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Abstract
In the recent two decades, there has been exponential growth in

the amounts of text of various types that have become available on-

line. This significant increase in data has allowed language models,

which are core components of many natural language processing

applications, to greatly increase in quality. Thus, the quality of these

applications has increased dramatically as well. Despite these great

advances in the field of language modelling, much of the focus has

been on language modelling for languages that have large amounts

of training data available on them, for language models to use. This

has resulted in many low-resource languages receiving far less fo-

cus. This literature review starts by explaining the core concept of

language models and their background. Following this, we look at

three popular language models, starting with the most widespread

and simple language model, the n-gram, which is discussing in sig-

nificant detail. We then pay attention to explaining the other two

models, namely the recurrent neural network model, and the more

recent Transformer model. Finally, we review the current literature

on language modelling for low-resource languages, taking note to

contrast the different methods noted in the literature. In doing this,

we comment on what we think is the way forward in the field of

low-resource language modelling.

CCS Concepts
• Computing Methodologies→Neural Networks; • Informa-
tion Systems → Language Models.
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1 Introduction
Statistical language modelling can be defined as the task of fitting a

probability distribution to sequences of linguistic units [22]. These

models are especially prominent in natural language processing

applications, such as spelling correction, machine translation, and

automatic speech recognition [7].

The performance of language models is largely dependent on the

size of the training data available to that model [12]. Thus, many lan-

guage models perform poorly or produce undesirable results, when

the size of the training data available for use, is insufficient [12].

This has largely not been an issue for many language models, as ac-

cumulating large amounts of data has recently become much easier,

due to the amount of digital content available online [22]. How-

ever, many languages lack large amounts of data [22], with these

languages commonly being referred to as "low-resource languages".

The performance of language models when trained on small

amounts of data has not been widely studied. However, the re-

search done relating to this issue has been mainly based on n-gram

language models and recurrent neural network models. Another

recent model, named the Transformer model, has shown significant

improvements over other state-of-the-art language models.

This literature review will look into the background of language

modelling, as well as all three of these popular language models

specifically. Since n-gram language models are the most common

and simple language models, they will be looked at in significantly

more detail than recurrent neural networks and Transformer mod-

els. This literature review will also look at and critique the current

literature on language modelling for low-resource languages, where

training data is often severely limited.

2 Language Models
2.1 Background
A language model estimates the prior probability values 𝑃 (𝑊 ) for
strings of words𝑊 in a vocabulary 𝑉 . The strings that W typi-

cally represent are formal sentences or other segments, including

utterances relating to speech recognition [5, 21]. Language models

are used in many fields, including speech recognition, machine

translation, optical character recognition, handwriting recognition,

and spelling correction [4, 5].

Computing the probability of a word 𝑤 , given some history ℎ,

can be defined as 𝑃 (𝑤 |ℎ) [12]. For example, if the history of a word

is “they were so hungry that” and we wanted to know the probability

that the next word is “they”, we would compute the conditional

probability as:

𝑃 (𝑡ℎ𝑒𝑦 |𝑡ℎ𝑒𝑦 𝑤𝑒𝑟𝑒 𝑠𝑜 ℎ𝑢𝑛𝑔𝑟𝑦 𝑡ℎ𝑎𝑡) (1)

To estimate the probability of this word, we could use a signifi-

cantly large corpus, determine the frequency at which we see the

history of the word followed by the word itself, and divide it by the

frequency at which we see the history of the word (regardless of

any potential following word) [12]:
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𝑃 (𝑡ℎ𝑒𝑦 |𝑡ℎ𝑒𝑦 𝑤𝑒𝑟𝑒 𝑠𝑜 ℎ𝑢𝑛𝑔𝑟𝑦 𝑡ℎ𝑎𝑡)

=
𝐶 (𝑡ℎ𝑒𝑦 𝑤𝑒𝑟𝑒 𝑠𝑜 ℎ𝑢𝑛𝑔𝑟𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑦)

𝐶 (𝑡ℎ𝑒𝑦 𝑤𝑒𝑟𝑒 𝑠𝑜 ℎ𝑢𝑛𝑔𝑟𝑦 𝑡ℎ𝑎𝑡)
(2)

The general problem that the field of natural language process-

ing faces, is that of data sparsity, which means that there is not

enough training data to model a language accurately [1]. Although

this simple method of estimating the probabilities of words, does

work in some cases, it can often lead to undesirable results due

to possible unseen sentences in the training data. This problem is

often called the curse of dimensionality, which refers to how a word

sequence on which the model will be tested, is often different from

word sequences seen in the training data [2]. Another reason that

this method is infeasible in many cases, is that calculating the joint

probability of entire sequences of words that are long in nature, can

be incredibly computationally expensive and space-inefficient [12].

This necessitates using other methods of estimating the probability

of a word, with various techniques being used by the most popular

language models.

The joint probability of all words 𝑃 (𝑤1,𝑤2, ...𝑤𝑛) can be decom-

posed as follows, using the chain rule, into the probability of each

word given its preceding context [12]:

𝑃 (𝑤𝑛
1
) = 𝑃 (𝑤1)𝑃 (𝑤2 |𝑤1)𝑃 (𝑤3 |𝑤2

1
) ...𝑃 (𝑤𝑛 |𝑤𝑛−11

)

=

𝑛∏
𝑘=1

𝑃 (𝑤𝑘 |𝑤𝑘−11
)

(3)

Equation (3) defines a statistical language model, which is repre-

sented by the conditional probability of the next word, given the

word’s history.

The use of Language Models has proven extremely useful in

the fields of a wide array of technological fields, including speech

recognition, language translation, and information retrieval [2].

2.2 Evaluation

2.2.1 Extrinsic
The performance of a language model can be best evaluated by em-

bedding the model in an application, and measuring the subsequent

change, or lack thereof, in performance [12]. This method of evalu-

ation refers to extrinsic evaluation, and is the only way to know for

certain if particular improvements in language model components

are going to improve the application using said language model.

Although this is the ideal method for evaluation, it is often very

expensive, as many applications used for extrinsic evaluation are

fairly elaborate and slow to compute [12].

2.2.2 Intrinsic
Quicker, cheaper and the most common methods of evaluation are

intrinsic evaluation methods, which measure the quality of a lan-

guage model independent of applications. These methods include

cross-entropy and perplexity, which are derivatives of the probabil-

ity that the model assigns to test data. In addition to the reasons

listed above to use intrinsic evaluation, is that it gives us a measure

of how well the model fits the data we evaluate against [12]. In

practice, the use of raw probabilities as a metric of performance is

not used. Instead, cross-entropy and perplexity are used.

Cross-entropy is useful if the probability distribution p that gen-

erated some data, is unknown to us. The cross-entropy 𝐻 (𝑊 ) of a
model𝑀 = 𝑃 (𝑤𝑖 |𝑤𝑖𝑁+1 ...𝑤𝑖1) on a sequence of words𝑊 is defined

as [3, 12] :

𝐻 (𝑊 ) = 1

𝑁
log 𝑃 (𝑤1𝑤2 ...𝑤𝑁 ) (4)

where 𝑁 is the total number of words in the data evaluated

against. This value can be interpreted as the average number of bits

needed to encode each word in the test data, using the compression

algorithm associated with the specific language model [3].

The perplexity 𝑃𝑃 (𝑊 ) of a model can be defined as the exp of

the model’s cross-entropy value [3]:

𝑃𝑃 (𝑊 ) = 2
𝐻 (𝑊 )

= 𝑃 (𝑤1𝑤2 ...𝑤𝑁 )−
1

𝑁

= 𝑁

√
1

𝑃 (𝑤1𝑤2 ...𝑤𝑁 )

=
𝑁

√√√
𝑁∏
𝑖=1

1

𝑃 (𝑤𝑖 |𝑤1 ...𝑤𝑖−1)

(5)

The lower the cross-entropy and perplexity of a model is, the

better the model is said to perform [3].

3 N-grams
3.1 Background
The most widely used by far and one of the simplest language

models are n-gram language models [5, 21]. These models perform

well across a variety of language modelling tasks, and are easily

trainable, as they do not require annotated training data [6].

In an n-gram model, we make the approximation that the proba-

bility of a word depends only on the previous (𝑛 − 1) words. This
reduces the dimensionality of the estimation problem [21] and it

relates to the idea of Markov models, which assume that we can

predict the probability of some future unit without looking too far

into the past. In our case, this applied to future words and their

history [3, 12]. This general approximation for n-grams to the con-

ditional probability to the next word in a sequence is shown as

follows:
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𝑃 (𝑤𝑛 |𝑤𝑛−11
) ≈ 𝑃 (𝑤𝑛 |𝑤𝑛−1𝑛−𝑁+1) (6)

For example, trigram models, which are the most common n-

gram model [5], compute the probability of a word by making use

of the two words that preclude it: 𝑃 (𝑤𝑛 |𝑤𝑛−1𝑛−2). This probability can
be approximated using the maximum likelihood estimate (MLE).

The easiest way to calculate the MLE is to count the number of

times the word sequence (𝑤𝑛−2𝑤𝑛−1𝑤𝑛) appears in some training

corpus, and divide this frequency by the number of times the word

sequence (𝑤𝑛−2𝑤𝑛−1) appears [3, 12]. This equation is as follows:

𝑃 (𝑤𝑛 |𝑤𝑛−1𝑛−2) =
𝐶 (𝑤𝑛−2𝑤𝑛−1𝑤𝑛)
𝐶 (𝑤𝑛−2𝑤𝑛−1)

(7)

With the general case of MLE n-gram parameter estimation as

follows:

𝑃 (𝑤𝑛 |𝑤𝑛−1𝑛−𝑁+1) =
𝐶 (𝑤𝑛−1

𝑛−𝑁+1𝑤𝑛)
𝐶 (𝑤𝑛−1

𝑛−𝑁+1)
(8)

Using the MLE can lead to undesirable results for many applica-

tions that use language models [3]. This is due to the potentially

insufficient data and inherent data sparseness in statistical mod-

elling [3]. This can lead to the assignment of zero probability given

to sequences not seen in the training data, which would lead to

inaccurate or undefined probability estimates [3]. This is because

an event that has never been observed in the training data could

still occur in the test data. Even in the extreme case, where all pa-

rameters of a model can be trained accurately, due to a significantly

large amount of training data, data sparsity becomes an issue if

one expands the model [3]. Smoothing techniques, which normally

produce probabilities very close to the MLE [3], can be used to

address the issue of data sparsity by modifying the MLE to produce

more accurate results. The probability distributions are modified to

be more uniform by decreasing significantly high probabilities and

increasing significantly low probabilities, such as sequences that

have an assigned probability of zero [3].

3.2 Smoothing
Nomatter howmuch data is available for use, smoothing techniques

can almost always improve the performance of language models

without much effort [3].

3.2.1 Additive Smoothing
One of the first and simplest smoothing techniques used in practice

is additive smoothing [10, 16? , 17], which tackles the issue of data

sparsity by pretending each n-gram occurs a certain number of

times, , more than it does:

𝑃𝑎𝑑𝑑 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1) =
𝛿 +𝐶 (𝑤𝑖

𝑖−𝑛+1)
𝛿 |𝑉 | +∑

𝑤𝑖
𝐶 (𝑤𝑖

𝑖−𝑛+1)
(9)

Typically 0 < 𝛿 ≤ 1 [3], however [16] and [10] advocate for

𝛿 = 1.

3.2.2 Good-Turing Estimate
The Good-Turing estimate [8] forms the basis for many smoothing

techniques, such as Katz smoothing [3]. This method dictates that

for any n-gram that occurs 𝑟 times, we should pretend that it occurs

𝑟∗ times where 𝑛𝑟 is the number of n-grams seen exactly 𝑟 times in

the training data [8]. This is as follows:

𝑟∗ = (𝑟 + 1)𝑛𝑟 + 1

𝑛𝑟
(10)

In order to convert this count into a probability, we normalize

this value by:

𝑃𝐺𝑇 (𝑤𝑖𝑖−𝑛+1) =
𝑟∗

𝑁
(11)

The Good-Turing estimate is not used, in practice, by itself for n-

gram smoothing. This is due to the estimate not including the com-

bination of higher-order models with lower-order models, which is

necessary for good performance [3].

3.2.3 Interpolated vsBackoffSmoothingModels
Interpolation techniques mix the probability estimates from all the

n-gram estimators, weighing and combining trigram, bigram and

unigram counts [12]. They therefore discount some probability

mass from high probability seen words and reassign this mass to

low probability and unseen words. For example, in simple linear

interpolation, to estimate the trigram probability 𝑃 (𝑤𝑛 |𝑤𝑛2𝑤𝑛1),
we mix together the unigram, bigram and trigram probabilities

according to weights 𝜆𝑖 [12]:

𝑃 (𝑤𝑛 |𝑤𝑛−2𝑤𝑛−1) =𝜆1𝑃 (𝑤𝑛 |𝑤𝑛−2𝑤𝑛−1)
+ 𝜆2𝑃 (𝑤𝑛 |𝑤𝑛−1)
+ 𝜆3𝑃 (𝑤𝑛)

(12)

The result is that trigrams that consist of higher probability

bigrams and unigrams will be assigned higher probabilities than

trigrams that consist of lower probability bigrams and unigrams.

Backoff models take a different approach. This approach is that

we use higher-order n-grams if there is enough evidence for it,

otherwise a lower-order n-gram is used [3]. This means that we

“back off” to lower n-grams if we lack evidence for higher-order

n-grams, and we continue to “back off” until we reach a specific

order of n-gram history that has some counts. For backoff models

to give a correct probability distribution, they must discount some

probability mass from higher-order n-grams to assign to lower-

order n-grams. If this is not done, and we use the undiscounted

MLE probability, replacing a higher-order n-gram with a lower-

order n-gram will result in the total probability of all strings in the
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language model being greater than 1 [12]. Backoff with discounting

is used in Katz backoff, which will be discussed later.

3.2.4 Jelinek-Mercer Smoothing
Consider the simple smoothing technique of additive smoothing,

where we may pretend that each bigram occurs once more than it

does. Now consider that where we train a language model where

we have not seen the bigram "fly the" nor "fly thou". If we apply
additive smoothing to this model, the same probability will be as-

signed to both sequences of words. Intuitively this seems incorrect,

as the word "thou" after a verb seems much less common than the

word "the" after a verb. To address this issue, a smoothing technique

named Jelinek-Mercer [11] can be used.

This interpolation technique makes use of the fact that when

there is insufficient data for directly estimating an n-gram probabil-

ity, useful information can be provided by the corresponding (𝑛-1)-

gram. In this way, lower-order n-grams, which have the advantage

of being estimated from more data, can provide more information

for the higher-order n-grams [3]. [3] denotes an elegant way of

performing this interpolation:

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1) =𝜆𝑤𝑖−1
𝑖−𝑛+1

𝑃𝑀𝐿(𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1)

+ (1 − 𝜆𝑤𝑖−1
𝑖−𝑛+1

)𝑃𝑖𝑛𝑡𝑒𝑟𝑝 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+2)
(13)

TALK ABOUT THIS

3.2.5 Katz Smoothing
Katz smoothing [14] is a non-linear method that is like Good-Turing

estimates in that it computes adjusted counts, however, it extends

the intuitions of the estimates by adding the combination of higher-

order models with lower-order models. The probability of an n-

gram with zero counts is approximated by backing off to the (𝑛-

1)-gram until an n-gram with a non-zero count history is reached.

The model can be expressed as:

𝑃𝐾𝑎𝑡𝑧 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑁+1) =
{
𝑃∗ (𝑤𝑖 |𝑤𝑖−1𝑖−𝑁+1) if 𝐶 (𝑤𝑖

𝑖−𝑁+1) > 0

𝛼 (𝑤𝑖−1
𝑖−𝑁+1)𝑃𝐾𝑎𝑡𝑧 (𝑤𝑖 |𝑤

𝑖−1
𝑖−𝑁+2) otherwise.

(14)

Where P* is the Good-Turing discounted probability and𝛼 (𝑤𝑖−1
𝑖−𝑁+1)

is the normalizing constant, which determines how some probabil-

ity masses seen at higher-order n-grams are redistributed to unseen

n-grams, according to the lower-order distribution.

This model calculates the conditional probability of a word pro-

portional to the MLE of the n-gram, given that specific n-gram

has a frequency higher than 𝑘 (Which is 0 in the above equation),

which [14] suggests being equal to 5. Otherwise, the conditional

probability is calculated as the back-off probability of the (𝑛-1)-

gram. Since the Katz model being defined recursively in terms of

the Katz (𝑛-1)-gram model, the end of recursion happens at the

Katz unigram model, which is taken to be the maximum likelihood

unigram model [3].

3.2.6 Witten-Bell Smoothing
The Witten-Bell smoothing model [26] can be considered an in-

stance of the Jelinek-Mercer smoothing model and was initially

developed for use in text compression [3]. The model is defined re-

cursively as a linear interpolation between the 𝑛th-order maximum

likelihood model and the (𝑛-1)th-order smoothed model and can be

defined as follows:

𝑃𝑊𝐵 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1) =
𝐶 (𝑤𝑖

𝑖−𝑛+1) + 𝑁1+ (𝑤𝑖−1𝑖−𝑛+1•)𝑃𝑊𝐵 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+2)∑
𝑤𝑖

𝐶 (𝑤𝑖
𝑖−𝑛+1) + 𝑁1+ (𝑤𝑖−1𝑖−𝑛+1•)

(15)

where 𝑁1+ represents the number of words that have one or

more counts, and the • represents a free variable that is summed

over.

3.2.7 Absolute Discounting
Absolute discounting [19], is similar to Jelinek-Mercer smooth-

ing, in that it involves the interpolation of higher-order models

and lower-order models. However, in contrast to Jelinek-Mercer

smoothing, Absolute discounting does not multiply the higher-

order maximum-likelihood distribution by 𝜆𝑤𝑖−1
𝑖−𝑛+1

, rather creating

the higher-order distribution by subtracting a fixed discount 𝐷 ≤ 1

from each n-gram, of some order, seen in the training data. This

equation is as follows [3]:

𝑃𝑎𝑏𝑠 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1) =
𝑚𝑎𝑥 [𝐶 (𝑤𝑖

𝑖−𝑛+1)∑
𝑤𝑖

𝐶 (𝑤𝑖
𝑖−𝑛+1)

+ (1 − 𝜆𝑤𝑖−1
𝑖−𝑛+1

)𝑃𝑎𝑏𝑠 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+2)

(16)

3.2.8 Kneser-Ney
In the case of n-grammodels, we have discussed how the (𝑛-1)-gram

model can be used for backing-off when there are cases of unseen

events. However, [15] claims that when the normal probability dis-

tribution of lower-order models is taken for backing-off, it can lead

to undesirable results. [15] illustrates this issue by pointing out that

the word "dollars" is very unlikely to occur after a word that is not

a number or the name of a country. However, if the unigram proba-

bility 𝑃 (𝐷𝑜𝑙𝑙𝑎𝑟𝑠) is taken for backing-off, the smoothed model will

assign a much higher probability to the word than is appropriate.

[15] states that this suggests backing-off distributions should be

different from the normal probability distribution. The model has

the following from:
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𝑃𝐾𝑁 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+1) =

𝑚𝑎𝑥 [𝐶 (𝑤𝑖

𝑖−𝑛+1)−𝐷,0]∑
𝑤𝑖
𝐶 (𝑤𝑖

𝑖−𝑛+1)
if 𝐶 (𝑤𝑖

𝑖−𝑛+1) > 0

𝛾 (𝑤𝑖−1
𝑖−𝑛+1)𝑃𝐾𝑁 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+2), if 𝐶 (𝑤𝑖

𝑖−𝑛+1) = 0

(17)

where 𝛾 (𝑤𝑖−1
𝑖−𝑛+1) is chosen to make the distribution sum to 1.

3.2.9 Modified Kneser-Ney
Modified Kneser-Ney [3] smoothed models achieve the best perfor-

mance ,within the context of n-gram models, when compared to all

other smoothing techniques. It also performs substantially better

than regular Kneser-Ney smoothing [3].

Instead of using a single discount 𝐷 for all nonzero counts as in

Kneser-Ney smoothing, three or more parameters 𝐷1, 𝐷2, 𝐷3+ are

applied to n-grams that have been seen once, twice, and three or

more times, respectively, in the training data.

3.2.10 Stupid-Backoff
Stupid Backoff is a smoothing technique that is mainly used for

significantly large datasets, and differs from the above techniques in

that it does not generate normalized probabilities and does not make

use of applying any discounting, rather using relative frequencies

[7]:

𝑆 (𝑤𝑖 |𝑤𝑖𝑖−𝑛+1) =

𝐶 (𝑤𝑖

𝑖−𝑛+1)
𝐶 (𝑤𝑖−1

𝑖−𝑛+1)
if 𝐶 (𝑤𝑖

𝑖−𝑛+1) > 0

𝛼𝑆 (𝑤𝑖 |𝑤𝑖−1𝑖−𝑛+2) otherwise

(18)

Where is the backoff factor and may be made to depend on 𝑛.

In distributed environments, [7] claims that Stupid Backoff is

inexpensive to calculate and approaches the quality of Kneser-Ney

smoothing for large amounts of data.

3.3 Feed-Forward Neural Network Language
Model

Modern neural networks are formed from singular compute units,

which process a vector of input values and produce a single output

value. Feedforward Neural Networks (FFNNs) were the first type of

neural networks introduced to the field of language modelling [23],

and adopt the paradigm of supervised learning, which means that

a “teacher” provides output targets for each input pattern, followed

by explicitly correcting the network’s errors [24]. As the name of

this architecture suggests, FFNNs estimate probabilities of words

and word sequences via the use of a neural network, in contrast to

traditional count-based n-grammodels that use smoothing methods

to estimate probabilities. Like count-based models, FFNNs are based

on the Markov assumption [23], such that only the most recent

(n-1) words of a word’s history are used to calculate the probability

of the current word𝑤𝑖 .

Perceptrons are a simple type of neural network comprised of

binary threshold units that can be used to compute certain func-

tions [24]. However, single layer perceptrons can only find a set

of weights to correctly classify patterns in training sets if these

patterns are linearly separable, meaning that there is no way to

draw a line between two distinct classes of a pattern [24]. A specific

example of this failing of single layer perceptrons is the inability

to calculate the XOR function. Multi-layer perceptrons are more

complex to train than single-layer perceptions, however, they can

theoretically compute any function [24]. FFNNs follow similar ar-

chitecture, however, differ from multi-layer perceptrons in that

perceptrons are purely linear, while modern FFNNs consist of units

that have non-linear activation functions [13].

The simplest type of FFNNs have three types of layers; the input

layer, hidden layer, and output layer which consist of input, hidden,

and output units respectively. There is always one input layer and

output layer, however, there can be multiple hidden layers [13]. The

input layer is often not counted when enumerating layers. Each

layer is fully-connected, meaning that each unit of a layer processes

as input all the separate outputs of the units in the previous layer.

Similarly, a layer that is followed by another, has units that send

their output to all separate units in the following layer. Therefore,

there is a connection between all pairs of units between two adja-

cent layers [13]. Each neural unit in FFNNs takes a weighted sum of

its inputs, adds a bias term, and applies a non-linear function to it,

whose output is called the activation value. This can be represented

using vector notation as follows[13]:

𝑦 = 𝑎 = 𝑓 (𝑧) = 𝑓 (𝑤 + 𝑏) (19)

where𝑤 is the weight vector, 𝑥 is the input vector, 𝑏 is the bias

scalar, 𝑎 is the activation value, z is the intermediate output of the

node, and y is the final output of the network, which in this case,

consists of a single unit.

The three most popular non-linear functions used by FFNNs to

compute activation values are the sigmoid, tahn, and rectified lin-

ear unit (ReLU) [13]. The sigmoid function can be defined as follows:

𝑎 = 𝜎 (𝑧) = 1

1 + exp
−𝑧 (20)

Tahn function:

𝑎 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(21)

ReLU function:

𝑎 =𝑚𝑎𝑥 (𝑥, 0) (22)
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In practice, the sigmoid function is rarely used and ReLU is the

most common [13]. The benefit of using ReLU over the other two

mentioned functions is that the result of the ReLU function is close

to linear. Additionally, an issue with using sigmoid or tanh func-

tions is that very high intermediate outputs lead to a final output

value being extremely close to 1. [13].

A way for FFNNs to be able to perform some hidden layer compu-

tation more efficiently is to use a single matrix𝑊 for the weights of

some hidden layer so that the computation can be done with simple

matrix operations [13]. Since each hidden unit in some hidden layer

has a weight vector𝑤 , and a bias scalar 𝑏, we can represent these

parameters for some hidden layer by combined these parameters

for each hidden unit 𝑖 , with weight 𝑤𝑖 and bias 𝑏𝑖 , into a single

weight matrix𝑊 and a single bias vector 𝑏. This weight matrix

now represents all the parameters for some entire hidden layer,

with each element𝑊𝑖 𝑗 of𝑊 representing the weight applied to

the 𝑖th input unit 𝑥𝑖 to the 𝑗th hidden unit ℎ 𝑗 . The computation of

the hidden layer can now be done in three steps: taking the input

vector, 𝑥 , multiplying it by the weight matrix𝑊 , adding the bias

vector 𝑏, and applying the activation function to the result. The

resulting value, ℎ, can be “fed forward” to later hidden layers or the

output layer as their input. The output of the hidden layer can now

be defined as follows [13]:

ℎ = 𝜎 (𝑊𝑥 + 𝑏) (23)

Like the hidden layer, the output layer has a weight matrix, 𝑈 ,

that is used in combination with its inputs (outputs from the last

hidden layer) and bias scalar. While the output of hidden layers

can be a real-valued number, the result of the output layer is used

to make classification decisions, and so this final output must be

focused on the case of classification [13]. A function that can be

used as the activation function for the output layer, that converts a

vector of real-valued numbers into a vector that encodes a proba-

bility distribution is the softmax function:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑖 ) =
𝑒𝑧𝑖∑𝑑
𝑗=1 𝑒

𝑧 𝑗
1 ≤ 𝑖 ≤ 𝑑 (24)

where 𝑧 is the vector of the intermediate output of the output

layer that has dimensionality 𝑑 .

A two-layer FFNN that uses ReLU as the activation function for

all intermediate outputs, except the final layer intermediate out-

put, which uses the softmax function, can be represented as follows:

𝑧 [1] =𝑊 [1]𝑎 [0] + 𝑏 [1]

𝑎 [1] = 𝑅𝑒𝐿𝑈 (𝑧 [1] )

𝑧 [2] =𝑊 [2]𝑎 [1] + 𝑏 [2]

𝑎 [2] = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧 [2] )

𝑦 = 𝑎 [2]

(25)

where the superscripts in square brackets refer to the layer num-

ber.

FFNNs can take a sliding window approach, where, at each time

step 𝑡 , the network can take 𝑛 words (which form the window), and

produce the next word in the sequence [13].

The main advantages that neural language models such as FFNN

models have over traditional n-gram language models are that they

can handle much larger word histories, don’t need smoothing, and

can generalize to unseen data better through the use of embeddings,

which represent the prior context of a word [13].

Although, like traditional n-gram models, FFNNs usage can be

problematic in that it limits the context fromwhich information can

be extracted [13]. In a sliding window approach of FFNNs, words

outside the context window have no impact on current decisions,

meaning that possible important information is lost. This is exem-

plified in language tasks that require information from words at

that are far away, in terms of distance in number of words, from the

current point in the process. Another problem is that FFNNs have

difficulty learning systematic patterns in languages [13]. Recurrent

Neural Networks (RNNs) solve these issues by directly dealing with

the temporal aspect of languages.

4 LSTM Neural Networks
4.1 Background
Long short-term memory networks (LSTMs) are a form of recurrent

neural networks (RNNs), which are neural sequence models that

perform significantly well when compared to other models, and

serve as the basis for tasks such as machine translation, language

modeling, and question answering, among other sequence learning

tasks [18, 28]

An RNN can be classified as some network that consists of units,

which have values that are directly or indirectly dependent on ear-

lier outputs as an input. Like FFNNs, an RNN works by multiplying

some input vector, which represents the current input element, by a

weight matrix, applying an activation function, and passing the ac-

tivation value to the hidden layer. The hidden layer then calculates

its output. However, in contrast to FFNNs, RNNs have a recurrent

link between hidden layers, allowing the computation at the hidden

layer to use the activation value of the hidden layer from the pre-

ceding point in time [9]. In this way, hidden layers from previous

time steps provide context that can be used in future computations.

The way an RNN makes use of past context in future computations
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is by using a set of weights,𝑈 , that connect a hidden layer from a

previous timestep to a current layer [9]. As discussed previously,

this is how RNNs deal with the temporal nature of languages

Although the hidden layers of previous timesteps provide con-

text for future hidden layers, it is difficult to train RNNs for such

tasks that make use of history that is significantly distant from the

current point of processing [13]. This is due to the information

in hidden states being mainly influenced by recent hidden layers.

Thus, much of the distant information is lost. These failings of

RNNs to substantially retain critical information can be explained

by two main reasons. The first reason is the requirement of the

hidden layer weights,𝑈 , to be used to provide information about

the current decision, as well as retain information required for

future decisions [13]. The second reason relates to the vanishing

gradients problem, meaning the gradients eventually reduce to zero,

which results from the need to backpropagate the error signal back

through time[13].

LSTM networks attempt to solve these problems by adding an

additional context layer to the original RNN. This context layer, the

"long-term" memory, consists of a vector of memory cells, which

are used to store information for long periods. With this new con-

text layer, at each time step, the LSTM can overwrite, retrieve, or

retain memory cells for the next time step [28].

Formally an RNN can be described as follows: [9]

𝑎𝑡 = 𝑏 +𝑊ℎ𝑡−1 +𝑈𝑥𝑡

ℎ𝑡 = tanh (𝑎𝑡 )
𝑜𝑡 = 𝑐 +𝑉ℎ𝑡

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑜𝑡 )

(26)

and an LSTM defined as follows: [27]

𝐿𝑆𝑇𝑀 : 𝑅𝑚 × 𝑅𝑛 × 𝑅𝑛 −→ 𝑅𝑛 × 𝑅𝑛

𝐿𝑆𝑇𝑀 (𝑥, 𝑐𝑝𝑟𝑒𝑣, ℎ𝑝𝑟𝑒𝑣 = (𝑐, ℎ)

The updated state 𝑐 and the output ℎ can then be computed as

follows:

𝑓 = 𝜎 (𝑊 𝑓 𝑥𝑥 +𝑊 𝑓 ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑓 )

𝑖 = 𝜎 (𝑊 𝑖𝑥𝑥 +𝑊 𝑖ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑖

𝑗 = tanh(𝑊 𝑗𝑥𝑥 +𝑊 𝑗ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑗

𝑜 = 𝜎 (𝑊 𝑜𝑥𝑥 +𝑊 𝑜ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑜 )
𝑐 = 𝑓 ⊙ 𝑐𝑝𝑟𝑒𝑣 + 𝑖 ⊙ 𝑗

ℎ = 𝑜 ⊙ tanh(𝑐)

(27)

where 𝜎 is the logistic sigmoid function, ⊙ is the elementwise

product,𝑊 ∗
and 𝑏 are weight matrices and biases

5 Transformers
5.1 Background
Despite the continued iteration and progress relating to RNNs and

LSTMs, both suffer from the fundamental constraint of sequential

computation. This constraint prevents these models from paral-

lelization within training data, which leads to poor performance

at significantly long sequence lengths, due to memory constraints

limiting batching across data [25].

A fairly recent model architecture named the Transformer, pro-

posed by [25], avoids the use of recurrence in favor of relying

entirely on attention mechanisms to draw global dependencies be-

tween input and output, being the first transduction model to do

so. This model architecture outperforms RNNs and LSTMs relating

to long sequence lengths, as it allows for a significant amount of

parallelization [25].

The architecture of the transformer is based on state-of-the-art

sequence transduction models, which have an encoder-decoder

structure. In this structure, the encoder maps an input sequence

of symbol representations to a sequence of continuous representa-

tions. The decoder then processes the latter sequence and generates,

one symbol at a time, an output sequence [25].

The Transformer has point-wise, fully connected layers for both

encoder and decoder, with all layers of each making up a stack.

Each layer in both encoder and decoder is identical, however, the

layers of the encoder differ from the layers of the decoder. The

encoder has six layers, which consists of two sub-layers. The first

sub-layer is a multi-head self-attention mechanism, with the second

sub-layer being an FFNN. Both of the sub-layers employ a residual

connection around them, and the layer itself is normalized. The

decoder consists of six layers that have the same two sub-layers

of the encoder, however, a third sub-layer is added that performs

multi-head attention over the output of the encoder stack. As with

the layers of the encoder stack, residual connections are employed

around each sub-layer, followed by layer normalization. The de-

coder stack’s sub-layers are also modified to prevent positions from

attending to subsequent positions, which, coupled with output em-

beddings being offset by one position, ensures sole dependency of

the predictions for position 𝑖 , on the known output positions less

than 𝑖 [25].

The concept of attention can be described as a function that maps

a query and a set of key-value pairs to an output, where the query,

keys, values, and output are vectors. The output of an attention

function is a weighted sum of values, where each value is computed

by a compatibility function of the query with the corresponding

key [25]. The attention function that is used by the Transformer is

called Scaled Dot-Product Attention. This function’s input consists

of queries and keys of dimension 𝑑𝑘 , and values of dimension 𝑑𝑣 .
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The weights on the values are calculated by computing the dot prod-

ucts of the query with all keys, dividing each by
√
d𝑘 , and applying

a softmax function to the result. The output is then computed as

the weighted sum of the values [25].

The use of Multi-Head Attention in the Transformer model refers

to performing the attention function in parallel on multiple linear

projections of queries, keys, and values, resulting in 𝑑𝑣-dimensional

output values. This form of attention allows the Transformer model

to jointly attend to information from different representation sub-

spaces at different positions [25].

[20] introduced amodel based on the original Transformermodel,

commonly called GPT, that involves generative pre-training of a

language model on a diverse corpus of unlabeled text, and then per-

forms discriminative fine-tuning on each specific task. [20] found

that this approach yields large performance gains over discrim-

inatively trained models, that are designed for one specific task,

in tasks such as textual entailment, question answering, semantic

similarly assessment, and document classification.

6 Application for Low-Resource Lan-
guages

Recently, neural network language models have been successful

across various fields of computational linguistics, however, the

languages modelled on have been mainly ones that have signif-

icantly large data sets available for the training of these models.

Low-resource languages have received significantly less attention,

and have not currently benefited from these advances in computa-

tional linguistics [22].

[7] Compared the performance of an n-gram language model

that uses modified Kneser-Ney smoothing, an FFNN, and an RNN.

[7] evaluated the performance of these models across the languages

of Cantonese, Pashto, Tagalog, Turkish, and Vietnamese. [7] found

that both neural network models performed well in terms of per-

plexity and word error rate, further noting that the relative im-

provement against the n-gram model increased with the size of the

training data used. [7] also noted that FFNNs perform better than

RNNs for low-resource languages but perform worse for larger data

sizes. To improve the performance of FFNNs for larger training data

sets relative to RNNs, FFNNs can be interpolated with modified

Kneser Ney models. In this case, the interpolated model performs

better than RNNs for all training data sizes. Despite the general

improvements in the performance of neural network models over

state-of-the-art n-gram models, the n-gram model improved signif-

icantly better when modelled on Turkish data, which [7] notes has

a rich morphology and low amounts of training data. This could

suggest that n-gram models may still have the edge in these cir-

cumstances.

[22] conducted a rudimentary analysis of RNNs and compared

the performance of this model to a state-of-the-art n-gram language

model, which used modified Kneser-Ney smoothing. This was done

within the context of low-resource South African languages, namely

Xitsonga, IsiZulu ,and Afrikaans, as well as English, which is not a

low-resource language. [22] found that n-grams performed better

than basic RNNs, however linearly interpolating the two models

outperformed both of the component models. This finding that

linear interpolation of an n-gram model with a neural network

model can outperform the performance of the singular models

agrees with the findings of [7] discussed previously.

7 Discussion
We have presented in our review different research focusing on

how the language models discussed in this review perform when

being trained on low-resource languages, thus having low amounts

of training data available to them. The amount of research that has

been done on this matter is extremely sparse, however, there have

been notable results achieved.

We have found that although there have been great strides in

the field of language modelling, much of that success has not transi-

tioned into the field of low-resource languagemodelling specifically.

We have seen that a state-of-the-art n-gram model using Modi-

fied Kneser-Ney [3] smoothing performs similar to or outperforms

neural networks when training data is severely limited, which is

often the case when modelling on low-resource languages.

We have also seen that linear interpolation of a neural network

and an n-gram model can significantly improve the performance of

language models when they are trained on limited data, to the point

at which the linearly interpolated model outperforms all individual

component models.

Although Transformer models have been shown to perform bet-

ter than both state-of-the-art n-gram and RNN models, there has

not been any research relating to how Transformer models compare

to these models when training data is severely limited.

8 Conclusions
In this literature review, we have examined what language models

are and have looked at three classes of popular language mod-

els, namely n-gram models, recurrent neural networks (as well as

LSTMs), and the recent Transformer model. We have also discussed

how state-of-the-art n-gram models and RNNs perform in limited

training data settings.

We have identified that there has been a lack of research relat-

ing to language modelling for low-resource languages, as well as

how there specifically has been no research into the comparison

of n-gram models, RNNs and Transformer models when all three

are given a severely limited amount of training data, as is often the

case when working with low-resource languages.

We feel the next step is to look at how n-gram models, LSTMs,

and Transformer models perform when given limited amounts of

training data, subsequently comparing all three models. We feel



Low Resource Language Modelling

as this could be done with Nguni languages, which have very low

amounts of training data relating to them.
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