evaluating di�erent
CVI’s while changing the cuto� values. One should evaluate the
noise and clusters produced to determine the most suitable cuto�
value.

6 CONCLUSIONS
Clustering algorithms are inherently unable to consistently produce
accurate clusters when data is highly similar. This is mainly due
to the random nature of the data points in addition to their being
no objective method to correctly clustered unlabeled data. Certain
clustering algorithms that can deal with high similarity while also
classifying noise separately allow for signi�cantly better results
than those which are unable to classify noise.

The Quality Threshold algorithm (original version) produces
the best results in comparisons to other algorithms implemented,
demonstrating the capability to cluster highly �exible molecules.
This further attests to its existing popularity within the domain of
clusteringMD data. Clustering analysis should always be performed
with a range of algorithms and validation indices when evaluating
a data set. The framework developed allows for easy integration of
existing algorithms in order to evaluate results.

7 FUTUREWORK
This framework could be enhanced through the implementation
of additional clustering algorithms as well as a selection of addi-
tional cluster validation indices. Importantly, many other formats of
Molecular Dynamics simulation �les exist and extending the frame-
work to accept these �les would bene�t a range of researchers. The
overall signi�cance of our results could be improved by using longer
simulation runs rather than a reduced data set. In addition, results
could be compared to other studies involving these simulations,
including those performed by other members of this project.

DATA AVAILABILITY
All results obtain are available at http://projects.cs.uct.ac.za/honsproj/
2020/ under "clustermol". This includes all outputs from the frame-
work such as resulting clusters, CVI values and any graphics pro-
duced.
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Supplementary Material

Table A1: Summary of validation data set characteristics.

Data set Sample set size Centres Cluster size Variance
1 100 5 20 0.2
2 100 0 0 n/a
3 100 5 20 [1.5, 0.5, 0.9, 0.3, 0.8]
Iris 150 3 50 n/a

Table A2: Summary of validation results for Quality Threshold Algorithms

Data set Algorithm Minimum size Cuto� value Expected number of clusters Number of clusters Cluster counts Silhouette Davies-Bouldin Calinski and Harabasz
1 qt_original 10 1 5 5 [20, 20, 20, 20, 20] 0.87 0.18 4863.54
1 qt_vector 10 1 5 5 [20, 20, 20, 20, 20] 0.87 0.18 4863.54
2 qt_original 10 1 0 2 [-12, 63, 25] 0.20 3.72 17.73
2 qt_vector 10 1 0 1 [100] n/a n/a n/a
3 qt_original 10 4 5 3 [-6, 47, 24, 23] 0.45 2.47 168.12
3 qt_vector 10 4 5 2 [-1, 75, 24] 0.25 0.56 117.80
Iris qt_original 10 1 3 4 [-54, 35, 21, 21, 19 ] 0.15 3.64 43.12
Iris qt_vector 10 1 3 4 [-7, 58, 48, 19, 18] 0.41 3.60 180.94

Table A3: Summary of validation results for Hierarchical clustering (Ward)

Data set Expected clusters Number of clusters Cluster counts Cophenetic Silhouette Davies-Bouldin Calinski and Harabasz
1 5 5 [20, 20, 20, 20, 20] 0.88 0.87 0.18 4863.55
2 0 5 [26, 24, 25, 6, 19] 0.62 0.25 1.12 34.18
3 5 5 [22, 35, 25, 4, 14] 0.89 0.44 0.87 242.18
Iris 3 3 [50, 37, 63] 0.93 0.55 0.66 554.82

Table A4: Summary of validation results for Hierarchical clustering (average)

Data set Expected clusters Number of clusters Cluster counts Cophenetic Silhouette Davies-Bouldin Calinski and Harabasz
1 5 5 [20, 20, 20, 20, 20] 0.89 0.87 0.18 4863.55
2 0 5 [29, 31, 9, 9, 22] 0.68 0.30 1.03 39.99
3 5 5 [22, 36, 30, 4, 8] 0.89 0.46 0.77 244.28
Iris 3 3 [50, 37, 63] 0.93 0.55 0.66 554.82
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Table A5: Summary of validation results for Hierarchical clustering (complete)

Data set Expected clusters Number of clusters Cluster counts Cophenetic Silhouette Davies-Bouldin Calinski and Harabasz
1 5 5 [20, 20, 20, 20, 20] 0.89 0.87 0.18 4863.55
2 0 5 [15, 28, 45, 2, 10] 0.65 0.17 1.16 25.06
3 5 5 [4, 20, 41, 25, 10] 0.88 0.42 0.84 221.07
Iris 3 3 [50, 16, 84] 0.90 0.53 0.62 422.24

Table A6: Summary of validation results for Hierarchical clustering (single)

Data set Expected clusters Number of clusters Cluster counts Cophenetic Silhouette Davies-Bouldin Calinski and Harabasz
1 5 5 [20, 20, 20, 20, 20] 0.90 0.87 0.18 4863.55
2 0 5 [6, 91, 1, 1, 1] 0.45 -0.09 0.83 3.84
3 5 5 [72, 1, 1, 2, 24] 0.82 -0.01 0.76 63.87
Iris 3 3 [50, 4, 96] 0.90 0.47 0.47 299.96

Table A7: Hierarchical clustering results for MenW

Type Cluster Counts Cophenetic Silhouette Davies-Bouldin Calinski and Harabasz
Single [2, 1, 3, 3991, 1, 1, 1, 1, 1, 1] 0.31 -0.25 1.05 1.37
Complete [11, 151, 189, 1613, 491, 145, 207, 296, 664, 236] 0.51 0.02 1.94 313.97
Average [25, 59, 26, 485, 767, 1301, 389, 241, 156, 554] 0.54 0.13 1.54 515.93
Ward’s [716, 239, 573, 364, 635, 194, 302, 414, 212, 354] 0.49 0.12 1.90 589.34

Table A8: Hierarchical clustering results for MenY

Type Cluster Counts Cophenetic Silhouette Davies-Bouldin Calinski-Harabasz
Single [2, 4, 3, 3985, 1, 1, 1, 1, 4, 1] 0.51 -0.06 0.74 7.33
Complete [981, 126, 90, 206, 109, 496, 596, 1265, 54, 80] 0.44 0.05 2.07 302.64
Average [26, 23, 1, 71, 6, 77, 180, 86, 3443, 90] 0.67 0.13 1.26 149.56
Ward’s [929, 196, 118, 498, 71, 94, 67, 804, 645, 581] 0.47 0.07 2.08 340.95

Table A9: QT cluster results for MenW

QT Type Cuto� (Å) Number of clusters Cluster counts Silhouette Davies-Bouldin Calinski-Harabasz
Original 1.5 2 [-3754, 139, 110] 0.24 1.52 98.84
Original 2.5 10 [-2046, 604, 286, 213, 159, 127, 123, 119, 110, 108, 108] 0.19 1.50 677.54
Original 3.5 11 [-427, 1148, 610, 368, 272, 232, 210, 188, 184 148, 111, 105] 0.12 1.70 474.78
Original 4.5 5 [-139, 2260, 696, 583, 178, 147] 0.08 2.13 292.54
Vector 1.5 8 [-2241, 650, 305, 177, 149, 134, 133, 119, 106] 0.23 1.35 697.78
Vector 2.5 8 [-336, 1599, 658, 547, 242, 198, 169, 144, 110] 0.09 2.00 434.62
Vector 3.5 2 [-148, 3281, 574] 0.20 2.08 457.12
Vector 4.5 1 [-16, 3987] n/a n/a n/a

Table A10: QT cluster results for MenY

QT Type Cuto� (Å) Number of clusters Cluster counts Silhouette Davies-Bouldin Calinski-Harabasz
Original 1.5 12 [-1659, 493, 365, 304, 198, 153, 144, 134, 124, 117, 112, 100, 100] 0.06 2.09 248.00
Original 2.5 5 [-668, 1944, 655, 532, 104, 100] 0.10 1.92 337.24
Original 3.5 3 [-294, 2995, 401, 313] 0.15 1.68 482.18
Original 4.5 3 [-38, 3585, 197, 183] 0.20 1.59 310.84
Vector 1.5 3 [-786, 2185, 602, 430] 0.13 1.90 540.36
Vector 2.5 3 [-157, 3533, 192, 121] 0.21 1.51 298.69
Vector 3.5 1 [-62, 3941] n/a n/a n/a
Vector 4.5 1 [4003] n/a n/a n/a
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Table A11: QT cluster results for Shigella �exneri Y 3RU

QT Type Cuto� (Å) Number of clusters Cluster counts Silhouette Davies-Bouldin Calinski-Harabasz
Original 2.5 7 [-2706, 320, 239, 191, 167, 137, 130, 112] 0.07 2.33 125.41
Original 3.5 10 [-781, 1056, 558, 455, 243, 243, 179, 143, 131, 112, 100] 0.03 2.49 231.03
Original 4.5 6 [-301, 1978, 737, 550, 156, 150, 130] 0.07 2.01 368.44
Vector 2.5 6 [-514, 1864, 589, 572, 208, 142, 113] 0.06 2.01 352.10
Vector 3.5 3 [-97, 3182, 419, 304] 0.10 1.65 231.03
Vector 4.5 3 [3748, 139, 115] 0.10 1.42 243.01

Table A12: QT cluster results for Shigella �exneri 6 6RU

QT Type Cuto� (Å) Number of clusters Cluster counts Silhouette Davies-Bouldin Calinski-Harabasz
Original 6.5 10 [-1078, 616, 384, 352, 265, 218, 185, 146, 124, 117, 117] 0.03 2.49 226.59
Original 7 9 [-797, 779, 432, 425, 288, 234, 192, 175, 160, 120] 0.04 2.38 276.90
Original 7.5 10 [-486, 946, 523, 440, 349, 176, 175, 149, 129, 117, 112] 0.02 2.55 246.75
Vector 6.5 3 [-192, 2288, 602, 520] 0.10 2.89 432.72
Vector 7 3 [-97, 2585, 523, 397] 0.08 2.06 395.61
Vector 7.5 3 [-47, 2879, 444, 232] 0.06 2.03 266.76

Table A13: Simulation Additional Information

MD Simulation Alignment selection statement Cluster selection statement
MenW Pre-aligned type != H and (((resname AGL or resname

AGA) and not (name O2 or name O3 or
name O4)) or (resname ASI and (name O4
or name C2 or name C3 or name C4 or
name C5 or name O6))) and not resid 0 1
10 11

MenY Pre-aligned type != H and (((resname AGL or resname
AGA) and not (name O2 or name O3 or
name O4)) or (resname ASI and (name O4
or name C2 or name C3 or name C4 or
name C5 or name O6))) and not resid 0 1
10 11

S. �exneri Y 3RU resid 8 7 and name C1 C2 C3 C4 C5 O2 O5
and not index 157

name C1 C2 C3 C4 C5 O2 O3 O5 and not
name NH N CT C O SOD and not resid 1
12 and not index 38 59 79 125 146 166 212
224 233

S. �exneri 6 6RU resid 16 15 and name C1 C2 C3 C4 C5 O2
O5 and not index 327 337

name C1 C2 C3 C4 C5 O4 O2 O3 O5 and
not name NHN CT C O SOD and not resid
1 2 3 4 21 22 23 24 and not index 108 131
148 144 127 194 164 168 217 213 234 230
250 254 280 299 303 320 340 336 316 366
385 389 402 406 426 422 413
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Figure B1: Clusters produced by the original Quality Thresh-
old algorithm on Data set 2.

Figure B2: Dendrogram illustrating cluster formations of
MenW using single linkage.

Figure B3: Dendrogram illustrating cluster formations of
MenW using complete linkage.

Figure B4: Dendrogram illustrating cluster formations of
MenW using average linkage.

Figure B5: Dendrogram illustrating cluster formations of
MenW using Ward’s linkage.

Figure B6: Dendrogram illustrating cluster formations of
MenY using complete linkage.
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Figure B7: Dendrogram illustrating cluster formations of
MenY using single linkage.

Figure B8: Dendrogram illustrating cluster formations of
MenY using average linkage.

Figure B9: Dendrogram illustrating cluster formations of
MenY using Ward’s linkage.
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