Low Resource Language Modelling Literature Review

Stuart Mesham
stuart. mesham@gmail.com
University of Cape Town
Cape Town, South Africa

ABSTRACT

Recent state-of-the-art results in language modelling have been
achieved using large models trained on billions of words. South
African languages typically have a limited amount of data available.
We aim to determine whether the same techniques that have led
to improvements in English also improve performance in other
languages by comparing the performance of different model ar-
chitectures and training strategies on South African languages. In
this review we describe different language models ranging from
traditional models to the most recent. We include an overview of
language modelling concepts as well as approaches to modelling
low-resource languages.

CCS CONCEPTS

« Computing methodologies — Natural language process-
ing;

KEYWORDS

natural language processing, language modelling, low-resource
language modelling, n-gram, long short-term memory, transformer

1 INTRODUCTION

Language modelling has valuable applications such as machine
translation, voice recognition, information retrieval, spelling cor-
rection and question answering [12, 20, 37, 49, 68]. However, mod-
ern language models typically require large amounts of data to
train. Low-resource languages therefore may see reduced bene-
fit from recent advances in language modelling. Many of South
Africa’s widely spoken languages have limited data available for
language modelling; making research into low-resource language
modelling relevant to the country. We focus on three types of lan-
guage models: n-grams, Long Short-Term Memory (LSTM) models
and transformer models.

N-grams are a traditional class of language models which achieve
good performance in a variety of contexts despite their relative sim-
plicity. N-grams serve as a useful baseline against which to compare
more complex models.

LSTM language models have pushed state-of-the-art perfor-
mance in language modelling over the past decade. They are com-
plex neural networks with high computational requirements for
training.

Transformer models have recently emerged as an alternative
to LSTMs which allow faster training times due to increased paral-
lelisation of computation. Models such as GPT-2 have also produced
state-of-the-art results [57].

We aim to evaluate these three types of models on South African
languages to determine whether recent advancements improve
performance in a low-resource setting.

2 LANGUAGE MODELLING THEORY

A language model assigns a probability to a sequence of words.
Given the start of a sentence, the model tries to predict the next
word, assigning a probability to each of the words that could po-
tentially follow [17].

2.1 Language Model Definition

Formally, given a sequence of n words, W' = wy, ..., w, a language
model m assigns a probability P(W}*) to the sequence. Typically,
this is achieved using the chain rule of probability as follows:

P(W*) = P(w1)P(w2|w1)P(w3|wi, w2)...P(wn|wi, w2, ..., wn—1)
= | Pewelwf™) (1)
k=1

Here the model is assigning a probability to each word given the
previous words in the sentence. The probability of the sequence is
given by the product of the probabilities of each word.

2.2 Model Evaluation

The quality of alanguage model can be evaluated either extrinsically
or intrinsically. Extrinsic evaluation measures a model’s usefulness
in some downstream task such as speech recognition or machine
translation whereas intrinsic evaluation uses statistical measures
to assess a the model’s quality. For the purposes of our research,
we will assess language models in isolation. Thus only intrinsic
evaluation measures will be considered. The intrinsic measure most
commonly used to evaluate language models is perplexity. Below,
we give brief explanations of the concepts of entropy, cross-entropy
and their relation to perplexity.

2.2.1 Entropy. In the field of information theory, entropy is a
basic measure of information. The entropy, H, of a random variable
X with sample space S and a probability distribution function p is
given by the equation:

H(X) ==)" p(x)log, p(x))
x€S
The entropy describes the average amount of information produced
per event observed. Since the log in the above equation is in base 2,
the amount of information is measured in bits. The equation there-
fore describes the average number of bits of information produced
per observation of X [17, 61].

2.2.2 Cross-Entropy. To determine the entropy of a language,
we would need to know it’s true probability distribution which
in practice is not known. We only have a language model which
approximates the distribution. In this scenario, the cross-entropy
of the model is used. The cross-entropy of one probability distribu-
tion on another is a measure of the level of divergence of the two

distributions [23, 36]. Given a sample of text, the cross-entropy of
a model is estimated as follows:

H(W}) =~ log P(W}) ®

(17]

The more accurately the model approximates the true distri-
bution of the language, the lower the cross-entropy. It is for this
reason that perplexity, the most commonly used model evaluation
metric, is derived from cross-entropy [17].

2.2.3 Perplexity. When comparing two language models, to
determine which model is of a higher quality we compare the
perplexity of each model on a sequence of words. Perplexity is
defined as follows:

Perplexity (W/") = 2H W) (4)

The better model will have a lower perplexity [17].

Perplexity can also be interpreted as the weighted average branch-
ing factor, describing the average number of possible words which
can follow any given word, weighted by the probability the model
assigns each next word [17].

3 N-GRAM LANGUAGE MODELS

Historically, one of the most prominent types of language model
has been the n-gram. To assign a probability P(wy|wi, wa, ..., Wp—1)
that the word wy, is the next word in the sequence wy, wa, ..., Wp—1,
n-grams simplify the task using the Markov assumption [40] that
this probability can be approximated by a maximum likelihood
estimation using only the N — 1 previous words as follows:
n—1
n—1) = c(wn—N+1W”)
n—-N+1/ — n—1
C(Wn—N +1)

®)

P(wp|w

where C is the count of the occurrences of a sequence of words in the
training corpus [17, 61]. For example, a trigram (N = 3) language
model assigns the probability P(wp|wn—1, wp—2) by counting the
frequency with which these three words appear consecutively in a
training corpus. Consider the word sequence "the cat sat on the". To
assign a probability that the next word is "mat" the model counts
the frequency of the trigram "on the mat" in the training corpus
relative to the frequency of all trigrams starting with "on the". In
this example, "the cat sat on the" is termed the context and "mat"
is termed the target.

3.1 Zero-Probability N-Grams

Some n-grams may never occur in the training set due to practical
limitations on its size. This means that the model will assign some
n-grams a probability of zero. If such an n-gram appears in the test
set, the entire test set will be given a probability of zero. This is
an issue since the perplexity is then undefined due to its inverse
relation to the probability. Below we discuss techniques called
backoff, interpolation and smoothing which address this issue. In
the context of low resource languages, it is expected that small
training sets will result in many zero-probability n-grams. It is
therefore important that these techniques are explored.

3.2 Backoff and Interpolation

Consider the trigram model evaluating the probability of the word
"mat" in the earlier example. Suppose that the trigram "sat on the
mat" does not occur in the training data. We will need to make use
of lower order n-grams to estimate this probability.

3.2.1 Backoff. Continuing with this example, its probability can
be estimated using a bigram model since this may not have a zero
count. Should the bigram also have a zero-count, one could then
look to the monogram to estimate this probability. This strategy
is called backoff. The probabilities of higher order n-grams are
estimated by "backing oft" to lower order n-grams. Additionally,
when backing off, probability mass must be redistributed from
higher order n-grams to lower order n-grams. This algorithm is
known as Katz backoff [33]. Another algorithm known as Good-
Turing backoff combines Katz backoff with a smoothing algorithm
called Good-Turing smoothing [13].

3.2.2 Interpolation. One way to utilise multiple-order n-gram
models simultaneously is to perform a fixed linear interpolation
of their results. In the example above, the probability of the target
"mat" could be calculated using:

P("mat"|"the cat sat on the") =A3P("mat"|"on the")
+ A2 P("mat"|"the") (6)
+ A1P("mat")

where) ; A; = 1 so that equation 6 gives a well formed probability
distribution. The A parameters can be conditioned on the context,
for a more sophisticated interpolation [17].

3.3 Smoothing

Smoothing is used to shift probability mass from n-grams with
high probabilities to those with lower probabilities. This prevents
zero-probability n-grams and in practice typically improves the
performance of the model.

3.3.1 Laplace Smoothing. Adding one to every frequency count

such that equation 5 becomes:
n-1
Clwy o Wn) +1 "

-1
ClwyZna) +V

-1
P(W” |Wrr1!—N+1) =

prevents zero-probability n-grams since the numerator cannot be
zero. This is known as laplace or add-one smoothing [30]. In this
equation, V is the vocabulary size.

3.3.2 Add-k Smoothing. Similarly, adding k to each frequency
count can be used to adjust the level of smoothing.
-1
C(wp e Wn) +k ©

C(w;’:}\lﬂ) +kV

P(WH|WZ,1 +1) =
Increasing k increases the level of smoothing, shifting more prob-
ability mass away from higher probability n-grams and towards

lower probability n-grams [31].

3.3.3 Kneser-Ney Smoothing. A more sophisticated smoothing
algorithm called Kneser-Ney smoothing [34] was modified to the
current most commonly used and typically best performing smooth-
ing algorithm: modified Kneser-Ney smoothing [13].

4 SUB-WORD TOKENIZATION

So far we have considered language modelling at the word level;
with words being the smallest unit each language model has taken
as input and provided as output. However, there are many ways
in which text can be divided, such as into whole phrases, words,
small groups of characters or individual characters. In more general
terms, we call these atomic units tokens. In many cases it is benefi-
cial to break words into sub-word tokens and model the sequence
of these tokens instead of whole words. This process is particularly
well suited to languages in which words are commonly formed
by agglutination or compounding [60]. This makes sub-word tok-
enization particularly relevant to our research, since South African
languages typically make heavy use of agglutination.

4.1 Character-Level Modelling

One of the most straightforward approaches to breaking words
down into smaller tokens is to break them down into individual
letters and have the language model predict text character by char-
acter. This is difficult for many reasons. For example, the language
model will now need to learn to recognise and generate words.
Another reason being that the number of tokens is high, increasing
the amount of computation required to train and evaluate models
and requiring the models to learn very long-range dependencies

[4].
4.2 WordPiece

First developed for the task of segmenting text in Asian languages,
one approach is termed the WordPiece model [59]. Initially, one
token is used to represent each character. A language model is then
trained using this tokenization and it’s performance is measured.
Two tokens are then combined; the combination that gives the great-
est improvement in measured performance is selected. This step
is done by retraining and evaluating the language model for each
potential combination. This process is repeated until either a de-
sired vocabulary size is reached or until the improvement in model
performance after each combination event is small. The algorithm
is O(n?) with respect to the vocabulary size at each iteration, with
n? language models being trained. Various optimisations can be
applied such as only evaluating token combinations which appear
in the training data.

It is worth noting that the language models used in the original
implementation of this algorithm were n-grams. This algorithm
may be impractically slow if complex models such as large neural
language models are used as they are computationally expensive
to train. However, this does not preclude the use of WordPiece
tokenization as a pre-processing step before training complex lan-
guage models. A simple, computationally cheap language model
could be used to train the WordPiece model whilst a complex model
is trained with the resulting tokenization and used for the main
language modelling task.

WordPiece subword tokenization has been used in Google’s neu-
ral machine translation system [68].

4.3 Byte Pair Encoding

A data compression algorithm called Byte Pair Encoding (BPE)
finds the pairs of adjacent bytes which occur most frequently and

replaces these pairs with a single byte that is not used elsewhere
in the data [21]. This process is repeated to compress the data.
This algorithm has been successfully adapted for use in language
modelling. Starting with one token being used to represent each
character, the most frequently occurring pairs of tokens are merged
to form a new token. This process is repeated for either a predefined
number of iterations, or until a desired vocabulary size is reached
[60].

BPE has been widely adopted in language modelling and has
been used with many influential models such as the transformer
[67], ConvS2S [22], GPT [56] and GPT-2 [57].

4.4 Probabilistic Sub-Word Sampling

For any given word, there are many possible sub-word encodings.
The WordPiece and Byte Pair Encoding strategies determine a sin-
gle (ideally, the most useful) sub-word encoding for each word in
the vocabulary. However, in some cases it may be beneficial to
have multiple encodings for each word. One strategy for this is
to probabilistically sample sub-word encodings [35]. Each time a
word is encoded, it’s sub-word encoding is randomly sampled from
a distribution where encodings deemed to be more useful are given
higher probability. In the case of neural language models, word
encodings can be re-sampled on each training epoch, adding noise
to the training data and achieving a regularizing effect. This novel
form of regularization may prove useful in modeling South African
languages with limited training data.

5 NEURAL LANGUAGE MODELS

Artificial neural networks can be used in language modelling. There
are many different neural model architectures with different prop-
erties.

5.1 One-Hot Encoding

To input words into a neural network, they must first be converted
to vector representations. The most straightforward approach to
this is one-hot encoding. All words in the vocabulary V are given
an index from 0 to |V| — 1. To encode a word with index i, a vector
x of length |V] is constructed containing all zeros except x;, which
has the value 1.

5.2 Embeddings

When making a next-word prediction, the context is provided as
input to the neural network in the form of continuous vector em-
beddings of the preceding words. More formally, an embedding
matrix is applied to transform each one-hot-encoded word to a
continuous vector representation.

One of the key advantages of neural language models over n-
grams is that modeling on embeddings instead of exact words
allows neural models generalise better [8]. Word-vector embeddings
are created such that words with similar meanings have similar
embeddings. Sentences which have never been seen before can be
assigned a high probability by the model if they are constructed
from words with similar embeddings to those of words in a sentence
that existed in the training corpus.

5.3 Feed-Forward Neural Networks

One of the simplest architectures for neural language models is
the feed-forward neural network [8]. This architecture makes the
same Markov assumption as the n-gram model in that only a
limited window of the previous n words are used by the model.
One of the original proposed neural language models predicts
P(w¢|Wi-1, ..., We—n+1) using:

x = (Wetg—1, Wettg—2, ..., Well—n+1) 9
7 = softmax(b + Wo(l)x + Wo(z)tanh(d + Wyx)) (10)

b, i, ut—psts o tiy—1 € RV
x € R™
deRP
W, € RmXV
W), € thmn
W(l) c RVan
o
W(J(Z) c RVX/’I

[8] Here u; is the one-hot encoding of word w;, V is the vocabulary
size, We, Wy, Wo(l), WO(Z) , b and d are trainable parameters and g is
the predicted next word probability distribution over the vocabulary.
The hidden layer size h is an adjustable hyperparameter. Of note is
how W, is re-used to create an m dimensional vector representation
of each word. W, is a word embedding matrix where column j is a
vector representation of the word with index j in the vocabulary.

5.4 Pre-Trained Word Embeddings

Word embeddings do not necessarily need to be trained as part of the
main language model; they can alternatively be learned separately
in an unsupervised manner independently of a language modelling
task. Typically, a simple model with an objective function related
to a neural language model is trained. This model itself may not
perform a useful task, but part of the trained model is extracted and
used as pretrained word embeddings for a downstream language
modelling task. Examples of such pre-trained embeddings include
embeddings trained with continuous bag-of-words models [44],
skip-gram models [46], GloVe [53] and FastText [10].

6 RECURRENT NEURAL LANGUAGE
MODELS

Recurrent Neural Networks (RNNs) are neural network models
designed to process variable length input sequences x1, ..., x7 [19].
The sequence is processed iteratively; the hidden state h; and output
7 at timestep t are calculated using:

ht =f(UXt + Why—q +b) (11)
gt =9g(Vhe +¢) (12)

[24] Here, f and g are activation functions and weight matrices U,

V and W as well as bias vectors b and c are trainable parameters.

In the context of language models, 7 is typically a predicted next
word probability distribution over the vocabulary.

6.1 Simple RNN Language Model

A simple RNN language model can be constructed by letting x1, ..., xT
be the context word vectors, f be a sigmoid activation function, g be
a softmax activation function and length of the output vector § be
the vocabulary size [45]. The model can then be given a sequence
of words and predict a probability distribution for the next word at
each timestep.

6.1.1 Vanishing or Exploding Gradient Problem. During training,
the error signal must be backpropagated across the hidden states
at each timestep. This requires repeated multiplication of the error
signal by the same weight values which are shared across timesteps.
This causes an exponential growth or decrease of the error signal
resulting in highly unstable error signals at the earlier timesteps.
This is known as the exploding or vanishing gradient problem
and poses a challenge when attempting to train RNNs on longer
sequences [9, 52]. The error signal instability at earlier timesteps
reduces an RNN’s ability to learn long-term dependencies.

One method of dealing with this problem is gradient clipping,
where gradients with norms exceeding a given threshold are re-
scaled down to that threshold [52]. Another approach, often used
in conjunction with gradient clipping is using model architectures
designed to reduce the problem such as gated RNNs.

6.2 Gated Recurrent Neural Networks

Gated RNN architectures are designed to mitigate the vanishing
gradient problem and improve the ability of RNNs to learn long-
term dependencies by including various "gates" within the model.
These gates break the chain of multiplication that otherwise occurs
over successive timesteps through recurrent connections, by having
an additive rather than multiplicative relationship between the
contexts of successive timesteps. The successive contexts are related
by an addition operator instead of the multiplicative recurrent
connection weights of the original RNN architecture. This allows
the gradient to propagate across timesteps without exponential
decay, thereby reducing the vanishing or exploding of the gradient
[52].

Long Short-Term Memory (LSTM) models are widely used gated
RNNSs [25]. LSTMs use a system of memory cells and gate units to
achieve the gating effect described above. Another gated recurrent
architecture is the Gated Recurrent Unit (GRU) [14]. This has fewer
gates and learned parameters than the LSTM.

6.3 LSTM Language Models

LSTM-based language models show improved performance over
the original RNN language models [63]. The current state of the
art, the Mogrifier LSTM, extends LSTM models by adding a learned
"preprocessing step” for the input and the hidden state at each
timestep [42]. The hidden state is used to gate and modify the input.
Subsequently the modified input is used to gate and modify the
hidden state. This process is repeated for r rounds. The final result-
ing input and hidden state are used as input for the LSTM at the
current timestep. This model achieves state-of-the-art performance
on many benchmarks. The authors hypothesise that the lack of
broader context in word representations used with LSTM models

imposes a bottleneck on generalisation ability and that the Mo-
grifier LSTM overcomes this bottleneck by conditioning the word
representations on the hidden state of the LSTM.

6.4 Encoder-Decoder RNNs

The encoder-decoder architecture enables a model to take a variable
length sequence of tokens as input, compute a fixed-length vector
representation (an encoding) of the input and use this to generate
a variable length output sequence. A GRU model with an encoder-
decoder architecture was proposed for machine translation [14].
Building on this, a deep encoder-decoder model with stacked LSTM
layers was proposed as a language model [64]. The increase in
depth was found to improve performance.

6.4.1 Long-Term Dependencies. Despite its improved perfor-
mance, the deep LSTM model has issues with learning long-term
dependencies. For example, in the translation task, when the source
sentence is input in reverse, the performance improves [64]. This is
hypothesised to be due to the closer proximity of the first words of
the source sentence to the first words of the target sentence; thus
the number of recurrent steps through which the information must
propagate is reduced. This idea was later built on by the introduc-
tion of the attention mechanism which aims to reduce the number
of connections through which information must propagate in order
to model long-term dependencies.

6.4.2 Attention . Under the encoder-decoder framework, RNNs
are limited by the amount of information that can be stored in a
fixed length context vector. Information about words further back
in the sentence is often lost. A novel architecture called RNNSearch
extends the encoder-decoder framework by giving the decoder
direct access to the encoder’s hidden states at every timestep of the
encoding process [7]. At each timestep, the decoder takes as input
a weighted sum of the encoder hidden states. The decoder learns
to predict the distribution of these weights and is therefore said to
have learned which input timesteps to "pay attention" to at each
step of the decoding process.

7 CONVOLUTIONAL NEURAL LANGUAGE
MODELS

Widely used in the field of computer vision, is a neural architecture
called a convolutional neural network (CNN) [38]. A convolutional
layer consists of numerous filters; single feed-forward neurons with
only spatially local connections to the input layer which "slide"
over the input layer, computing an output for each position. These
filters can be conceptualised as "feature detectors” which output the
presence or absence of some feature at each position in the input
layer.

Since each filter typically has a small number of weights which
are reused at each position, a convolutional layer generally has
much fewer weights than a fully connected layer of the same size.
Thus in the context of language modelling, a CNN can be used as
an alternative to a feed-forward language model with fixed context
width [18, 22]. Convolutional layers can be used to capture larger
context windows than would be possible with fully connected layers.
One advantage of convolutional models over recurrent models is

that the computation of convolutional layers can be parallelised,
yielding faster training times.

8 TRANSFORMER LANGUAGE MODELS

Recurrent neural networks require the hidden states for each timestep
to be sequentially computed. This is a performance bottleneck for
modern hardware capable of highly parallel computing. A model ar-
chitecture called a transformer network eliminates this bottleneck
by relying entirely on attention mechanisms instead of recurrent
connections for propagating information across timesteps [67].

8.1 Model Architecture

The original transformer model is used for translation and has an
encoder-decoder structure [67]. For the task of language modelling,
only the decoder section of the architecture is used [39]. In this
section we describe the decoder-only architecture used by GPT-
2 [57]. The model uses learned embeddings of length dp,4e] to
represent each token.

8.1.1 GPT-2 Architecture. The decoder-only architecture of GPT-
2 consists of N stacked identical layers. Each layer both takes as
input and produces as output a vector of length dy,4e] for each
timestep. On a high level, the GPT-2 architecture is as follows:

HO = UW, + 5w, (13)

H = transformer_block(H(i_l))Vi € [1,N] (14)

P(u) = softmax(HNM w]) (15)
[56] where

U,P(u) € RV
s eRIxL
We c RVdeodel

WP € RLdeodel

HO gN) ¢ Rdrxdmodel

Here d; is the length of the current input, L is the maximum input
length, V is the vocabulary size, U is the input text representation
where row i is the one-hot encoding for the word at position i in
the text, S is a position matrix where row i is the one-hot encoding
for the position of word i (S can be conceptualised as the identity
matrix truncated to d; rows), W, is the word embedding matrix and
W) is the position embedding matrix, H () is the output of hidden
layer i and P(u) is the predicted next word probability distribution
over the vocabulary. W, and W), are trainable weight matrices. Each
row t of H) contains the output of hidden layer i at timestep t.
The transformer_block of each layer has the following structure:

A = per_timestep_layer norm(H) (16
AW = MultiHead(A©, A, AO) + H (17
A® - per_timestep_layer_norm(A(1)) (18

)
)
)
transformer_block(H) = feed_forward(A(z)) +A® (19)

[11] where the per_timestep_layer_norm function applies Lay-
erNorm [6] independently to each row (corresponding to each
timestep) of it’s input matrix:

per_timestep_layer_norm(X) = Concat(normj, ..., normg,)

(20)

where norm; = layer_norm(Xj)

and LayerNorm is applied to a row using:

(21)

layer_norm(x) =a © (Leam(x)) +b

Vvar(x) + e

[11] Here a,b € R9m are trainable weights which are not shared
with subsequent applications of layer_norm.
Finally, the feed_forward network is applied with:

feed_forward(X) = GELUXW) + 6w +5? (22)

X € R%Xdmodel (23)

1
Wé) & Rmoderxds (24)
Wéz) € R%*dmodel (25)
bV e réx (26)
2 ¢ Rmodcl (27)

Here Wél), Wﬂ(rz), b and b are trainable weights. These are not
shared with subsequent applications of feed_forward.

8.1.2 Attention Mechanism. The model uses an attention mech-
anism similar to that mentioned in section 6.4.2. However, instead
of a single attention being computed, a multi-headed approach is
taken. There are h attention "heads" each of which independently
learns and computes it’s own scaled dot-product attention function:

head),) W°
where head; = Attention(QWiQ, K WlK , VWiV)

MultiHead(Q, K, V) = Concat(heady, ..., 28)
28

WQ e Rdmodelek
1
K dimodel Xdg
‘/Vi € R ‘model
W'V c RdmodeIXdU
1

o € thdemodel

The input keys, queries and values are all of dimension dyy,ogel
(0.K,V € R4>*dmose) Each head h; has its own set of trained weight
matrices Wl.Q, WiK and Wl.V which transform the keys queries and
values to dimensions di, di and d, respectively before passing
them to the attention function in equation 30. Finally, the outputs
of the heads are concatenated and transformed with WO to yield
an output of dimension dyo4e], the same dimension as the input to
the multi-head attention layer.

The scaled dot product attention computation is performed
within each head as follows:

T

K
Attention(Q, K, V) = softmax(Q
k

w (29)

T

K
Attention(Q, K, V) = softmax(Q
e
Again, Q, K and V are matrices containing queries, keys and values

for each timestep, but unlike equation 28, Q,K € RA:%dk and V €
Rd,xd

W (30)

0. The function computes a weighted sum of V over each
timestep (the rows of V). The weight given to each timestep is
determined by the dot product similarity of the corresponding
key and query vectors, scaled by —=. The transformation QK

simultaneously computes the dot products of the key and query
vectors for each timestep.

8.1.3 Masking. During training, each self-attention head of the
decoder has access to the entirety of the target sentence, including
the current word being predicted and future words. This informa-
tion leak enables the model able to "cheat" and simply learn to base
it’s prediction of the current word on the current word appearing
in the training set, instead of learning to make predictions from the
context words. To prevent this, any of the values of the input to the
attention softmax which allow the model to "cheat" are set to —co
during training, thereby preserving the auto-regressive property of
the model.

8.2 Positional Encoding

Unlike RNNSs, the transformer architecture does not intrinsically
encode information about the positions of tokens in the input.
Instead, an explicit "positional encoding" is added to the embedding
of each word before its input to the network.

8.2.1 Absolute Positional Encodings . In absolute positional en-
coding schemes, for each token in the input sequence, a positional
encoding of length dp,o4e] is generated as follows:

PE (pos 2i) = $in(pos/100002/ dmodet) (31)
PE(pos 2i+1) = €05(p0s/100002/dmodet) (32)

[67] Here i is the dimension and pos is the position. The values of
dimensions with even indices i are given by equation 31 and the
values of dimensions with odd indices are given by equation 32.
A useful property of this encoding is that given any fixed offset k,
PEpos+k can be computed as a linear transformation of PEpos.

8.2.2 Relative Positional Encodings. A modification of absolute
positional encoding is introduced as a necessity for the Transformer-
XL model [16]. The recurrent nature of the model makes absolute
position encoding ineffective. Modification of the encoding as well
as the attention mechanism allows the model to learn relative offsets
when deciding which input to attend to.

8.2.3 Learned Positional Encodings. Alternatively, positional
encodings can be learned as shown in. Under this scheme, we
add the positional encodings to the word embeddings as described
in section 8.2.1, but instead of using sine and cosine functions
to generate the positional encodings, the encodings are learned
as trainable parameters as shown in equation 13 [22]. Numerous
recent variations of transformer networks use learned positional
encodings including GPT-2 as described above [56, 57].

8.3 Recent Transformer Models

8.3.1 GPT. Training a language model for some specific task
can be done in two steps. First a transformer model with a genera-
tive (next word prediction) head is trained on unlabeled text. This
first step is task agnostic. Second, a classification head is added
alongside generative head. The model is then jointly trained on a
target task using the classification head and next word prediction
using the generative head [56]. The core transformer architecture is
a variant of a decoder-only [39] architecture based on the original
transformer [67]. The model uses learned positional embeddings,
N =12 decoder layers, a hidden layer size of dg = 3072 in the feed-
forward network, dp,4e] = 768 and a context size of 512 tokens.

The generative pre-training is shown to improve performance on
the target tasks. The authors show that generative language models
implicitly learn some target tasks. For example, it is demonstrated
that a purely generative model can be used for zero-shot sentiment
analysis by simply appending the word "really” to the input text
and comparing the output probabilities of "positive" and "negative"
[56].

8.3.2 GPT-2. A subsequent strategy takes the insight that gen-
erative models must implicitly learn numerous tasks to its extreme.
A large generative model is trained on a large dataset [57]. The
dataset, called WebText, contains text extracted from 45 million
articles which had been linked to by users of Reddit, a social media
platform. Only links which had at least 3 karma (a measure of user
interest) at the time of dataset creation are included. The model
architecture, based on GPT, contains modifications to the decoder
layers and is described in section 8.1.1. Models of varying sizes
are trained; the largest being a 1.5 billion parameter model with
N = 48 layers, a hidden layer size of dg = 3072 in the feed-forward
network, djodel = 1600 and a context size of 1024 tokens.

Instead of altering and fine-tuning the model on target tasks, the
model is given natural text prompts to perform specific tasks. For
example, by appending "tl;dr:" to the input string, the model can
be made to perform text summarisation. In the dataset, an article
or paragraph is often followed by "tl;dr:" and a summary of an
article or paragraph. In order to predict the next words after "tl;dr:"
the generative model must implicitly learn text summarisation.
Similarly, the model can be made to perform question answering by
appending "A:" to the input. The authors additionally demonstrate
various other tasks that the model can be made to perform using
natural text prompts.

8.3.3 Transformer-XL. Practically, the original transformer ar-
chitecture can only be trained with a limited context size due to
computational resource requirements, making it unable to learn
dependencies with a greater temporal offset than this window. A re-
cent architecture called Transformer-XL [16] extends the maximum
offset of learned dependencies by introducing recurrent connec-
tions into the model.

While conventional RNNs process sequences one input at a time,
the Transformer-XL processes segments of multiple inputs at a
time, with recurrent connections between segments. When a new
segment is processed, the hidden states of the previous segment are
kept in memory. In the original transformer architecture, hidden
states are able to attend to the layer below them [67], but in the

Transformer-XL architecture they are also able to attend the layer
below them in the previous segment. In order for the attention
mechanism to be able to address these, the relative positional en-
coding scheme described in 8.2.2 is used. Together, the recurrent
connections and relative position encodings allow the transformer-
XL to learn longer term dependencies. Additionally, the segment
size, otherwise termed attention length, can be increased during
evaluation (without needing to retrain the model) allowing a further
increase in the effective context window of the model.

9 LOW RESOURCE LANGUAGE MODELLING

When modelling low-resource languages, techniques such as ad-
justing model architecture and training as well as using data aug-
mentation can be employed to maximise performance.

9.1 Model Optimisation and Regularisation

In a low-resource setting, a model can fit an overly complex func-
tion to the available training data, attempting to accurately describe
every data point. This means the model may fit the statistical noise
in the data instead of more meaningful patterns and fail to gen-
eralise to test data [65]. In order to prevent this, we attempt to
manage the complexity of the function that the model learns.

A model sensitive to fluctuations in the data is said to have
high variance. On the other hand, a model that is unable to learn
sufficiently from the patterns in the data is said to have high bias
[29]. Decreasing variance typically increases bias; thus a careful
balance between the bias and variance of the model must be found:
the model must have a low enough bias to adequately fit the data
whilst not having a high enough variance to overfit.

9.1.1 Model Size. The more learnable parameters a model has,
the greater its variance. Thus, one way to control the variance of a
model is by tuning the number of weights in the model. This is typ-
ically done by changing the number and sizes of the hidden layers.
A recent study compared the performance of different transformer
network depths for the translation of South African languages [66].
Another describes a strategy for automatically tuning the size of
transformer networks in the context of low-resource translation
[48].

9.1.2 Optimisation. There are also many existing gradient-descent-

based optimisation algorithms and they typically have numerous
parameters that can be tuned. This can include parameters such as
learning rate, momentum and stopping conditions [43]. Deliberate
tuning of these parameters can improve model performance.

9.1.3 Regularisation. Deep neural language models are complex
and generally have high variance making them prone to overfitting
in low-resource settings. This effect can be mitigated using various
regularisation strategies.

L1 and L2 regularisation add a loss function term to penalize
large weight values, preventing the model from being overly reliant
on any particular weight [50]. Another technique called dropout
temporarily hides a random subset of neurons during each training
step [62]. This adds noise and similarly prevents the model from
being overly reliant on any particular neuron. These techniques
are broadly applicable to neural networks and can be used in feed-
forward neural networks, RNNs and transformers [8, 43, 67].

Weight tying shares weights across layers, reducing the number
of parameters and hence reducing overfitting [27, 55]. A notable
example of this is the sharing of the word embedding matrix at
both input and output layers of GPT and GPT-2 [56, 57].

When training RNN models, the batch length of backpropagation
sequences and breakpoints between them can also be randomised
during training to provide additional noise to reduce overfitting
[43].

9.1.4 Sub-word Regularisation. Sub-word segmentation is am-
biguous. Probabilistically sampling sub-word segmentations as dis-
cussed in section 4.4 can be used as a form of regularisation. This
technique additionally constitutes a form of data augmentation and
has been shown to improve performance on translation tasks with
low-resource languages [35].

9.1.5 Normalisation. During training, the input distributions
to each layer of a neural network change as weights in the pre-
vious layers are updated. This is called covariate shift. Instability
results from weights of subsequent layers being trained on distribu-
tions which continuously shift during training. By normalising the
values passing through internal layers of neural networks, the co-
variate shift is reduced [28]. In other words: the input distributions
to intermediate layers are made more consistent. This increases
stability during training and in practice results in faster training
convergence. Additionally, modifications to the normalisation of
self-attention layers in transformer models have been shown to
improve model performance in a low-resource setting [51].

9.2 Ensemble Language Models

State-of-the-art performance is sometimes achieved using an en-
semble of different types of models. For example, the outputs of
different models may be averaged or interpolated with learned
parameters to yield a combined model with better performance
than any of the smaller models individually [3, 32]. Notably, on the
South African languages isiZulu, Xitsonga, English and Afrikaans,
an ensemble model interpolating the outputs of RNN and n-gram
models achieves improved performance over n-gram only models,
the previously best-performing model [58].

9.3 Cross-Lingual and Modelling

In some instances, information from high-resource languages can
be transferred to low-resource languages. Cross-lingual word rep-
resentations can be pre-trained using monolingual text from a
high-resource language in combination with a lexicon mapping be-
tween the high and low-resource languages [3]. These pre-trained
word representations can improve the performance of language
models trained on limited monolingual text in the low-resource
language. A similar approach is to train a single model on multiple
monolingual corpora [15, 47, 54]. Alternatively a single model can
be trained on many language pairs with parallel corpora to obtain
universal representations that can improve information transfer to
low-resource languages [5, 15, 26].

9.4 Related Work on African Languages

Comparisons of transformer and convolutional models for machine
translation of Southern African languages have recently been per-
formed. The results favoured transformer models over convolu-
tional models. The use of byte-pair encoding also yielded perfor-
mance improvements [1, 2, 41]. Their sample outputs showed that
the translation models were able to generate somewhat coherent
sentences suggesting that although training data is limited, it may
be possible to successfully perform some language modelling tasks
on South African languages.

10 CONCLUSIONS

In the past decade there has been a shift to complex neural archi-
tectures such as LSTMs, convolutional models and transformers.
Previously, n-grams were the dominant language model. N-grams’
simplicity and well studied optimisations such as backoff, interpo-
lation and smoothing algorithms make them a good baseline model
for novel language modeling tasks. LSTMs and Transformers now
achieve state-of-the-art results.

Accompanying the shift to neural models, there have been im-
provements in the input and output representations used for lan-
guage modelling. Many different sub-word tokenization schemes
have been developed as well as strategies for learning meaningful
word representations and generating pre-trained representations.

Recent models require significant computational resources and
are trained on increasingly large datasets. Many regularisation and
optimisation techniques are employed to improve model perfor-
mance. Generative pre-training has also been used to obtain current
state-of-the-art results. Furthermore, in some low-resource settings,
cross-lingual information transfer has been shown to improve lan-
guage model performance.

In light of these developments, we feel that an evaluation of n-
grams, LSTMs and transformer models on low-resource languages
will provide valuable insights as to how much low-resource lan-
guages benefit from recent advances in language modelling.

REFERENCES

[1] Jade Abbott and Laura Martinus. 2019. Benchmarking Neural Machine Trans-
lation for Southern African Languages. In Proceedings of the 2019 Workshop on
Widening Natural Language Processing. Association for Computational Linguis-
tics, Florence, Italy, 98-101.

[2] Jade Z Abbott and Laura Martinus. 2018. Towards neural machine translation
for African languages. Neural Information Processing Systems 2018 Workshop on
Machine Learning for the Developing World (2018).

[3] Oliver Adams, Adam Makarucha, Graham Neubig, Steven Bird, and Trevor Cohn.

2017. Cross-Lingual Word Embeddings for Low-Resource Language Modeling.

In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 1, Long Papers. Association for Computa-

tional Linguistics, Valencia, Spain, 937-947. https://www.aclweb.org/anthology/

E17-1088

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. 2019.

Character-level language modeling with deeper self-attention. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 33. 3159-3166.

[5] Mikel Artetxe and Holger Schwenk. 2019. Massively Multilingual Sentence
Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond. Transactions of
the Association for Computational Linguistics 7, 0 (2019), 597-610. https://transacl.
org/index.php/tacl/article/view/1742

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural ma-

chine translation by jointly learning to align and translate. In 3rd International

Conference on Learning Representations, ICLR 2015.

4

[7

https://www.aclweb.org/anthology/E17-1088
https://www.aclweb.org/anthology/E17-1088
https://transacl.org/index.php/tacl/article/view/1742
https://transacl.org/index.php/tacl/article/view/1742

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A

[9

[10

[11

[12

[13

[14

(15

[16

(7

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

]

]
]

]

]

]
]

]

]

]

]

]

]

neural probabilistic language model. Journal of machine learning research 3, Feb
(2003), 1137-1155.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994),
157-166.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135-146. https://doi.org/10.1162/tacl_a_
00051

Jan Buys. 2020. The GPT-2 Transformer. (2020). work in progress.

Catherine Chavula and Hussein Suleman. 2016. Assessing the Impact of Vo-
cabulary Similarity on Multilingual Information Retrieval for Bantu Languages.
In Proceedings of the 8th Annual Meeting of the Forum on Information Retrieval
Evaluation (FIRE ’16). Association for Computing Machinery, New York, NY, USA,
16-23. https://doi.org/10.1145/3015157.3015160

Stanley F Chen and Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech & Language 13, 4 (1999),
359-394.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724-1734.

Alexis Conneau and Guillaume Lample. 2019. Cross-lingual Language Model
Pretraining. In Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (Eds.). Curran Associates, Inc., 7059-7069. http://papers.nips.cc/paper/
8928-cross-lingual-language-model-pretraining.pdf

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 2978-2988. https://doi.org/10.18653/v1/P19-1285

Jurafsky Daniel and James H Martin. 2019. N-gram Language Models. In Speech
and Language Processing (3 ed.). Chapter 3.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Lan-
guage Modeling with Gated Convolutional Networks. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70 (ICML’17). JMLR.org,
933-941.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179-211.

Alexander Franz and Brian Milch. 2002. Searching the Web by Voice. In Pro-
ceedings of the 19th International Conference on Computational Linguistics -
Volume 2 (COLING ’02). Association for Computational Linguistics, USA, 1-5.
https://doi.org/10.3115/1071884.1071887

Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2
(1994), 23-38.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 1243-1252.
1. J. Good. 1956. Some Terminology and Notation in Information Theory. Pro-
ceedings of the IEE - Part C: Monographs 103, 3 (1956), 200-204.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Sequence Modelling:
Recurrent and Recursive Nets. In Deep Learning. MIT Press, Chapter 10, 374.
http://www.deeplearningbook.org/contents/rnn.html

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin
Jiang, and Ming Zhou. 2019. Unicoder: A Universal Language Encoder by Pre-
training with Multiple Cross-lingual Tasks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics, Hong Kong, China, 2485-2494. https:
//doi.org/10.18653/v1/D19-1252

Hakan Inan, Khashayar Khosravi, and Richard Socher. 2016. Tying word vectors
and word classifiers: A loss framework for language modeling. arXiv preprint
arXiv:1611.01462 (2016).

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille,
France, 448-456. http://proceedings.mlr.press/v37/ioffe15.html

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. The
Bias-Variance Trade-Off. In An introduction to statistical learning. Vol. 112.
Springer, Chapter 2.2.2, 33-42.

Harold Jeffreys. 1948. Section 3.23. In Theory of Probability (2 ed.). Clarendon
Press, Oxford.

(31]

[32

[33

[34

[36

(37]

[39

[40]

(41

[42

"~
&

[44

[45

[46

[47

[49

[50

[51

W. E. Johnson. 1932. Probability: The Deductive and Inductive Problems (appen-
dix). Mind 41, 164 (1932), 409-423.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the Limits of Language Modeling. CoRR abs/1602.02410 (2016).
arXiv:1602.02410

Slava Katz. 1987. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE transactions on acoustics, speech,
and signal processing 35, 3 (1987), 400-401.

Reinhard Kneser and Hermann Ney. 1995. Improved backing-off for M-gram
language modeling. In ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, Vol. 1. IEEE, 181-184. https://doi.org/10.1109/
icassp.1995.479394

Taku Kudo. 2018. Subword Regularization: Improving Neural Network Trans-
lation Models with Multiple Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Melbourne, Australia, 66-75.
https://doi.org/10.18653/v1/P18-1007

S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Mathematical Statistics 22, 1 (1951), 79-86.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing. In
Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48 (ICML’16). JMLR.org, 1378-1387.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. 1990. Handwritten digit
recognition with a back-propagation network. In Advances in neural information
processing systems. 396—404.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. 2018. Generating Wikipedia by Summarizing Long
Sequences. In International Conference on Learning Representations.

A. A. Markov. 1913. Essai d’une recherche statistique sur le texte du roman
“Eugene Onegin” illustrant la liaison des epreuve en chain (‘Example of a statistical
investigation of the text of “Eugene Onegin" illustrating the dependence between
samples in chain’). Izvistia Imperatorskoi Akademii Nauk (Bulletin de I’Académie
Impériale des Sciences de St.-Pétersbourg) 7 (1913), 153-162. English translation
by Morris Halle, 1956.

Laura Martinus and Jade Z Abbott. 2019. A Focus on Neural Machine Translation
for African Languages. arXiv preprint arXiv:1906.05685 (2019).

Gabor Melis, Tomas Ko¢isky, and Phil Blunsom. 2020. Mogrifier LSTM. In Inter-
national Conference on Learning Representations.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing
and Optimizing LSTM Language Models. In International Conference on Learning
Representations.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. (2013).

Tomas Mikolov, Martin Karafiat, Luk4s Burget, Jan Cernocky, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association. https:
//www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems 26, C.]. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
3111-3119.

Phoebe Mulcaire, Jungo Kasai, and Noah A. Smith. 2019. Polyglot Contextual
Representations Improve Crosslingual Transfer. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 3912-3918.
https://doi.org/10.18653/v1/N19-1392

Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen, Walter Scheirer, and David
Chiang. 2019. Auto-Sizing the Transformer Network: Improving Speed, Efficiency,
and Performance for Low-Resource Machine Translation. In Proceedings of the 3rd
Workshop on Neural Generation and Translation. Association for Computational
Linguistics, Hong Kong, 231-240. https://doi.org/10.18653/v1/D19-5625

B. Ndaba, H. Suleman, C. M. Keet, and L. Khumalo. 2016. The effects of a corpus
on isiZulu spellcheckers based on N-grams. In 2016 IST-Africa Week Conference.
1-10.

Andrew Y. Ng. 2004. Feature Selection, L1 vs. L2 Regularization, and Rotational
Invariance. In Proceedings of the Twenty-First International Conference on Machine
Learning (ICML °04). Association for Computing Machinery, New York, NY, USA,
78. https://doi.org/10.1145/1015330.1015435

Toan Q Nguyen and Julian Salazar. 2019. Transformers without tears: Improving
the normalization of self-attention. International Workshop on Spoken Language
Translation (2019).

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1145/3015157.3015160
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.3115/1071884.1071887
http://www.deeplearningbook.org/contents/rnn.html
https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D19-1252
http://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1602.02410
https://doi.org/10.1109/icassp.1995.479394
https://doi.org/10.1109/icassp.1995.479394
https://doi.org/10.18653/v1/P18-1007
https://www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
https://www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
https://doi.org/10.18653/v1/N19-1392
https://doi.org/10.18653/v1/D19-5625
https://doi.org/10.1145/1015330.1015435

[52] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International conference on machine
learning. 1310-1318.

[53] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.

[54] Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multi-
lingual BERT?. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence,
Ttaly, 4996-5001. https://doi.org/10.18653/v1/P19-1493

[55] Ofir Press and Lior Wolf. 2017. Using the Output Embedding to Improve Language
Models. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers. 157-163.

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training.
(2018). https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/
language-unsupervised/language_understanding_paper.pdf

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners.
(2019). https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf

[58] Alessandro Scarcella. 2018. Recurrent neural network language models in the
context of under-resourced South African languages. Ph.D. Dissertation. University
of Cape Town.

[59] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search.
In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, Kyoto, Japan, 5149-5152.

[60] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine

Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715-1725.

[61] C.E. Shannon. 1948. A Mathematical Theory of Communication. Bell System
Technical Journal 27, 3 (jul 1948), 379-423. https://doi.org/10.1002/].1538-7305.
1948.tb01338.x

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. 2012. LSTM neural net-

works for language modeling. In Thirteenth annual conference of the international

speech communication association.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger (Eds.). Curran Associates, Inc., 3104-3112.

[65] Igor V Tetko, David J Livingstone, and Alexander I Luik. 1995. Neural network

studies. 1. Comparison of overfitting and overtraining. Journal of chemical

information and computer sciences 35, 5 (1995), 826-833.

Elan van Biljon, Arnu Pretorius, and Julia Kreutzer. 2020. On optimal transformer

depth for low-resource language translation. In AfricaNLP Workshop 2020.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30, I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett (Eds.). Curran Associates, Inc., 5998-6008. http://papers.nips.cc/paper/

7181-attention-is-all-you-need.pdf

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,

Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s

Neural Machine Translation System: Bridging the Gap between Human and

Machine Translation. CoRR abs/1609.08144 (2016). http://arxiv.org/abs/1609.

08144

[63

[66

[68

https://doi.org/10.18653/v1/P19-1493
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

	Abstract
	1 Introduction
	2 Language Modelling Theory
	2.1 Language Model Definition
	2.2 Model Evaluation

	3 N-Gram Language Models
	3.1 Zero-Probability N-Grams
	3.2 Backoff and Interpolation
	3.3 Smoothing

	4 Sub-word Tokenization
	4.1 Character-Level Modelling
	4.2 WordPiece
	4.3 Byte Pair Encoding
	4.4 Probabilistic Sub-Word Sampling

	5 Neural Language Models
	5.1 One-Hot Encoding
	5.2 Embeddings
	5.3 Feed-Forward Neural Networks
	5.4 Pre-Trained Word Embeddings

	6 Recurrent Neural Language Models
	6.1 Simple RNN Language Model
	6.2 Gated Recurrent Neural Networks
	6.3 LSTM Language Models
	6.4 Encoder-Decoder RNNs

	7 Convolutional Neural Language Models
	8 Transformer Language Models
	8.1 Model Architecture
	8.2 Positional Encoding
	8.3 Recent Transformer Models

	9 Low Resource Language Modelling
	9.1 Model Optimisation and Regularisation
	9.2 Ensemble Language Models
	9.3 Cross-Lingual and Modelling
	9.4 Related Work on African Languages

	10 Conclusions
	References

