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1 PROJECT DESCRIPTION
Molecular dynamics (MD) simulations are often used by researchers
to determine the dominant conformations of molecular structures.
These simulations output what is known as a trajectory of the
molecules observed. A trajectory acts as a record of the movement
of each atom over time in the form of snapshots, or frames. Prob-
lems arise where the number of frames far exceed what can be
manually analysed. As the understanding of these macro-molecular
structures is important for many applications, such as drug-receptor
interaction and protein folding [19], efficient methods need to be
used to gather such information effectively. Clustering algorithms
are commonly used given their ability to partition a data set into
different groups. In this case, the goal of the algorithm would be to
group similar molecular structures together into families to give a
summary of the various conformations.

Clustering algorithms are not often applied to trajectories of
flexible molecules, such as carbohydrates. Prior research has pri-
marily focused on clustering nucleic acids and proteins, which are
generally not very flexible. Trajectories of flexible molecules will
differ from those of stable molecules. Hence, the algorithms which
are successful in clustering the one type of trajectory cannot be
assumed to be successful in clustering the other. As there are many
clustering algorithms available, a variety of algorithms must be
implemented and investigated before we can identify those which
may be useful for clustering trajectories of flexible molecules. We
will explore three sets of algorithms: standard, widely available
algorithms, more complex methods, and novel approaches.

Standard algorithms are those that provide a well-known ap-
proach to generating clusters and have already been implemented
for clustering MD simulation data.

We explore a range of hierarchical clustering algorithms, specif-
ically of the agglomerative type. This is a bottom-up approach
whereby each data observation starts in a single cluster and is
merged as we move up the hierarchy. The clusters are merged
according to a linkage criteria. Hierarchical has the advantage of
being easy to implement and easy to understand cluster formations.

The algorithm produces a hierarchical tree (dendrogram) which
allows us to understand the underlying structure of the data. We fo-
cus on variations of hierarchical clustering algorithms to determine
which is most effective for MD data.

The Quality Threshold (QT) algorithm [13] aims to generate
high quality clusters by iteratively adding observations to a cluster
while not exceeding the pre-defined cluster diameter. Observations
are added to minimise the cluster diameter. The Quality Threshold
(QT) algorithm has previously been implemented for clustering a
range of MD data, however there are some inconsistencies related to
certain implementations [11]. We therefore aim to make use of the
implementation from González-Alemán et al. which is inline with
the original proposed algorithm from Heyer et al. This will allow
us to determine the effectiveness of the QT algorithm in clustering
highly flexible molecules.

The self organising map (SOM) is an artificial neural network of-
ten used to reduce high-dimensional data sets into a two-dimensional
U-matrix which can visualise clusters based on colour intensity.
This makes it perfect for clustering MD trajectories as often times
millions of frames have to be analysed while also requiring some
form of visualisation. SOM clusters MD by employing neurons that
learn to recognise the patterns of the givenmolecules in a trajectory,
allowing it to classify and partition conformations.

Clustering algorithms can also be more complex in nature, as al-
gorithms can be combined or expanded upon to produce improved
clustering. Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) [6, 7] uses a density-based cluster-
ing approach combined with a hierarchical component. This algo-
rithm has been applied in a number of fields, including MD [17]. An-
other algorithm, Intelligent Minkowski Weighted K-Means (iMWK-
Means) [9] expands upon the k-means algorithm by performing
iterative rescaling. Compared to more simple algorithms, HDB-
SCAN and iMWK-Means can be used without any user-specified
parameters, which means that no assumptions about the data need
to be made, and they each take steps to handle noise and outliers
in the data. Melvin et al. [17] specifically recommend HDBSCAN
for intrinsically disordered proteins and believe that it could be
used with iMWK-Means, either through integrating HDBSCAN into
iMWK-Means, or by feeding the clusters produced by HDBSCAN
into iMWK-Means, to further improve the resulting clusters.

Novel clustering algorithms in the form of metaheuristics have
become increasingly prevalent in the past few years. Metaheuristics
take a stochastic approach and treat clustering problems as opti-
misation problems by minimising or maximising some objective
function(s) similar to that of partitional clustering. Bandyopadhyay
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et al. [3] introduced a multi-objective algorithm, AMOSA, based on
the principle of simulated annealing. Multiple objective functions
are optimised simultaneously, producing a set of Pareto-optimal
results where no solution can improve one of its objective functions
without degrading another. This feature could be particularly useful
when clustering molecular dynamics as often times there may be
ambiguous clusters that consider only certain traits of a trajectory.
By providing a set of results, the user may then select a solution
that best matches their interests.

2 PROBLEM STATEMENT
There are many clustering algorithms available and many factors
differentiate them. Certain algorithms may be more vulnerable to
outliers and noise, or may have a tendency to produce clusters
of similar sizes and shapes. Additionally, algorithms differ in the
parameters that they require from the user, which is important as
these can introduce bias or force assumptions about the data to be
made. While some clustering algorithms have been implemented
and tested for clustering MD trajectories, there are many that have
not. Algorithms that have been included in standard MD simulation
or visualisation software, or are otherwise well-known and com-
monly applied to MD, do not necessarily produce the best results.
Specifically when clustering flexible molecules, it is not obvious
which algorithms may be most suited to clustering the trajectories.
As there are many factors that affect the results of clustering al-
gorithms, many algorithms must be evaluated for this use case in
order to select useful algorithms.

3 AIMS
We aim to implement hierarchical clustering, Quality Threshold
clustering and SOM, which are standard algorithms commonly used
for MD, HDBSCAN and iMWK-Means, which are more complex
clustering algorithms and have the possibility of being used in
combination, as well as AMOSA, which is a novel approach to
clustering and has not previously been used for MD.

We aim to investigate and compare the performance of the above
algorithms in order to identify which are the most effective in clus-
tering trajectories of flexible molecules. An effective clustering
algorithm is one that generates high quality clusters with good
partitioning. This means that the clusters have high intra-cluster
similarity and low inter-cluster similarity. This indicates how well
a cluster is formed and how similar the objects within a specific
cluster are. Inter-cluster similarity is used to determine how dis-
similar different clusters are from one another. This is also referred
to as cluster separation.

4 RESEARCH QUESTIONS
We aim to address the following research question.Which clus-
tering algorithms are most effective in clustering Molecular
Dynamics (MD) simulation data of highlyflexiblemolecules?

Each member has also outlined their own individual research
questions which pertain specifically to their contribution.

Nicholas
(1) Which hierarchical clustering method of Ward, maximum,

single and average linkage produces the most effective clus-
tering results of MD trajectory data?

(2) Is the Quality Threshold Algorithm able to effectively cluster
MD simulation data from highly flexible molecules?

Wen Kang
(1) What combination of objective functions are best suited for

clustering trajectories when using the AMOSA metaheuris-
tic?

(2) Given that self organising maps are a commonly used artifi-
cial neural network for clustering trajectories, how does it
compare to AMOSA in terms of cluster quality?

Robyn
(1) How do HDBSCAN and iMWK-Means perform when clus-

tering trajectories of flexible molecules, given that they are
both able to handle noise in the data?

(2) Can HDBSCAN and iMWK-Means be used together, either
in combination or succession, and does this provide better
clustering, based on CVIs and visualisation, than either of
the algorithms alone?

5 RELATEDWORK
5.1 Cluster Analysis Validation
Validation is a fundamental part of clustering analysis and it is
essential for achieving meaningful results. Cluster validation allows
us to generate either graphical or numerical value summaries of
the clustered data in order to determine how well a clustering
algorithm has partitioned and clustered the data. Due to the nature
of clustering, there are a wide variety of algorithms available which
in turn has allowed for many validation techniques to be developed.
There is, however, no consensus on a singular clustering validation
measure.

Arbelaitz et al. [2] provide an extensive study on the comparison
of multiple different cluster validation indices in order to provide
better insight into selecting a suitable validation measure. They
conclude that the choice of valuation measure should be selected
based on the dataset. They do, however, indicate that the Silhouette,
Davies-Bouldin and Calinski–Harabasz perform considerably well
with many different datasets. Pablo et al. [14] develop a framework
for comparing relative clustering validation measures. Notably, a
single index cannot capture all the aspects involved in the clustering
problem hence the need for multiple indices. Due to the fact that a
single index may fail in capturing all aspects of the problem, they
propose the use of multiple validation indices. These should again
be selected based on the dataset.

As mentioned previously, the main issue with clustering valida-
tions is the wide variety of different metrics available and how to
select a metric suitable for the dataset. A range of validation indices
should be selected to try and capture all different aspects of the
clustering problem.

5.2 Validation Techniques for Clustering
Molecular Dynamic Simulations

Clustering analysis has already been implemented with a range
of MD simulations. Below we outline some of the validation tech-
niques and indices implemented in previous research. This provides
a guideline to determine which validation indices may be best suited
for our research.
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Shao et al. [18] use several validation metrics such as the pseudo-
F statistic, Davies-Bouldin index (DBI) [8], SSR/SST ratio and the
"critical distance" in the clustering of MD simulations. The DBI and
pseudo-F statistic are used to determine the overall compactness
and separation of all the clusters. The SSR/SST and critical distance
are used to determine the ideal cluster count. It is shown that low
DBI values and high pseudo-F values indicate good partitions. The
validation indices behaved as expected, with high pseudo-F statistic
and low DBI values for good cluster formations. They also observe
a constant SSR/SST ratio when the ideal cluster count is reached.
Together these metrics provided comprehensive validation of the
algorithms implemented, however, none could be used as a metric
individually.

Abramyan et al. [1] make use of three internal cluster valida-
tion measures; Calinski Harabasz (CH), Davies-Bouldin (DB), and
Silhouette (S) indices when clustering of MD simulations. These
simulations focus on clustering protein adsorption MD simulation
data. High Calinski Harabasz, Silhouette indices and a low Davies-
Bouldin index indicate good cluster formations. All the indices
implemented by Abramyan et al. are internal validation measures.
These indices are used to determine the compactness and separa-
tions of clusters formed.

Melvin et al. [17] implement a wide variety of different algo-
rithms however, only make use of the Silhouette index [12] as
their basis of comparison. The high Silhouette index indicates ideal
cluster formations with high intra-cluster similarity and low inter-
cluster similarity.

It is evident that many papers make use of a variety of cluster
validation indices. This further reinforces the idea that multiple
indices should be used in order to better understand the cluster
analysis output. We will focus on the use of internal validation
indices that determine the overall compactness and separation of
cluster formations. Specifically we aim to make use of the Calinski
Harabasz (CH), Davies-Bouldin (DB) and Silhouette (S) indices.

5.3 AMOSA and SOM
Bandyopadhyay et al. [3], as mentioned, proposed the AMOSA
algorithm based on simulated annealing. The algorithm was tested
against two multi-objective evolutionary algorithms NGSA-II [10]
and PAES [15]. It was found that AMOSA performed better overall,
producingmore distinct solutions in its Pareto-optimal set of results.
This may prove beneficial when disambiguating similar molecular
conformations.

A self-organising maps (SOM) solution was used by Bouvier
et al. [4] to specifically cluster the conformations of a trajectory
undergoing multiple protein folding and unfolding events. Not
only was the method able to successfully cluster the trajectory, the
package included visualisation by means of a U-matrix.

5.4 HDBSCAN and iMWK-Means
HDBSCAN [6, 7] is density-based algorithm, which constructs clus-
ters from areas of high data density separated by low data density,
and outputs a hierarchical tree [17]. Its ability to handle noise in
the data has led to it being recommended for clustering trajectories
of intrinsically disordered proteins. Additionally, HDBSCAN is use-
ful for exploratory clustering as it can be used non-parametrically.

Melvin et al. [17] applied HDBSCAN to a series of nucleic acids and
proteins and found it to be effective for detecting large scale con-
formational changes in trajectories of stable molecules. Although a
larger number of clusters were produced when clustering trajecto-
ries of unstable molecules, HDBSCAN was still able to detect the
intermediate stable conformations of the molecule.

iMWK-Means [9] is a variant of k-means which, like HDBSCAN,
can be used non-parametrically [17]. In not requiring a desired
cluster count to be supplied, it eliminates the key weakness of
traditional implementations of k-means. iMWK-Means eliminates
the need for cluster count parameter by overestimating the required
number of clusters and then iteratively performing k-means and
rescaling each of the data points based on the results. The algorithm
handles noise and outliers by assigning low weights to the points
in the sparse, or noisy, regions of the data, which causes them to
affect the resulting clustering to a lessor degree.

As with HDBSCAN, Melvin et al. [17] applied iMWK-Means to a
number of nucleic acids and proteins and found it to be ideal for de-
tecting subtle differences between conformations. As iMWK-Means
is primarily suited to clustering trajectories of stable molecules,
Melvin et al. outline the possibility that HDBSCAN could the re-
place the final step of iMWK-Means, or that iMWK-Means could
be applied to the stable clusters produced by HDBSCAN to reveal
finer resolution details.

6 PROCEDURES AND METHODS
As a number of algorithms will need to be implemented, we propose
the development of a frameworkwhichwill facilitate the application
of each of the algorithms to the MD trajectories. This framework
will also provide the opportunity to include options to validate and
visualise the clusters, which will be necessary in order to evaluate
and compare the relative success of the algorithms.

6.1 Framework
We aim to develop a framework whereby the user can specify
the input file, algorithm and validation index via command line
arguments. As the result of each clustering algorithm is dependent
on the selection of the atoms and frames to be included in the
clustering, the framework should ideally include preprocessing
functions, to facilitate this, as well as post-processing functions.
Below we outline our envisioned implementation for each section.

The framework will be structured as a pipeline (Figure 1) to
allow for additional algorithms, and other functionality, to be easily
implemented at a later stage. It will be implemented in Python, as
the majority of the existing packages we plan to use are Python
libraries. Additionally, Python code is more easily understood than
that of many other languages, and will be simple to maintain and
extend in the future.

6.1.1 Input.
The program accept a Protein Data Bank (.pdb) file as the in-
put dataset. These files contain three-dimensional structures of
molecules and their change in conformations over a time period.
The focus of this project is on clustering highly flexible molecules,
therefore we will use MD simulation data of carbohydrate confor-
mations. The user will provide the input file name as a command
line argument.
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Figure 1: Pipeline of Framework Design

6.1.2 Preprocessing.
The user may wish to preprocess the files. We plan to implement
two core features that will allow atom or frame selection for clus-
tering. Basic editing of the PDB file will also be available. This
will include generating a new trajectory file by taking a range of
selected frames from another PDB file. This reformatting, specified
by the user, will be done before the initial clustering. All files must
go through prepossessing in order to ensure the correct format for
the clustering algorithms implementation. An additional feature
that may be implemented will allow the user to align the trajectory
file. This is subject to the completion of the core functionality of
the entire framework.

6.1.3 Clustering.
The preprocessed data is clustered with the algorithm specified by
the user. The user will have a range of clustering algorithms to
choose from. These include, Hierarchical, QT, HDBSCAN, iMWK-
Means, SOM and AMOSA. All clustering algorithms are configured
to accept data in the format output by the preprocessing phase. The
clustering output must also be uniform across each algorithm imple-
mentation to allow for the validation techniques and visualisation
to be used.

6.1.4 Validation.
There will be numerous validation measures available for the user.
We recommend using multiple Cluster Validation Indices (CVI’s).
If the user has specified a CVI, or set of CVIs, to be used, this will
be applied to the output and results will be written to a file. We
aim to implement the Calinski Harabasz (CH), Davies-Bouldin (DB)
and Silhouette (S) indices as validation measures. The framework
should also allow for additional indices to be included at a later
stage. In the instance of Hierarchical clustering, a dendrogram will
also be generated. This illustrates how the clusters are formed and
merged over time.

6.1.5 Visualisation.
We intend to make use of the VMD software package to visualize
the dominant conformations. Once the the MD simulation data has
been clustered, an output file with dominant conformations will be
used to illustrate which conformations of the molecules are most
prevalent.

6.1.6 Clustering Output.
The clustered frames will be saved in a user specified format, in
addition to the default format. The default format will include all
frames grouped into the clusters generated. This will allow the user
to see all conformations and in which clusters they belong to. The
user may also specify whether they only want to output the largest
𝑛 conformations to a .pdb format instead of all clustered data. This
will allow the user to easily view the dominant confirmations.

6.2 Algorithm Breakdown
6.2.1 Hierarchical Clustering.
Hierarchical clustering is a type of agglomerative clusteringwhereby
it initially treats each data object as a cluster, then merges these
clusters iteratively according to some distance linkage criteria. This
process continues until one homogeneous cluster has been formed.
Importantly hierarchical clustering produces a dendrogram which
illustrates how the cluster formations merge over iterations. This
can be used to investigate similar conformations and determine
levels of similarity as we can look at different iterations where
clusters are merged.

There are four types of linkage criteria we will investigate in
our research. These linkage criteria outline what is defined as the
minimumdistance between two clusters. These include -Ward, max-
imum, single and average linkage. Single-linkage merges two clus-
ters based on the shortest distance between a pair of points within
the two clusters. Searching for the minimum distance between
a pair of elements withing two sets before merging. Maximum-
linkage focuses on searching for the maximum distance between a
pair of elements from two sets to define the distance between two
clusters. Average-linkage calculates the minimum distance between
two clusters as the average distance between each point in one clus-
ter to another. Ward’s method aims to minimise the total variance
between clusters merging. At each iteration it determines which
two clusters once merged will have the smallest variance increase.
This continues until we have once homogeneous cluster. As we can
see the linkage criteria is what defines minimum distance between
two clusters and how this is calculated.

All implementations of these algorithms are available in the
python SciPy library. We will make use of this existing code and
modify it to allow for clustering of MD simulation data. To validate
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the changes and ensure the algorithms integrity we will make use
of unit tests and cluster artificial datasets with known cluster for-
mations. Once we have ensured the algorithms have been correctly
implemented, we will cluster and analyse MD simulation data of
highly flexible molecules.

6.2.2 Quality Threshold Clustering.
TheQuality ThresholdAlgorithm requires two user specified param-
eters, similarity threshold and the minimum amount of elements in
each cluster. A candidate cluster is formed from the first object in
the data set, then iteratively every data objects similarity measure
is compared and those below the threshold are added to the cluster.
Only data objects with similarity measure differences below the
threshold for all current data objects in the cluster will be added.
Once this step is complete we proceed to do this for all data objects
in the data set. Consequently, each data object forms a cluster. All
data objects are candidates for all clusters at this stage.

Once this process has been completed, we take the largest cluster
and remove it from the dataset. Iteratively removing the next largest
cluster from the pool until we reach the minimum user defined
size of a cluster. At this point there may be data objects that do
not belong to a cluster. It is important to note that we may set the
minimum size of the cluster to one. This will allow all data objects
to be assigned to a specific cluster, albeit we will have many more
cluster formations - particularly those of a smaller size.

We will make use of a Python implementation of the QT al-
gorithm from González-Alemán et al. [11]. This has already been
modified for MD data. We would therefore only need to integrate
the algorithm with the current framework. We will then perform
validation tests with artificial datasets to determine whether the
algorithm implementation and framework function as expected.
Once this has been completed, we will cluster the MD data of
highly flexible molecules with different quality thresholds in order
to determine the algorithms effectiveness. In addition we will use
various CVIs to determine the performance of the algorithm with
the datasets.

6.2.3 HDBSCAN.
HDBSCAN is a density-based clustering algorithm which begins by
creating a network containing all of the data points [17]. The weight
of the edge between any two points is a value which describes
how close together the points are, while also taking into account
whether or not the point is in a dense or sparse region of the data.
Once the network has been constructed, the edges are removed
in descending weight order, until removing another edge would
separate two regions of the data. At this point, a hierarchical single-
linkage algorithm is used to build a dendrogram from the network.
The final clustering is then extracted based on the minimum cluster
size and a stability metric.

HDBSCAN does not require an assumption to be made regarding
the number of clusters in the data. Although it has two parame-
ters, minimum cluster size and minimum neighbourhood size, there
are suitable default values which make it possible to use it effec-
tively non-parametrically. The fact that HDBSCAN can handle noise
in the data and can produce clusters of varying shapes and sizes
makes it an attractive option for trajectories of flexible molecules
where the underlying structure of the data is unknown. Addition-
ally, HDBSCAN has been shown to successfully identify distinct

conformations, even in trajectories of disordered proteins [17], and
hence may be an ideal candidate for clustering flexible molecules.

A Python library, made available byMelvin et al. [17] will be used
to implement HDBSCAN and iMWK-Means. The library is freely
available and makes use of the Python implementation of HDB-
SCAN by McInnes et al. [16]. As this implementation was created
for use clustering MD trajectories, it will not need to be adapted
in this respect, however, a level of adaptation will be required to
integrate algorithm into the framework. The algorithm will also
need be validated with unit tests and basic artificial datasets with
obvious inherent clusters to confirm that the clustering is working
as expected. The actual testing of HDBSCAN will makes use of
both default and non-default values for the parameters, and the
MD trajectories used will include those of flexible carbohydrates.

6.2.4 iMWK-Means.
iMWK-Means is a variant of k-means which differs in that it does
not require the user to select a desired cluster count, and, in doing
so, make an assumption about the structure of the data [17]. It has
a single parameter which can be derived from the chosen distance
metric. iMWK-Means begins by overestimating the numbers of
clusters and then iteratively performing rounds of standard k-means
clustering and explicit rescaling. The rescaling involves adding
weights to the data points based on how close they are to the
centroids of their clusters. The result of this is that dense areas
of the data are clustered together, while sparse areas and outliers
receive low weights, effectively classifying them as noise. Once the
rescaling step results in no changes to the weights, one more round
of k-means is performed, which outputs the final clustering.

The clusters produced by iMWK-Means can vary in shape and
size and are resistant to noise in the data. This algorithm and HDB-
SCAN compliment each other in the fact that iMWK-Means per-
forms better with stable systems but is more sensitive to details,
while HDBSCAN detects larger conformational changes [17]. Using
the algorithms either in combination or succession may produce
better clustering than either of the them alone.

The Python library from Melvin et al. [17] also includes an im-
plementation of iMWK-Means. Similarly to HDBSCAN, the imple-
mentation is intended for clustering MD trajectories but will need
to be adapted to our framework. The initial validation will also be
similar to that of HDBSCAN and will involve unit tests and artifi-
cial datasets. iMWK-Means does not have parameters for which a
variety of values need to be tested, so the testing will focus on the
results of clustering flexible molecules with iMWK-Means alone,
as well as in combination with HDBSCAN. This will also require
further adaptation of the existing library.

6.2.5 AMOSA.
AMOSA, being a multi-objective algorithm, looks to optimise mul-
tiple objective functions simultaneously. By doing so it can produce
a set of results with each solution catering for different properties
of the data, rather than just outputting one. Throughout the pro-
cess, the concept of dominance is used. For a solution to dominate
another, it must yield better values for all of its objective func-
tions than the other solution. An archive of these best-performing
non-dominated solutions is kept, which eventually become the
Pareto-optimal set outputted.
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Being a simulated annealing algorithm, the main process remains
largely the same. A single solution from the archive is chosen
to be perturbed, i.e., altered slightly to produce a neighbouring
solution. This new solution’s optimisation of the objective functions
is compared to the original and accepted into the archive depending
on its performance and the current temperature of the system. This
process is repeated until the system temperature has reached the
minimum value set by the user.

The algorithm will be implemented using existing source code
provided by one of the co-authors of the paper which introduced
the AMOSA method. The algorithm is written in C and so it will
require a wrapper when interacting with the framework as the
latter will be implemented in Python.

As adaptations of AMOSA will be necessary since the algorithm
was not made specifically for MD clustering, testing to verify cor-
rectness of the changes will be important. Validation in the form
of unit and integration testing will allow us to see whether the
changes affect the output of the algorithm in anyway, and if it
works with the framework.

6.2.6 SOM.
SOM uses neurons that are scattered around the vector space of
the input data. Each neuron has an associated weight with the
same number of dimensions as the input. Input data is fed into
the SOM one at a time where the closest neuron is designated as
the best matching unit (BMU). The BMU and the neurons in its
neighbourhood are shifted towards the input while also updating
their weight values. Over time the neurons start converging on
clusters as less neighbours are updated and to a lesser degree. The
result is often a two-dimensional U-matrix that depicts the different
clusters using colour intensity to illustrate cluster cohesion and
separation.

A SOM implementation proposed by Bouvier et al. [5] has been
made publicly available on Github. This implementation will be
used and adapted upon. The package is written in Python 2 which
is not backwards compatible with Python 3 and, therefore, the
proposed framework. This should not be a problem as the package
can be ported to Python 3 automatically using a tool known as 2to3.

The conversion from Python 2 to 3 itself will justify testing to
ensure that no functionality has been altered. Like AMOSA, the
SOM will also have to be refactored with the framework in mind,
leading to unit and integration testing as well.

6.3 Validity Testing and Evaluation
To validate our algorithms we will make use of UCI data sets and
MD trajectories with known cluster information. Initially artificial
data sets will also be used to validate the algorithms. Some of these
datasets will be used specifically for certain algorithms, and these
are outlined below. Validity indices, including the Calinski Harabasz
, Davies-Bouldin and Silhouette (S) indices, will also be used for
testing and will be specifically relevant when no known cluster
information is available. They will also determine the effectiveness
of a clustering algorithm and will allow for comparisons between
different algorithms.

Shao et al. [19] make use of artificial data sets with their im-
plementations of hierarchical clustering. The same data sets can
used our implementations of hierarchical clustering in order to

evaluate and compare outputs. We can use common UCI data sets
with known characteristics to verify our implementation of QT
clustering. As QT clustering has already been implemented with
MD trajectories we can take previous data and compare it to our
implementation to verify results. Once we have validated our algo-
rithms implementations, we can then evaluate their effectiveness
with highly flexible molecules.

The AMOSA package includes the artificial testing data used in
the related paper and so comparisons can be made to the results
found by the co-authors. Common UCI data sets such as Wine
and Iris can also be used to test the algorithm as their properties
and characteristics are known beforehand and can be used as the
ground truth. Testing may also involve the use of MD trajectories
that have already been clustered in the past so we can ensure that
AMOSA is able to replicate the same results. SOM will also require
this form of testing especially since its implementation has been
made specifically with trajectory clustering in mind.

7 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES

The ethical concerns about the project are minimal as we will not
be conducting any research that involves personal or identifiable
information. All datasets and simulation data sources will be ac-
knowledged, and any relevant research that impacts our project will
be cited accordingly. Where we make use of third party software
and packages, the authors will be credited as well. As the packages
used will undoubtedly require adaptation to suit our needs, explicit
permission from respective authors will be obtained prior to do-
ing so if there is any legal ambiguity. All resulting software and
research will be made publicly available and open source, and we
will follow the University of Cape Town’s policy when publishing
any work.

We do not anticipate any ethical, professional or legal issues
associated with this research.

8 ANTICIPATED OUTCOMES
We expect a framework to be produced which offers a versatile
range of functions for clustering MD trajectories. The framework
should be able to cluster said trajectories using any of a variety of
algorithms. In the future, this algorithms may be one not already
included in the framework and so extensibility and modularity
must be adhered to. The user should also be able to customise
the properties of the clustering process to some degree, such as
selecting which frames to cluster and selecting what outputs to
produce. These outputs will include files containing the partitioned
conformations to visualisation of the clusters themselves.

We anticipate the framework to also be able to validate the
clustering algorithms by comparing their results to ground truths
by using data with known properties and characteristics. We expect
this work to greatly benefit workflows that routinely involve the
process of clustering and analysing trajectories.

We expect to be able to answer the research question by identi-
fying an algorithm or set of algorithms which are most effective
for clustering MD trajectories of flexible molecules.

Nicholas expects hierarchical clustering to produce clusters of
large variety, however Ward’s method will likely outperform the
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other variants. This is due to its ability to take all data objects in
a cluster into account when determining whether to merge with
another cluster. We suspect that the other linkage functions will
produce arbitrary results. The dendrogram will allow for important
and rigorous analysis of any underlying patterns with each linkage
function. QT clustering is expected to produce effective clustering
results with highly flexible molecules. As QT clustering has previ-
ously been implemented with MD data, we expect similar results
even with highly flexible molecules that have multiple different
confrontations.

Wen Kang expects to find objective functions for AMOSA whose
performance is dependant on the trajectory at hand. Therefore, it is
likely that these functions will be categorised into different sets with
each catering for specific molecular conformations. The comparison
between SOM and AMOSA is difficult to predict beforehand given
that both algorithms have different strengths and weaknesses that
will likely make each algorithm’s usage situational depending on
the trajectory at hand.

Robyn believe that both algorithms are likely to produce usable
clustering in general, although it is expected that the results will
vary for each trajectory that is tested. It is expected that HDBSCAN
will outperform iMWK-Means when clustering trajectories of flex-
ible molecules, as this is what has been seen in the past [17]. It
would be significant to confirm this, as it would mean that a similar
result had been identified when clustering both disordered proteins
and carbohydrates with HDBSCAN. Additionally, it is expected
that feeding the stable clusters produced by HDBSCAN into iMWK-
Means will reveal higher resolution details, as this is the nature of
iMWK-Means.

8.1 Success Factors
Success factors should determine whether our implementation has
succeeded. As such, the implementation of the framework should
allow trajectories to be read in, preprocessed, clustered, validated,
and visualised. Outputs selected by the user should be produced,
and the framework should be extensible regarding the choice of
the algorithms used to cluster.

The framework should include a the previously clustering algo-
rithms that must be implemented correctly and should, therefore,
undergo validation tests to ensure this. As such, through the use of
CVIs, algorithms should be compared to determine which may be
most effective in clustering highly flexible molecules.

The clusters produced by the algorithms should allow the user
to make conclusions about the dominant conformations. These
clusters should be manageable in size and not overwhelming.

The overarching research question as well as the individual ones
are expected to be answered by the end of the project.

9 PROJECT PLAN
9.1 Risks
We have identified numerous risks to this project (see Appendix
A). Each risk has an associated probability of occurring and impact
factor that we take into account. We outline possible consequences
should the risk occur while also outlining strategies to monitor,
mitigate and manage these risks.

9.2 Deliverables
Date Due Deliverable Description

12th May Literature
Review

Review current literature to es-
tablish understanding of the
topic.

4th June Project Pro-
posal

Propose project and outline ob-
jectives of the research.

29th June Revised Pro-
posal

Adjust proposal based on feed-
back from supervisor and sec-
ond reader.

10th August Feasibility
Demonstration

Demonstrate framework and
basic functionality of the soft-
ware.

11th September Final Draft Sub-
mission

Complete draft of research pa-
per for supervisor feedback.

21st September
Project Paper
Final Submis-
sion

Final submission of research pa-
per including related work, find-
ings, analysis and conclusions.

25th September Project Code Fi-
nal Submission

Submit final framework with al-
gorithm implementations.

5th - 9th Octo-
ber

Final Project
Demonstration

Present project findings and
demonstrate framework.

12th October Poster Due Compile a poster of the re-
search.

19th October Web Page Due Prepare project for online repos-
itory.

9.3 Milestones
Date Due Deliverable
12th May Literature Review
22nd May Project Proposal Scaffold
4th June Project Proposal
29th June Revised Proposal
10th July Project Scaffold completed
17th July Background Section completed

9th August Framework complete for feasibility demonstra-
tion

10th August Feasibility Demonstration
24th August Algorithm implementation completed
25th August Validating algorithm implementations

29th August First implementation with Carbohydrate simu-
lation data

7th September Final implementation and testing

10th September Complete analysis and write up of research pa-
per

11th September Final Draft Submission
21st September Project Paper Final Submission
25th September Project Code Final Submission
5th - 9th Octo-
ber Final Project Demonstration

12th October Webpage Due
19th October Poster Due

9.4 Timeline (Gantt Chart)
The project has already commenced and will run until the 21st of
September 2020 with a final paper submission. A few additional
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deliverables are required after this date, however, these do not
impact the core research of the project. A Gantt chart (see Appendix
B) outlines the major tasks and deliverables for this project. Each
task has an associated duration and deadline. We aim to remain on
schedule for the duration of the project.

9.5 Resources Required
9.5.1 Software resources.

(1) VMD
(2) SciPy library
(3) Matplotlib
(4) Pre-existing algorithm implementations

9.5.2 Hardware resources.
At this stage we anticipate that personal computers will be sufficient
for our project. Should further computing power be required, we
will request access to the University of Cape Town HPC cluster.

9.5.3 Data resources.
We intend to make use of a variety of artificial and real datasets.
Artificial datasets are used to determine whether the algorithm
has been implemented correctly and test the validity of the algo-
rithm. The datasets we aim to cluster will be Molecular Dynamic
simulations of carbohydrate molecules. We aim to determine which
algorithms are best suited for clustering highly flexible molecules,
therefore we will make use of a variety of different carbohydrate
molecules to determine an effective algorithm. In addition there is
the possibility of clustering artificial MD simulation data in order
to validate the algorithms.

9.6 Work Allocation
As mentioned previously each member will focus on implementing
their selected algorithms. In addition each member will contribute
to develop the framework. There will be various stages of col-
laboration throughout the project to ensure we produce a single
comprehensive framework while still allowing for each member to
observe results for their respective research questions. We outline
the individual work allocation below.

Nicholas will implement the hierarchical and Quality Threshold
algorithms while also working on the visualisation section of the
framework. This will allow the user to visualize dominate confir-
mations with VMD.

Robyn will implement the HDBSCAN and iMWK-Means algo-
rithms, and will focus on the sections of the framework which
handle validation and output options.

Wen Kang will adapt the AMOSA and SOM algorithms while
also focusing on the input aspect of the framework, ensuring that
that user-defined parameters and trajectory options are adhered to.
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A RISK MATRIX

Risk Probability Impact Consequence Monitoring Mitigation Management
Team
member
drops out
of project.

2 8 Although the research
questions are individ-
ual work, remaining
team members have in-
creased workload re-
garding the framework
that they might be un-
able to handle.

Periodically ensure that
all team members are
happy to pursue the
goals of the project.

Ensure that asmany fea-
sible changes are made
where a team mem-
ber is unhappy about
a certain aspect of the
project.

Reduce the scope f the
framework to ensure
the project is completed
on time.

Framework
scope
creep.

3 7 Core features may not
be implemented fully if
additional features are
given priority.

Have weekly meetings
discussing the current
direction of the frame-
work.

Set firm objectives that
shouldn’t be deviated
from.

Immediately stop work-
ing on additional fea-
tures and return to core
functions.

Core
functions
cannot be
delivered
on time.

3 10 Unable to submit a
project report on time,
leading to reduced
marks or failure.

Have weekly checkups
with all team members
and with supervisor.

Ensure that all team
members are working
as required, bringing
up any problems where
necessary.

Consult supervisor and
potentially find an alter-
native course of action.

Lack of
commu-
nication
within the
team as
well or
with the
supervisor.

1 7 Implementations might
be done incorrectly or
bad assumptions may
be made which can
lead to problems with
the framework and an-
swering of the objective
questions.

Attend weekly meet-
ings and discuss what
everyone is currently
working on and what
barriers are being faced.

Ensure everyone is
kept up-to-date with all
agreements and plans.

Discuss more stringent
meetings and alterna-
tive communication
methods.

Team
member(s)
falling
seriously
ill due to
COVID-19.

2 9 Large amounts of de-
velopment time could
be lost as recovery may
take weeks.

Monitor one’s own
health and ensure
stakeholders are aware
of any problems.

Continue practicing so-
cial distancing and sani-
tise often.

Notify team and the su-
pervisor to discuss alter-
native solutions should
time become an issue.

Chosen al-
gorithms to
complex to
implement.

5 10 Unable to perform
experimental tasks and
compare effectiveness
on highly flexible
molecules.

Test algorithms with ar-
tificial data to ensure
implementations are on
schedule.

Ensure we have suffi-
cient knowledge of al-
gorithms, and require-
ments.

Notify team and the su-
pervisor to discuss alter-
native solutions. These
include the possibility
of implementing a dif-
ferent algorithm.

Computing
power
insuffi-
cient for
clustering
analysis

6 3 Unable to cluster data
timelessly and produce
results for analysis.

Ensure we understand
complexity of algo-
rithms and computing
requirements.

Constantly evaluate
performance.

Inform supervisor and
request access to HPC
cluster.

Loss of
interest in
project

1 4 Poor work and reduced
project deliverable out-
put.

Constantly evaluate su-
pervisor feedback and
keep on schedule.

Constantly evaluate
peers performance and
keep up to date with
their work.

Reevaluate scope and
produce minimal viable
project.
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