

CS/IT Honours

Final Paper 2020

Title:

Multilingual Transformer Models for Low-Resource South

African Languages

Author: Stuart Mesham

Project Abbreviation: LOW-LM

Supervisor(s): Jan Buys

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 20 10

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER SCIENCE

Multilingual Transformer Language Models for Low-Resource
South African Languages

Stuart Mesham
University of Cape Town
Cape Town, South Africa
stuart.mesham@gmail.com

ABSTRACT
Recent advances in language modelling have been achieved with
large models trained on high quality datasets consisting of billions
of words. However, most South African languages have limited
available data. We aim to determine whether the performance of
transformer language models on South African languages can be
improved by utilising data from multiple related languages. We
train baseline monolingual models on isiZulu and Sepedi text as
well as multilingual models using data from related languages. Fur-
thermore we evaluate the effectiveness of adding language specific
weights to multilingual models. We find that multilingual mod-
els successfully improve on the performance of the monolingual
models for both languages while the addition of language specific
weights to multilingual models does not improve performance.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Machine trans-
lation; • Information systems→ Language models.

KEYWORDS
languagemodelling, neural networks, low-resource languages, Trans-
former

1 INTRODUCTION
Language modelling has applications in many areas such as ma-
chine translation, information retrieval, voice recognition and ques-
tion answering [11, 16, 26, 35, 53]. Improvements in language mod-
elling result in improved performance in the above tasks, making
language modelling a valuable area of study. High resource lan-
guages have enjoyed substantial improvements in language mod-
elling performance in recent years due to large neural models such
as OpenAI’s GPT-2 [43]. However, South African languages are low-
resource and the limited availability of high-quality training data
makes training large South African language models challenging.

South African languages constitute large families of closely re-
lated languages, with at least some resources available in each of the
languages (see Table 2). Currently, the two families with the largest
amount of quality text available are the Nguni and Sotho-Tswana
families. Within the Nguni and Sotho-Tswana families, isiZulu and
Sepedi are the languages with the largest amounts of text respec-
tively. Thus, these two languages are ideal candidates for this study.
To fully utilise the available data, we make use of transfer learning.

We aim to address this problem by training multilingual models
on multiple related languages simultaneously. Training on multiple
related languages increases the amount of data available to the
model and has a regularizing effect on training [36]. This reduces

overfitting, making it possible to train larger models for a given
target language.

Since the languages are related but not identical, we hypothesise
that it will be advantageous to use some language-specific weights
in combination with weights shared across languages. This enables
the model to learn both language-specific and generally applicable
representations [12]. We evaluate three strategies to jointly learn
language-specific and shared weights.

1.1 Contributions
Broadly, we evaluate three main strategies for modelling South
African languages with transformer models:

(1) We train optimised and regularised isiZulu and Sepedimono-
lingual language models.

(2) We train improved isiZulu and Sepedi models by simply
concatenating training data from related languages and
using a multilingual learning objective.

(3) We train isiZulu models on multilingual data with combina-
tions of language-specific and shared weights. Specifi-
cally, we evaluate using a modification of Soft-Decoupled
Encodings [52] (SDEs) for multilingual input representation
(Section 2.11) and using language-specific attention layers
while sharing all other weights across languages.

We demonstrate that multilingual modelling techniques success-
fully improve performance over monolingual models and that the
relatedness of languages used in training affects the performance.
Furthermore, we investigate the effects of each of the individual
components of our modified SDEs.

1.2 Overview
We start with Section 2 where we describe fundamental concepts
in language modelling and neural language models relevant to our
study and summarise existing work on South African language
modelling in section 3. Section 4 details the procedures carried out.
We report the results in Section 5 and discuss their implications and
possible future work in section 6, before concluding in section 7.

2 LITERATURE REVIEW
A language model assigns a probability to a sequence of words.
Given the start of a sentence, the model tries to predict the next
word, assigning a probability to each of the words that could po-
tentially follow [13].

2.1 Language Model Definition
Formally, given a sequence of 𝑛 words,𝑊 𝑛

1 = 𝑤1, ...,𝑤𝑛 a language
model𝑚 assigns a probability 𝑃 (𝑊 𝑛

1) to the sequence. Typically,

Multilingual Transformer Language Models for Low-Resource South African Languages

this is achieved using the chain rule of probability as follows:

𝑃 (𝑊 𝑛
1) = 𝑃 (𝑤1)𝑃 (𝑤2 |𝑤1)𝑃 (𝑤3 |𝑤1,𝑤2)...𝑃 (𝑤𝑛 |𝑤1,𝑤2, ...,𝑤𝑛−1)

=

𝑛∏
𝑘=1

𝑃 (𝑤𝑘 |𝑊 𝑘−1
1). (1)

Here the model is assigning a probability to each word given the
previous words in the sentence. The probability of the sequence is
given by the product of the probabilities of each word.

2.2 Model Evaluation
The quality of a languagemodel can be evaluated either extrinsically
or intrinsically. Extrinsic evaluation measures a model’s usefulness
in some downstream task such as speech recognition or machine
translation whereas intrinsic evaluation uses statistical measures to
assess a model’s quality. For the purposes of our research, we will
assess language models in isolation. Thus only intrinsic evaluation
measures will be considered. The intrinsic measure most commonly
used to evaluate language models is perplexity. Below, we give brief
explanations of the concepts of entropy, cross-entropy and their
relation to perplexity.

2.2.1 Entropy. In the field of information theory, entropy is a basic
measure of information. The entropy, 𝐻 , of a random variable 𝑋
with sample space 𝑆 and a probability distribution function 𝑝 is
given by the equation:

𝐻 (𝑋) = −
∑
𝑥 ∈𝑆

𝑝 (𝑥) log2 𝑝 (𝑥) . (2)

The entropy describes the average amount of information produced
per event observed. Since the log in the above equation is in base 2,
the amount of information is measured in bits. The equation there-
fore describes the average number of bits of information produced
per observation of 𝑋 [13, 46].

2.2.2 Cross-Entropy. To determine the entropy of a language, we
would need to know its true probability distribution which in prac-
tice is not known. We only have a language model which approx-
imates the distribution. In this scenario, the cross-entropy of the
model is used. The cross-entropy of one probability distribution on
another is a measure of the level of divergence of the two distribu-
tions [18, 25]. Given a sample of text, the cross-entropy of a model
is estimated as

𝐻 (𝑊 𝑛
1) = − 1

𝑛
log2 𝑃 (𝑊 𝑛

1) (3)

with the units of information again being bits due to the log being
base 2 [13]. The more accurately the model approximates the true
distribution of the language, the lower the cross-entropy.

2.2.3 Bits Per Character. Since we are studying open-vocabulary
models, we want the choice of tokenization to be a modelling choice.
This necessitates an evaluation metric which is independent of the
tokenization. To illustrate the need for such a metric, consider
the effects of manipulating the byte-pair encoding (Section 2.3)
vocabulary size used by amodel. One of the effects of increasing this
vocabulary size is that the average number of characters per token
is increased due to more token join operations being carried out.
This increases the amount of information produced by each token.
Cross-entropy measured in bits per token is therefore not a fair

metric by which to compare models using different tokenizations
since some may have larger tokens than others. Instead, the metric
we will be using to evaluate and compare models in this study is bits
per character (BPC). This is a measure of cross-entropy which is
normalised for the length of the tokens and is therefore independent
of the tokenization of the text. To calculate BPC of a model on a
test set𝑊 𝑛

1 we use

BPC =
𝑛

𝑐
𝐻 (𝑊 𝑛

1) (4)

where 𝐻 (𝑊 𝑛
1) is the cross-entropy as defined in equation 3,𝑊 𝑛

1 is
sequence of 𝑛 tokens and 𝑐 is the number of characters in𝑊 𝑛

1 .

2.3 Sub-word Tokenization
South African languages are highly agglutinative, making whole-
word tokenization sub-optimal for language modelling due to po-
tentially large vocabulary sizes and subsequent data sparsity. By
contrast, character-level tokenization requires the model to learn
long sequences of tokens. To better represent the structure of the
languages, we use byte-pair encoding to break words into common
sub-word units.

Byte-pair encoding is a compression algorithm [17] which has
been adapted for sub-word tokenization. The algorithm starts with
character-level tokens and finds pairs of adjacent tokens which
occur most frequently. These token pairs are replaced with single
tokens containing the concatenation of the characters in each token.
This process is repeated until a desired vocabulary size is reached
[45].

2.4 Neural Language Models
In recent years, neural language models have achieved state-of-
the-art results on many language modelling benchmarks. In this
section, we describe the key elements of these models.

2.4.1 One-Hot Encoding. To input tokens into a neural network,
they must first be converted to vector representations. The most
straightforward approach to this is one-hot encoding. All tokens in
the vocabulary 𝑉 are given an index from 0 to |𝑉 | − 1. To encode a
token with index 𝑖 , a vector 𝑥 of length |𝑉 | is constructed containing
all zeros except 𝑥𝑖 , which has the value 1.

2.4.2 Embeddings. When making a next-word prediction, the con-
text is provided as input to the neural network in the form of con-
tinuous vector embeddings of the preceding words. More formally,
an embedding matrix is applied to transform each one-hot-encoded
word to a continuous vector representation. Due to the construc-
tion of the one-hot encoding, this is equivalent to a lookup of the
column of the embedding matrix with the index corresponding to
the word being embedded.

One of the key advantages of neural language models over n-
grams is that modelling on embeddings instead of exact words
allows neural models to generalise better [8]. Word-vector em-
beddings are created such that words with similar meanings have
similar embeddings [32]. Sentences which have never been seen
before can be assigned a high probability by the model if they are
constructed from words with similar embeddings to those of words
in a sentence that existed in the training corpus. We have discussed
continuous vector embeddings for word-level models to make their

Stuart Mesham

advantages more intuitively understood. Vector embeddings of sub-
word tokens yield the same advantage; sub-word units may have
semantic relationships which can be captured by neural models.

The architecture used by transformer language models does
not intrinsically represent positional information about the tokens.
Therefore, to enable the model to make use of the ordering of the
input tokens we must explicitly encode the positions of the tokens
as part of the input. The GPT-2 architecture we use in this study uses
learned positional embeddings. Similarly to the token embeddings,
a one-hot encoding of the position id of a token (typically its index
in the input sequence) is transformed using a learned embedding
matrix. This is shown explicitly in equation 9.

2.5 Feed-Forward Neural Networks
One of the simplest architectures for neural language models is the
feed-forward neural network [8]. This architecture makes the same
Markov assumption as the n-gram model in that only a limited
window of the previous 𝑛 words are used by the model. One of the
original neural language models proposed by Bengio et al. predicts
𝑃 (𝑤𝑡 |𝑤𝑡−1, ...,𝑤𝑡−𝑛+1) using

𝑥 = (𝑊𝑒𝑢𝑡−1,𝑊𝑒𝑢𝑡−2, ...,𝑊𝑒𝑢𝑡−𝑛+1) (5)

𝑦 = softmax(𝑏 +𝑊 (1)
𝑜 𝑥 +𝑊 (2)

𝑜 tanh(𝑑 +𝑊ℎ𝑥)) (6)

where𝑢𝑖 ∈ R |𝑉 | is the one-hot encoding of word𝑤𝑖 , V is the vocabu-
lary,𝑊𝑒 ∈ R𝑚×|𝑉 | ,𝑊ℎ ∈ Rℎ×𝑚𝑛 ,𝑊 (1)

𝑜 ∈ R |𝑉 |×𝑚𝑛 ,𝑊 (2)
𝑜 ∈ R |𝑉 |×ℎ ,

𝑏 ∈ R |𝑉 | and 𝑑 ∈ R |𝑉 | are trainable parameters and 𝑦 ∈ R |𝑉 | is the
predicted next word probability distribution over the vocabulary.
The hidden layer size ℎ is an adjustable hyper-parameter. Of note is
how𝑊𝑒 is re-used to create an𝑚 dimensional vector representation
of each word.𝑊𝑒 is a word embedding matrix where column 𝑗 is a
vector representation of the word with index 𝑗 in the vocabulary.
Note that the skip connection using𝑊 (1)

𝑜 may be omitted in more
recent neural feed-forward models.

2.6 Recurrent Neural Language Models
Recurrent Neural Networks (RNNs) are neural network models
designed to process variable length input sequences 𝑥1, ..., 𝑥𝑇 [15].
The sequence is processed iteratively; the hidden stateℎ𝑡 and output
𝑦𝑡 at timestep 𝑡 are calculated using

ℎ𝑡 = 𝑓 (𝑈𝑥𝑡 +𝑊ℎ𝑡−1 + 𝑏) (7)
𝑦𝑡 = 𝑔(𝑉ℎ𝑡 + 𝑐) (8)

where function 𝑓 is a sigmoid activation funcation and𝑔 is a softmax
activation function [19]. Weight matrices𝑈 ,𝑉 and𝑊 as well as bias
vectors 𝑏 and 𝑐 are trainable parameters. In the context of language
models, 𝑦 is typically a predicted next word probability distribution
over the vocabulary [31].

2.6.1 Vanishing and Exploding Gradients. During training, the er-
ror signal must be backpropagated across the hidden states at each
timestep. This requires repeated multiplication of the error signal
by the same weight values which are shared across timesteps. This
causes an exponential growth or decrease of the error signal result-
ing in highly unstable error signals at the earlier timesteps. This is
known as the exploding or vanishing gradient problem and poses

a challenge when attempting to train RNNs on longer sequences
[9, 39]. The error signal instability at earlier timesteps reduces an
RNN’s ability to learn long-term dependencies.

One method of dealing with this problem is gradient clipping,
where gradients with norms exceeding a given threshold are re-
scaled down to that threshold [39]. Another approach, often used
in conjunction with gradient clipping is using model architectures
designed to reduce the problem such as gated RNNs.

2.6.2 LSTMs. Gated RNN architectures are designed to mitigate
the vanishing gradient problem and improve the ability of RNNs to
learn long-term dependencies by including various "gates" within
the model. These gates break the chain of multiplication that other-
wise occurs over successive timesteps through recurrent connec-
tions, by having an additive rather than amultiplicative relationship
between the contexts of successive timesteps. The successive con-
texts are related by an addition operator instead of themultiplicative
recurrent connection weights of the original RNN architecture. This
allows the gradient to propagate across timesteps without expo-
nential decay, thereby reducing the vanishing or exploding of the
gradient [39].

Long Short-Term Memory (LSTM) models are widely used gated
RNNs [20]. LSTMs use a system of memory cells and gate units
to achieve the gating effect described above. In practice, LSTMs
significantly improve language modelling performance over vanilla
RNNs [48].

2.7 Transformer Language Models
Recurrent neural networks require the hidden states for each timestep
to be sequentially computed. This is a performance bottleneck for
modern hardware capable of highly parallel computing. A model ar-
chitecture called a transformer network eliminates this bottleneck
by relying entirely on attention mechanisms [6] instead of recur-
rent connections for propagating information across timesteps [51].
Attention mechanisms take all input embeddings for a sequence
simultaneously and selectively weight certain features based on a
learned function.

The original transformer model is used for translation and has an
encoder-decoder structure [51]. For the task of language modelling,
only the decoder section of the architecture is used [27]. In this
section, we describe the decoder-only architecture used by GPT-
2 [43]. The model uses learned embeddings of length 𝑑model to
represent each token.

The decoder-only architecture of GPT-2 consists of 𝑁 stacked
identical layers. Each layer both takes as input and produces as
output a vector of length 𝑑model for each timestep. On a high level,
the GPT-2 architecture is

𝐻 (0) = 𝑈𝑊𝑒 + 𝑆𝑊𝑝 (9)

𝐻 (𝑖) = transformer_block(𝐻 (𝑖−1))∀𝑖 ∈ [1, 𝑁] (10)

𝑃 (𝑢) = softmax(𝐻 (𝑁)𝑊𝑇
𝑒) (11)

where 𝑑𝑡 is the length of the current input, 𝐿 is the maximum input
length, |𝑉 | is the vocabulary size, 𝑈 ∈ Z𝑑𝑡×|𝑉 | is the input text
representation where row 𝑖 is the one-hot encoding for the word at
position 𝑖 in the text, 𝑆 ∈ R𝑑𝑡×𝐿 is a position matrix where row 𝑖 is

Multilingual Transformer Language Models for Low-Resource South African Languages

the one-hot encoding for the position of word 𝑖 (𝑆 can be conceptu-
alised as the identity matrix truncated to 𝑑𝑡 rows),𝑊𝑒 ∈ R |𝑉 |×𝑑model

is the word embedding matrix and𝑊𝑝 ∈ R𝐿×𝑑model is the position
embedding matrix, 𝐻 (𝑖) ∈ R𝑑𝑡×𝑑model is the output of hidden layer 𝑖
and 𝑃 (𝑢) ∈ R𝑑𝑡×|𝑉 | is the predicted next word probability distribu-
tion over the vocabulary.𝑊𝑒 and𝑊𝑝 are trainable weight matrices.
Each row 𝑡 of 𝐻 (𝑖) contains the output of hidden layer 𝑖 at timestep
𝑡 .

The structure within transformer_block [10] is

𝐴(0) = per_timestep_layer_norm(𝐻) (12)

𝐴(1) = MultiHead(𝐴(0) , 𝐴(0) , 𝐴(0)) + 𝐻 (13)

𝐴(2) = per_timestep_layer_norm(𝐴(1)) (14)

transformer_block(𝐻) = feed_forward(𝐴(2)) +𝐴(2) (15)

where the per_timestep_layer_norm function applies LayerNorm
[5] independently to each row (corresponding to each timestep) of
its input matrix using
per_timestep_layer_norm(𝑋) = Concat(norm1, ..., norm𝑑𝑡)

where norm𝑖 = layer_norm(𝑋𝑖∗) .
(16)

LayerNorm is applied to a row using

layer_norm(𝑥) = 𝑎 ⊙
(
𝑥 −mean(𝑥)√
var(𝑥) + 𝜖

)
+ 𝑏 (17)

where 𝑎, 𝑏 ∈ R𝑑𝑚 are trainable weights which are not shared with
subsequent applications of layer_norm [10]. Finally, the feed_forward
network is applied using

feed_forward(𝑋) = GELU(𝑋𝑊 (1)
ff + 𝑏 (1))𝑊 (2)

ff + 𝑏 (2) (18)

where𝑊 (1)
ff ∈ R𝑑model×𝑑ff ,𝑊 (2)

ff ∈ R𝑑ff×𝑑model , 𝑏 (1) ∈ R𝑑ff and 𝑏 (2) ∈
R𝑑model are trainable weights and 𝑋 ∈ R𝑑𝑡×𝑑model . These are not
shared with subsequent applications of feed_forward.

Transformer models use a multi-head attention mechanism, in
which ℎ independent attention heads learn a scaled dot-product
attention function

MultiHead(𝑄,𝐾,𝑉) = Concat(head1, ..., headℎ)𝑊𝑂

where head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖)

(19)

where 𝑄,𝐾,𝑉 ∈ R𝑑𝑡×𝑑modeland 𝑄 is the query matrix, 𝐾 is the key
matrix and 𝑉 is the value matrix. The𝑊𝑄

𝑖
∈ R𝑑model×𝑑𝑘 ,𝑊𝐾

𝑖
∈

R𝑑model×𝑑𝑘 and𝑊𝑉
𝑖

∈ R𝑑model×𝑑𝑣 matrices are trainable parameters
specific to head 𝑖 . These matrices are applied to input keys, queries
and values to produce outputs of dimensions𝑊𝑄

𝑖
,𝑊𝐾

𝑖
and𝑊𝑉

𝑖
respectively. The results of these transformations are supplied as
input to the attention function (equation 20) . The learned weight
matrix𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑model is applied to the concatenation of the
output of each head to obtain the output of the multi-head attention
function.

where the input keys, queries and values are all of dimension
𝑑model (𝑄,𝐾,𝑉 ∈ R𝑑𝑡×𝑑model). Each head ℎ𝑖 has its own set of
trained weight matrices𝑊𝑄

𝑖
∈ R𝑑model×𝑑𝑘 ,𝑊𝐾

𝑖
∈ R𝑑model×𝑑𝑘 and

𝑊𝑉
𝑖

∈ R𝑑model×𝑑𝑣 which transform the keys queries and values to
dimensions 𝑑𝑘 , 𝑑𝑘 and 𝑑𝑣 respectively before passing them to the
attention function in equation 20. Finally, the outputs of the heads
are concatenated and transformed with𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑model to yield
an output of dimension 𝑑model, the same dimension as the input to
the multi-head attention layer.

Scaled dot product attention is calculated using

Attention(𝑄,𝐾,𝑉) = softmax(𝑄𝐾
𝑇√
𝑑𝑘

)𝑉 (20)

where,𝑄 , 𝐾 and𝑉 are matrices containing queries, keys and values
for each timestep, but unlike equation 19, 𝑄,𝐾 ∈ R𝑑𝑡×𝑑𝑘 and 𝑉 ∈
R𝑑𝑡×𝑑𝑣 . The function computes a weighted sum of 𝑉 over each
timestep (the rows of 𝑉). The weight given to each timestep is
determined by the dot product similarity of the corresponding
key and query vectors, scaled by 1√

𝑑𝑘
. The transformation 𝑄𝐾𝑇

simultaneously computes the dot products of the key and query
vectors for each timestep.

During training, each self-attention head of the decoder has ac-
cess to the entirety of the target sentence, including the current
word being predicted and future words. This information leak en-
ables themodel able to "cheat" and simply learn to base its prediction
of the current word on the current word appearing in the training
set, instead of learning to make predictions from the context words.
To prevent this, any of the values of the input to the attention
softmax which allow the model to "cheat" are set to −∞ during
training, thereby preserving the auto-regressive property of the
model. Specifically, if we let 𝑇 =

𝑄𝐾𝑇

√
𝑑𝑘

, each element 𝑇𝑖 𝑗 =
𝑄𝑖∗ ·𝐾𝑗∗√

𝑑𝑘
.

Since each row 𝑄𝑟∗ and 𝐾𝑟∗ contains information from timestep 𝑟 ,
𝑇𝑖 𝑗 contains information from timesteps 𝑖 and 𝑗 . When calculating
the attention at timestep 𝑡 , the values𝑇𝑖 𝑗 contain illegal information
where 𝑖 > 𝑡 or 𝑗 > 𝑡 and are therefore masked with a value of −∞
resulting in a value of 0 at the illegal positions once the softmax
function has been applied.

2.8 Model Optimisation and Regularisation
In a low-resource setting, a model can fit an overly complex func-
tion to the available training data, attempting to accurately describe
every data point. This means the model may fit the statistical noise
in the data instead of more meaningful patterns and fail to gener-
alise to test data [49]. To prevent this, we attempt to manage the
complexity of the function that the model learns.

A model sensitive to fluctuations in the data is said to have
high variance. On the other hand, a model that is unable to learn
sufficiently from the patterns in the data is said to have high bias
[24]. Decreasing variance typically increases bias; thus a careful
balance between the bias and variance of the model must be found:
the model must have a low enough bias to adequately fit the data
whilst not having a high enough variance to overfit.

2.8.1 Model Size. The more learnable parameters a model has, the
greater its variance. Thus, one way to control the variance of a
model is by tuning the number of weights in the model. This is typ-
ically done by changing the number and sizes of the hidden layers.
A recent study compared the performance of different transformer
network depths for the translation of South African languages [50].

Stuart Mesham

Another describes a strategy for automatically tuning the size of
transformer networks in the context of low-resource translation
[34].

2.8.2 Optimisation. There are also many existing gradient-descent-
based optimisation algorithms and they typically have numerous
parameters that can be tuned. This can include parameters such as
learning rate, momentum and stopping conditions [30]. Deliberate
tuning of these parameters can improve model performance.

2.8.3 Regularisation. Deep neural language models are complex
and generally have high variance making them prone to overfitting
in low-resource settings. This effect can be mitigated using various
regularisation strategies.

L1 and L2 regularisation add a loss function term to penalize
large weight values, preventing the model from being overly reliant
on any particular weight [37]. Another technique called dropout
temporarily hides a random subset of neurons during each training
step [47]. This adds noise and similarly prevents the model from
being overly reliant on any particular neuron. These techniques
are broadly applicable to neural networks and can be used in feed-
forward neural networks, RNNs and transformers [8, 30, 51].

Weight tying shares weights across layers, reducing the number
of parameters and hence reducing overfitting [22, 41]. A notable
example of this is the sharing of the word embedding matrix at
both input and output layers of GPT and GPT-2 [42, 43].

2.8.4 Normalisation. During training, the input distributions to
each layer of a neural network change as weights in the previ-
ous layers are updated. This is called covariate shift. Instability
results from weights of subsequent layers being trained on distribu-
tions which continuously shift during training. By normalising the
values passing through internal layers of neural networks, the co-
variate shift is reduced [23]. In other words: the input distributions
to intermediate layers are made more consistent. This increases
stability during training and in practice results in faster training
convergence. Additionally, modifications to the normalisation of
self-attention layers in transformer models have been shown to
improve model performance in a low-resource setting [38].

2.9 Transfer Learning
Deep neural networks learn to produce increasingly abstract repre-
sentations of their input data in successive layers of the model [7].
Some of these representations may be useful for tasks other than
that which the model was originally trained for.

Onmany domain-specific tasks, transfer learning has been shown
to yield substantial performance improvements [43]. We utilize
transfer learning such that information from related languages can
be used to improvemodel performance on a specific target language.
Specifically, we train a single language model on multiple related
languages simultaneously. We hypothesise that due to similarities
between South African languages, many learned features will be
useful in modelling multiple languages, thus allowing them to be
learned once and shared across all training languages, resulting in
a more efficient use of the limited training data.

The transfer of information can be further utilized by sharing
only some weights while keeping others language-specific.

2.10 Multilingual and Cross-Lingual Modelling
In some instances, information from high-resource languages can
be transferred to low-resource languages. Cross-lingual word rep-
resentations can be pre-trained using monolingual text from a
high-resource language in combination with a lexicon mapping be-
tween the high and low-resource languages [3]. These pre-trained
word representations can improve the performance of language
models trained on limited monolingual text in the low-resource
language. A similar approach is to train a single model on multiple
monolingual corpora [12, 33, 40]. Alternatively, a single model can
be trained on many language pairs with parallel corpora to obtain
universal representations that can improve information transfer to
low-resource languages [4, 12, 21].

2.11 Soft-Decoupled Encodings
Wang et al. describe an embedding architecture termed Soft-Decoupled
Encodings (SDEs) designed for multilingual language modelling.
SDEs use language-agnostic semantic embeddings representing
universal semantic concepts in addition to language-specific lexical
embeddings. The design aims to allow the model to take spelling
similarities and differences between languages into account when
learning universal semantic embeddings. Each input word𝑤 is con-
verted into a bag-of-n-grams representation, BoN(𝑤). Specifically,
words are converted into the set of all n-gramswith𝑛 = {1...5}. This
set is encoded to a frequency vector similarly to one-hot encoding
as described in Section 2.4.1, but using a vocabulary 𝑉 of n-grams
rather than tokens and using 𝑥𝑖 = 𝑐 for all n-grams appearing in
𝑤 , where 𝑖 is the index of the n-gram in 𝑉 and 𝑐 is the number of
occurrences of the n-gram in𝑤 . Given an input sequence of words
𝑤0, ...𝑤𝑑𝑡 lexical embeddings of dimension 𝑑model are calculated
with

𝑐 (𝑈) = tanh(𝑈𝑊𝑐) (21)

where each row 𝑖 of𝑈 ∈ Z𝑑𝑡×|𝑉 | = BoN(𝑤𝑖) and𝑊𝑐 ∈ R |𝑉 |×𝑑model

is a learned embedding matrix which is shared across languages.
To enable to model to normalise for spelling differences between
the languages, a language-specific fully connected layer termed the
language-specific transformation is then applied with

𝑒lexical (𝑈) = tanh(𝑐 (𝑈)𝑊𝐿𝑖) (22)

where𝑊𝐿𝑖 ∈ R𝑑model×𝑑model is a trainable weight matrix specific to
language 𝑖 .

The semantic embeddings are intended to capture universal
"concepts" expressed by the languages. Each token in a specific
language expresses some combination of these semantic concepts
and thus an attention mechanism is used to lookup a weighted sum
of semantic embeddings for each input token

𝑒semantic = Softmax(𝑒lexical (𝑈)𝑊𝑇
𝑠)𝑊𝑠 (23)

where𝑊𝑠 is the trainable semantic embedding matrix. This com-
putation is the equivalent to computing attention using the lexical
embeddings 𝑒lexical (𝑈) as the key and using the semantic embed-
dings𝑊𝑠 as the keys and values.

A residual connection is then made over the semantic embedding

Multilingual Transformer Language Models for Low-Resource South African Languages

𝑒SDE (𝑈) = 𝑒lexical (𝑈) + 𝑒semantic (𝑈) (24)
completing the definition of SDEs. These embeddings used as inputs
to the model.

3 PRIORWORK ON SOUTH AFRICAN
LANGUAGE MODELLING

There is limited existing literature on neural language modelling
of South African languages. One study compares the performance
of order 5 n-grams and single-layer vanilla RNNs with a hidden
size of 300 [44]. The study finds that n-grams are better performing
than RNNs in all non-European South African languages. Other
more recent studies compare transformer and convolutional models
for machine translation of South African languages. The results
suggested transformer models to be more effective and that the use
of byte-pair encoding improves performance [1, 2, 29].

4 METHODS
In this section, we detail the experiments performed in this study
to answer our three research questions:

(1) Does training transformer language models on multilingual
data result in improved performance of models trained on
monolingual data?

(2) Does the inclusion of language-specific attention layers im-
prove the performance of transformer languagemodels trained
on multilingual data?

(3) Does the addition of Soft-Decoupled Encodings improve
the performance of transformer language models trained on
multilingual data?

All preprocessing, training and evaluation functions were built
into a single repository1. A general training and testing harness
was developed to enable systematic testing and record keeping.

4.1 Ethical Considerations
One of the main ethical issues related to language modelling is the
potential for language models to be used for misinformation by the
automated generation of fake news. However, it is unlikely that
low-resource language models could be used to generate believable
news articles, hence this issue does not apply to our project. We do
not foresee any other ethical implications of the project.

4.2 Dataset Preprocessing
Monolingual text from the NCHLT text project was retrieved for
each language from the online repository maintained by The South
African Centre for Digital Language Resources (SADiLaR) 2. The
dataset is under the Creative Commons Attribution 2.5 South Africa
License 3 which permits the creation of derivative works such as
this project. Artefacts were removed such as paragraph number-
ings and HTML tags. Manual inspection of the data revealed the
presence of "junk sentences" - sentences which were frequently
repeated, and appeared to be technical instructions and warnings
in both the dataset language and English, presumably from headers

1https://github.com/StuartMesham/low_resource_lm
2www.sadilar.org
3https://creativecommons.org/licenses/by/2.5/za/legalcode

and footers of the source web pages. We computationally searched
for and removed sentences with anomalously high frequencies. The
maximum threshold for the number of times a sentence could be
repeated before being considered junk was determined by com-
puting the frequencies of all sentences and setting the maximum
threshold to the sum of the median frequency and the standard
deviation of the frequency. Manual inspection showed this to be
an effective way to detect junk sentences in all language datasets.
The total numbers of sentences remaining in each dataset after
pre-processing are shown in Table 2.

It should be noted that the NCHLT datasets consist largely of
articles scraped from government web-pages in different languages.
This means that the datasets likely contain much of the same con-
tent translated into different languages. When performing multilin-
gual language modelling, this introduces a potential information
leak. Translated versions of parts or the whole of the test set in
one language could potentially appear in the training sets of other
languages, thus a multilingual model may have been trained on
translated versions of the test set it is evaluated on. While we ex-
pect this effect to be small since translated versions of a text will
likely not be identical, we must acknowledge that this affects the
reliability of the results.

4.3 Experiment Design
The OpenAI GPT-2 [43] PyTorch4 implementation provided by
the open-source Huggingface library was used. We used the byte-
pair encoding [45] implementation provided by the Huggingface5
library. The model was optimized using the AdamW optimizer
[28] implementation provided by the Huggingface library. The
AdamW optimiser provides a weight decay parameter which is
designed to have a regularising effect equivalent to L2 regularisation
(Section 2.8.3). Weight decay and dropout (Section 2.8.3) applied to
the input embeddings, the output of the softmax function in the
attention heads (Section 2.7) and the output of the fully connected
layers at the end of each transformer block are used to regularise
the models.

We chose the NCHLT datasets for all languages used in this
study. To maximise the possibility of performance gains from trans-
fer learning, it is ideal to have datasets collected from the same
domain. The NCHLT corpora are largely scraped from governmen-
tal websites where much of the same content has been translated to
multiple languages. This makes the NCHLT datasets a compelling
choice for the evaluation of transfer learning.

We trained and optimised a baseline monolingual isiZulu model.
We then did the same for three multilingual models with isiZulu
as the target language. One multilingual model was trained on lan-
guages within the Nguni language family based on the assumption
that other Nguni languages would be most informative in learning
isiZulu due to their relationship. To test this assumption, we train
another multilingual model targeting isiZulu, but trained on isiZulu
and Sotho-Tswana languages instead of the Nguni languages. We
hypothesise that the model trained on Nguni languages (including
isiZulu) will perform better due to the closer relationship between
target and auxiliary languages than the model trained on isiZulu

4https://pytorch.org
5https://github.com/huggingface/tokenizers

https://github.com/StuartMesham/low_resource_lm
www.sadilar.org
https://creativecommons.org/licenses/by/2.5/za/legalcode
https://pytorch.org
https://github.com/huggingface/tokenizers

Stuart Mesham

and Sotho-Tswana languages. Finally, we train a multilingual model
on all languages in the dataset. This is to account for the possibility
that most or all of the non-European South African languages are
related enough that they are informative in training a model with
isiZulu as the target language.

We modify the Soft-Decoupled Encodings (SDEs) proposed for
neural machine translation of low-resource languages [52] for use
with causal language modelling and specifically with South African
languages. The first modification is the use of byte-pair encoding
(BPE) sub-word tokens instead of the bag-of-n-grams (BoN) method
originally proposed. This is motivated by the agglutinative nature of
South African languages. We hypothesise that BPE sub-words more
explicitly model the independent morphemes constituting words in
South African languages. The second modification we make is to
add a second language-specific transformation in the form of a feed-
forward layer before the prediction head of the model. This is to ac-
count for the fact that SDEs were originally proposed in the context
of neural machine translation where an encoder-decoder architec-
ture is used. The encoder outputs a language-agnostic embedding of
the encoded text which may be decoded by a language-specific de-
coder. This differs from our causal language model where the model
must output language-specific token probabilities. We therefore
hypothesise that a language-specific transformation here enables
the model to produce language-agnostic representations internally
and have our final language-specific transformation account for
minor differences such as spelling differences between languages.
We refer to this in Section 5.3 as the output language-specific
transformation.

4.4 Hyper-Parameter Tuning
For each of the mentioned experiments, hyper-parameters were
tuned over many training runs. The training time varied depending
on the hyperparameters used with the larger models taking up
to 16 hours to train on an Nvidia V100 GPU. The training runs
were limited to 200k steps, with evaluation on a validation set
every 5k steps. Training was stopped early if the validation loss
did not decrease after any four successive evaluations. In all cases
where training was stopped early, manual inspection of the training
graphs of the train and validation losses showed that the model
had overfit the training set.

The training data was input to the model in blocks of 128 con-
secutive tokens in batches of 32 input blocks. The input blocks
were created using a sliding window strategy over the training data
with a stride of 16 tokens. Model evaluation was performed using
an input block size of 128 with a stride of 64 over the supplied
test data.

The tuning was systematically performed, starting with smaller
model sizes and smaller vocabulary sizes. For each model and vo-
cabulary size, first little regularization was applied to see whether
the model had enough capacity to overfit the data. If not, the model
size was increased. Increasing amounts of regularization were then
applied in successive runs. As regularization increased, the perfor-
mance would increase until the model no longer overfit the data.
After this point increasing the regularization reduced performance
as the model would then underfit.

Preliminary testing showed that the model was relatively insen-
sitive to the number of hidden layers and the number of attention
heads. All training runs thereafter used 8 hidden layers and 8 at-
tention heads. The learning rate was also varied in preliminary
tests and an initial rate of 1 × 10−4 with a schedule that linearly
decreased to 0 over the course of the training was found to have
satisfactory behaviour on models of widely differing sizes and was
therefore used in all subsequent training runs.

For the monolingual models, only the hidden size, vocabulary
size, dropout probability and weight decay parameters were fine-
tuned. The optimal parameters found for the monolingual model
(Table 4a) were used to inform the starting set of parameters in
optimizing the multilingual models (Table 4b and Table 4c).

For multilingual models, the tokenizer training data used was
treated as a modelling decision and was fine-tuned along with other
hyper-parameters. Specifically, for multilingual models, we tested
selecting different subsets of the training data to train the byte-pair
encoding (BPE) vocabulary to optimise performance. For themodels
trained on data from languages within the same family, we per-
formed preliminary testing training the tokenizer on all languages
within the family and on only the target language. Similarly, for
multilingual models trained on all languages, we tested training the
tokenizer on all languages, only the language family and only the
target language. In our preliminary tests, model performance was
found to be relatively insensitive to these differences in tokenizer
training data. Tokenization training sets with the best performance
in these tests were used for all remaining tests.

5 RESULTS
Here we describe the results of our main experiments. Sections 5.1-
5.3 address research questions 1-3 respectively. Starting in Sec-
tion 5.1 we compare the multilingual models with varying auxiliary
datasets against a monolingual baseline. Following this, in Sec-
tion 5.2 we compare models with language family-specific attention
layers against a baseline with no family-specific attention layers.
Finally, in Section 5.3 we compare models using variants of Soft-
Decoupled Encodings against a baseline with no family-specific
weights.

5.1 Shared Parameter Models
A total of 8 models were trained. For each of isiZulu and Sepedi
we trained four models: one monolingual baseline, and three multi-
lingual with differing auxiliary data. The three multilingual mod-
els were trained with different multilingual datasets: same-family,
different-family and all-languages auxiliary data respectively. The
"same-family" experiments train isiZulu and Sepedi models with
Nguni and Sotho-Tswana data respectively. The "different-family"
experiments swap this pairing such that isiZulu is trained on Sotho-
Tswana data. Finally, the "all-languages" experiment trains isiZulu
and Sepedi models on all 9 languages in our collective dataset. The
hyper-parameters for each of these models were tuned indepen-
dently.

Table 1, Figure 1 and Figure 2 all show different attributes of
the same 8 models. Each model’s p_drop, weight_decay, tokenizer
training set choice, vocab_size and hidden size (d_model) were
optimised independently on its target language’s validation set. For

Multilingual Transformer Language Models for Low-Resource South African Languages

Table 1: A table showing the bits-per-character (BPC) scores of isiZulu and Sepedi transformer languagemodels on the isiZulu
and Sepedi test sets respectively. We show models trained on monolingual text, text from all languages within the language
family of the target language, text from languages in a different family and text from all non-European South African lan-
guages. The sentences column shows the number of sentences (in thousands) in the training data. The tokenizer training data
column shows the dataset used to train the byte-pair encoding tokenizer. Note that the tokenizer training data is always a
weak subset of the model training data so that no information is introduced from outside the model training data. The model
hyper-parameters were optimized on validation sets for the target languages.

Training Data Sentences Hyper-Parameters Target BPCTokenizer Training Data vocab_size d_model
isiZulu 96k isiZulu 8000 256

isiZulu

1.391
Nguni Languages 291k Nguni Languages 8000 512 1.334
isiZulu & Sotho-Tswana Languages 282k isiZulu & Sotho-Tswana Languages 8000 512 1.331
All Languages 580k Nguni Languages 8000 968 1.298
Sepedi 79k Sepedi 2000 256

Sepedi

1.495
Sotho-Tswana Languages 186k Sotho-Tswana Languages 2000 360 1.447
Sepedi & Nguni Languages 370k Sepedi & Nguni Languages 8000 512 1.477
All Languages 580k Sotho-Tswana Languages 8000 800 1.416

all models, p_drop = 0.3 and weight_decay = 0.2 were found to be
best performing. For the remaining hyper-parameters, the optimal
values for each model are shown in Table 1. For each model, the
BPC score obtained on the target language’s test set are also shown
in Table 1.

The isiZulu monolingual model achieved a BPC of 1.391. The
multilingual isiZulu models trained on the Nguni and combined
isiZulu and Sotho-Tswana datasets achieved BPCs of 1.334 and
1.331 respectively. The multilingual isiZulu model trained on all
languages achieved a BPC of 1.298.

The isiZulu and Sepedi All-Language models achieved BPCs of
1.298 and 1.416 respectively, outperforming the monolingual mod-
els which achieved BPCs of 1.391 and 1.495 respectively. As more
training data is introduced, the optimal model hidden sizes increase
and the performance increases. For example, the isiZulu optimal
monolingual model’s hidden size is 256, whereas the All-Language
model’s hidden size is 968. The increase in optimal model capac-
ity (dependent on hidden size) reflects the increased information
provided by the auxiliary data. The corresponding improvement in
test BPC shows that the additional information is informative for
modelling the target language.

Figure 1 compares the effects of different auxiliary datasets on
the performance of isiZulu and Sepedi language models. The isiZulu
models perform similarly when trained with auxiliary data from
the same family to when trained with data from a different family.
There is no performance improvement when using same-family
auxiliary data instead of different-family auxiliary data. By con-
trast, the Sepedi models trained with same-family data did perform
better than those trained with different-family data. Additionally,
this performance improvement is despite the fact that the same-
family auxiliary data, containing 186k sentences, is smaller than the
different-family data, containing 370k sentences. This shows that
the Sepedi language model is able to exploit structural similarities
with other Sotho-Tswana languages better than similarities with
Nguni languages. Finally, for both target languages, the models
trained with all-language auxiliary data are the best performing.

isiZulu Sepedi
1.25

1.3

1.35

1.4

1.45

1.5

1.391

1.495

1.334

1.447

1.331

1.477

1.298

1.416

BP
C

Monolingual Same Family
Different Family All Languages

Figure 1: A bar graph showing the bits-per-character (BPC)
scores obtained by 8 different language models on isiZulu
and Sepedi test sets. Lower scores indicate better perfor-
mance. Models were trained on monolingual text, text from
languages in the same family, text from languages in differ-
ent families and text from all 9 non-European SouthAfrican
languages.

It is clear from Figure 1 that adding more auxiliary training data
improves performance. For both isiZulu and Sepedi, the models
trained on all languages are best performing and the models trained
on "Same Family" and "Different Family" data both outperform
the monolingual models. Figure 2 shows the relationship between
training sentences and test BPC for the same experiments shown
in Figure 1. There is a roughly linear relationship between training
sentences and test BPC despite different languages being added in

Stuart Mesham

100 200 300 400 500 600
1.25

1.3

1.35

1.4

1.45

1.5

Training Sentences (thousands)

BP
C

isiZulu Sepedi

Figure 2: A scatter plot showing the test bits-per-character
(BPC) scores of isiZulu and Sepedi language models trained
on datasets of varying sizes. Lower scores indicate better per-
formance. The dataset size is not the only variable beingma-
nipulated; the datasets also incorporate text from different
languages as the size varies, but this is not shown. This plot
serves to illustrate the strength of the effect of dataset size
on performance evenwhen it is less related languageswhich
are being added to or removed from the corpus.

each experiment. The Sepedi experiments show greater deviation
from a straight line due to the relatedness of Sepedi with other
Sotho-Tswana languages as previously discussed.

5.2 Language-Specific Attention Layers
Figure 4 shows the results of training isiZulu models on multi-
lingual data with varying numbers of language or family-specific
attention layers. All models used p_drop = 0.3, weight_decay = 0.2,
vocab_size = 8000 and used a tokenizer trained on all Nguni lan-
guages. The models trained with only Nguni auxiliary data used
d_model = 512 whereas those trained with all language auxil-
iary used d_model = 800. We hypothesised that the addition of
language-specific attention layers would improve performance over
a multilingual baseline. However, the results show no performance
improvement. Adding language-specific layers had either negligible
or slightly detrimental effects on performance. One potential expla-
nation for this is that there may be relatively similar grammar and
word-orderings between the languages, making language-specific
attention heads redundant and requiring each to independently
learn the same function. However, our results do not contain the
information required to support this hypothesis, thus more targeted
experiments would be required to investigate this further.

5.3 Soft-Decoupled Encodings
In Figure 3 we compare the performance of different variants of
Soft-Decoupled Encodings (SDEs) against a control model. All

Control Input-T
Output-T

SE

Input-T
SE

Input-T
Output-T

SE
1.25

1.3

1.35

1.4

1.45

1.5

1.299

1.352

1.310

1.351

1.295

BP
C

Figure 3: A bar graph showing isiZulu test bits-per-
character (BPC) scores of four different multilingual model
with Soft-Decoupled Encoding variants and one control
model with no family specific weights. Lower scores indi-
cate better performance. All models were trained on all non-
European South African languages.

0 2 4 8
1.25

1.3

1.35

1.4

1.45

1.5

1.334 1.334 1.342

1.371

1.299 1.303 1.301 1.310
1.299

1.310
1.322

1.352

Language Specific Attention Layers

BP
C

Nguni All Grouped All Individual

Figure 4: A line graph showing the isiZulu test bits-per-
character (BPC) scores of multilingual transformer lan-
guage models trained on different datasets with the bottom
𝑥 attention layers being language specific. Lower scores in-
dicate better performance. "All" denotes all non-European
South African languages. Each model had 8 attention layers
in total. In the "all grouped" series, languages were grouped
into their families making the attention layers "family spe-
cific" rather than language specific.

Multilingual Transformer Language Models for Low-Resource South African Languages

models were trained on all languages and used p_drop = 0.3,
weight_decay = 0.2, d_model = 800, vocab_size = 8000 and used
a tokenizer trained on all Nguni languages. Our SDE variants are
constructed from different combinations of:

(1) Input family-specific transformations ("Input-T", Sec. 2.11).
(2) Output family-specific transformations ("Output-T", Sec. 4.3).
(3) Shared semantic embeddings ("SE", Sec. 2.11).

We hypothesised that the SDEs would improve performance due
to the input and output transformations normalising for spelling
differences and the semantic embeddings learning universal se-
mantic concepts. However, the results do not show a significant
improvement over the baseline model. The "SE" model scores ap-
proximately the same as the baseline "Control" model with a 0.004
BPC difference between the two. We also compare the "Input-T
Output-T SE" and "Input-T Output-T" which also shows the addi-
tion of the semantic embeddings to have had a negligible effect
with a difference of 0.001 BPC between the two. By comparing the
"SE", "Input-T SE" and "Input-T Output-T SE" models sequentially
we see that both the addition of the input transformation and the
addition of the output transformation reduce performance by 0.015
and 0.042 BPC respectively.

A possible reason for the ineffectiveness of SDEs may be that the
sub-word vocabulary and spellings may be highly similar across
the families, making the family-specific transformations redundant
similar to the potential issue discussed in Section 5.2. Once again,
a targeted experiment would have to be performed to investigate
this.

6 DISCUSSION AND FUTUREWORK
Our results have shown that the South African languages are suffi-
ciently related in such a way that language modelling performance
for a given target language can be improved by including auxiliary
training data from other languages. In our experiments, adding
more training data always increased performance regardless of
the language family of the additional data. This shows that there
exist structural similarities between all of the non-European South
African languages which can be effectively exploited by language
models to improve performance.

The languages investigated in this study form part of the larger
family of Southern Bantu languages [14]. Future work could inves-
tigate whether adding additional auxiliary data from the broader
Southern Bantu family can further improve language modelling
performance. By extension, future studies could attempt to deter-
mine the limit of this strategy, by continuing to expand to broader
language families until there is no longer an improvement in per-
formance.

Our results also showed that our language model could better
exploit the structural and lexical similarities between Sepedi and
Sotho-Tswana languages than Sepedi and Nguni languages. Future
work could search for other such language combinations since
this could potentially reveal factors influencing the effectiveness of
auxiliary languages in improving performance.

Both of our experiments in adding language-specific weights
did not yield any performance improvements. Future work could

investigate the use of techniques that more explicitly model rela-
tionships across languages such as cross-lingual word embeddings
[3].

6.1 Limitations
Model training is computationally intensive. This meant that large
models trained in Sections 5.1, 5.2 and 5.3 could not be thoroughly
tuned. It is possible that with more tuning the results may have
been improved. Additionally, in some instances such as the multi-
lingual models trained on all languages, larger models may have
achieved better performance, but were not tested due to their high
computational requirements. This, as well as the potential test set
information leak discussed in Section 4.2 limit the reliability of the
results.

7 CONCLUSIONS
In conclusion, in the context of modelling low-resource South
African languages, we have answered our three research ques-
tions. Training transformer language models on multilingual data
does improve performance over models trained on monolingual
data. For Sepedi models, we find that using auxiliary data from
Sotho-Tswana languages yields greater performance improvements
than using data from Nguni languages. For isiZulu models, we find
that Nguni and Sotho-Tswana auxiliary data both yield the same
performance improvement. For both isiZulu and Sepedi, models
trained on all 9 non-European South African languages were the
best performing, with BPC scores of 1.298 and 1.416 respectively.

By contrast, neither the use of family-specific attention layers
nor Soft-Decoupled Encodings improved performance over a mul-
tilingual baseline with no language or family-specific weights.

Nonetheless, this work shows that the performance of language
models for low-resource South African languages can be improved
by training on data from other related languages.

ACKNOWLEDGMENTS
This work is based on the research supported in part by the National
Research Foundation of South Africa as well as the University of
Cape Town.

REFERENCES
[1] Jade Abbott and Laura Martinus. 2019. Benchmarking Neural Machine Trans-

lation for Southern African Languages. In Proceedings of the 2019 Workshop on
Widening Natural Language Processing. Association for Computational Linguis-
tics, Florence, Italy, 98–101.

[2] Jade Z Abbott and Laura Martinus. 2018. Towards neural machine translation
for African languages. Neural Information Processing Systems 2018 Workshop on
Machine Learning for the Developing World (2018).

[3] Oliver Adams, Adam Makarucha, Graham Neubig, Steven Bird, and Trevor Cohn.
2017. Cross-Lingual Word Embeddings for Low-Resource Language Modeling. In
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers. Association for Computational
Linguistics, Valencia, Spain, 937–947. https://www.aclweb.org/anthology/E17-
1088

[4] Mikel Artetxe and Holger Schwenk. 2019. Massively Multilingual Sentence
Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond. Transactions
of the Association for Computational Linguistics 7, 0 (2019), 597–610. https:
//transacl.org/index.php/tacl/article/view/1742

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

https://www.aclweb.org/anthology/E17-1088
https://www.aclweb.org/anthology/E17-1088
https://transacl.org/index.php/tacl/article/view/1742
https://transacl.org/index.php/tacl/article/view/1742

Stuart Mesham

[7] Yoshua Bengio. 2012. Deep learning of representations for unsupervised and
transfer learning. In Proceedings of ICML workshop on unsupervised and transfer
learning. 17–36.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. Journal of machine learning research 3, Feb
(2003), 1137–1155.

[9] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994),
157–166.

[10] Jan Buys. 2020. The GPT-2 Transformer. (2020). work in progress.
[11] Catherine Chavula and Hussein Suleman. 2016. Assessing the Impact of Vo-

cabulary Similarity on Multilingual Information Retrieval for Bantu Languages.
In Proceedings of the 8th Annual Meeting of the Forum on Information Retrieval
Evaluation (Kolkata, India) (FIRE ’16). Association for Computing Machinery,
New York, NY, USA, 16–23. https://doi.org/10.1145/3015157.3015160

[12] Alexis Conneau and Guillaume Lample. 2019. Cross-lingual Language Model
Pretraining. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.).
Curran Associates, Inc., 7059–7069. http://papers.nips.cc/paper/8928-cross-
lingual-language-model-pretraining.pdf

[13] Jurafsky Daniel and James H Martin. 2019. N-gram Language Models. In Speech
and Language Processing (3 ed.). Chapter 3.

[14] Clement M Doke. 2017. The Southern Bantu Languages: Handbook of African
Languages. Vol. 19. Routledge.

[15] Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179–211.

[16] Alexander Franz and Brian Milch. 2002. Searching the Web by Voice. In Proceed-
ings of the 19th International Conference on Computational Linguistics - Volume 2
(Taipei, Taiwan) (COLING ’02). Association for Computational Linguistics, USA,
1–5. https://doi.org/10.3115/1071884.1071887

[17] Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2
(1994), 23–38.

[18] I. J. Good. 1956. Some Terminology and Notation in Information Theory. Pro-
ceedings of the IEE - Part C: Monographs 103, 3 (1956), 200–204.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Sequence Modelling:
Recurrent and Recursive Nets. In Deep Learning. MIT Press, Chapter 10, 374.
http://www.deeplearningbook.org/contents/rnn.html

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[21] Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin
Jiang, and Ming Zhou. 2019. Unicoder: A Universal Language Encoder by Pre-
training with Multiple Cross-lingual Tasks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics, Hong Kong, China, 2485–2494. https:
//doi.org/10.18653/v1/D19-1252

[22] Hakan Inan, Khashayar Khosravi, and Richard Socher. 2016. Tying word vectors
and word classifiers: A loss framework for language modeling. arXiv preprint
arXiv:1611.01462 (2016).

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille,
France, 448–456. http://proceedings.mlr.press/v37/ioffe15.html

[24] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. The
Bias-Variance Trade-Off. In An introduction to statistical learning. Vol. 112.
Springer, Chapter 2.2.2, 33–42.

[25] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Mathematical Statistics 22, 1 (1951), 79–86.

[26] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me Any-
thing: Dynamic Memory Networks for Natural Language Processing. In Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48 (New York, NY, USA) (ICML’16). JMLR.org, 1378–1387.

[27] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. 2018. Generating Wikipedia by Summarizing Long
Sequences. In International Conference on Learning Representations.

[28] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

[29] Laura Martinus and Jade Z Abbott. 2019. A Focus on Neural Machine Translation
for African Languages. arXiv preprint arXiv:1906.05685 (2019).

[30] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing
and Optimizing LSTM Language Models. In International Conference on Learning
Representations.

[31] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association. https:

//www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
3111–3119.

[33] Phoebe Mulcaire, Jungo Kasai, and Noah A. Smith. 2019. Polyglot Contextual
Representations Improve Crosslingual Transfer. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 3912–3918.
https://doi.org/10.18653/v1/N19-1392

[34] Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen, Walter Scheirer, and David
Chiang. 2019. Auto-Sizing the Transformer Network: Improving Speed, Efficiency,
and Performance for Low-Resource Machine Translation. In Proceedings of the 3rd
Workshop on Neural Generation and Translation. Association for Computational
Linguistics, Hong Kong, 231–240. https://doi.org/10.18653/v1/D19-5625

[35] B. Ndaba, H. Suleman, C. M. Keet, and L. Khumalo. 2016. The effects of a corpus
on isiZulu spellcheckers based on N-grams. In 2016 IST-Africa Week Conference.
1–10.

[36] Graham Neubig and Junjie Hu. 2018. Rapid Adaptation of Neural Machine
Translation to New Languages. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, Brussels, Belgium, 875–880. https://doi.org/10.18653/v1/D18-1103

[37] Andrew Y. Ng. 2004. Feature Selection, L1 vs. L2 Regularization, and Rotational
Invariance. In Proceedings of the Twenty-First International Conference on Ma-
chine Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing
Machinery, New York, NY, USA, 78. https://doi.org/10.1145/1015330.1015435

[38] Toan Q Nguyen and Julian Salazar. 2019. Transformers without tears: Improving
the normalization of self-attention. International Workshop on Spoken Language
Translation (2019).

[39] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International conference on machine
learning. 1310–1318.

[40] Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multi-
lingual BERT?. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence,
Italy, 4996–5001. https://doi.org/10.18653/v1/P19-1493

[41] Ofir Press and LiorWolf. 2017. Using the Output Embedding to Improve Language
Models. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers. 157–163.

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training.
(2018). https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/
language-unsupervised/language_understanding_paper.pdf

[43] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners.
(2019). https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf

[44] Alessandro Scarcella. 2018. Recurrent neural network language models in the
context of under-resourced South African languages. Ph.D. Dissertation. University
of Cape Town.

[45] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715–1725.

[46] C. E. Shannon. 1948. A Mathematical Theory of Communication. Bell System
Technical Journal 27, 3 (jul 1948), 379–423. https://doi.org/10.1002/j.1538-7305.
1948.tb01338.x

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[48] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural net-
works for language modeling. In Thirteenth annual conference of the international
speech communication association.

[49] Igor V Tetko, David J Livingstone, and Alexander I Luik. 1995. Neural network
studies. 1. Comparison of overfitting and overtraining. Journal of chemical
information and computer sciences 35, 5 (1995), 826–833.

[50] Elan van Biljon, Arnu Pretorius, and Julia Kreutzer. 2020. On optimal transformer
depth for low-resource language translation. In AfricaNLP Workshop 2020.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
Curran Associates, Inc., 5998–6008. http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf

[52] Xinyi Wang, Hieu Pham, Philip Arthur, and Graham Neubig. 2019. Multilingual
Neural Machine Translation With Soft Decoupled Encoding. In International

https://doi.org/10.1145/3015157.3015160
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
https://doi.org/10.3115/1071884.1071887
http://www.deeplearningbook.org/contents/rnn.html
https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D19-1252
http://proceedings.mlr.press/v37/ioffe15.html
https://www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
https://www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_1045.pdf
https://doi.org/10.18653/v1/N19-1392
https://doi.org/10.18653/v1/D19-5625
https://doi.org/10.18653/v1/D18-1103
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.18653/v1/P19-1493
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multilingual Transformer Language Models for Low-Resource South African Languages

Conference on Learning Representations.
[53] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). http://arxiv.org/abs/1609.
08144

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

Stuart Mesham

A SUPPLEMENTARY INFORMATION

Table 2: A table showing the number of sentences (in thousands) in each NCHLT language dataset after pre-processing as well
as the totals for each language family and the combined total for the entire dataset.

Family Language Sentences Family Sentences Total Sentences

Nguni

isiZulu 96k

291k

580k

isiXhosa 74k
Siswati 61k
isiNdebele 59k

Sotho-Tswana
Sepedi 79k

186kSesotho 60k
Setswana 47k

Tswa-Ronga Xitsonga 57k 57k
Venda Tshivenda 45k 45k

Table 3: A table showing the validation BPC of training runs performed to tunemodel hyper-parameters. Models were trained
for 200k training steps. The size of the hidden layer tabulated under d_model. The dropout probability applied to the whole
model is tabulated under p_drop. The weight decay argument of the AdamW optimizer [28] is shown as weight_decay. During
training, the model was evaluated every 5k steps. If a model failed to improve after any 4 consecutive evaluations the training
was stopped. The "Stopped Early" column shows whether or not a the model’s training was stopped by this mechanism. The
BPC column shows the bits per character score of the model on the NCHLT Sepedi validation set. All training runs used 8
hidden layers with 8 attention heads.

(a) Hyper-parameter tuning for Sepedi model trained on Sepedi and Nguni family text.

Hyper-Parameters Metrics
d_model p_drop weight_decay tokenizer_dataset vocab_size BPC Stopped Early

512 0.3 0.2
sepedi 2000 1.233 No
sepedi & nguni 2000 1.219 No
sepedi & nguni 8000 1.190 No

(b) Hyper-parameter tuning for Sepedi model trained on Sotho-Tswana text.

Hyper-Parameters Metrics
d_model p_drop weight_decay tokenizer_dataset vocab_size BPC Stopped Early
360

0.3 0.2 Sotho-Tswana
2000 1.168 No

512 2000 1.156 Yes
512 8000 1.168 Yes

(c) Hyper-parameter tuning for Sepedi model trained on Sepedi text.

Hyper-Parameters Metrics
d_model p_drop weight_decay tokenizer_dataset vocab_size BPC Stopped Early

256 0.3 0.2 Sepedi 2000 1.211 No
8000 1.222 Yes

Multilingual Transformer Language Models for Low-Resource South African Languages

Table 4: A table showing the validation BPC of training runs performed to tunemodel hyper-parameters. Models were trained
for 200k training steps. The size of the hidden layer tabulated under d_model. The dropout probability applied to the whole
model is tabulated under p_drop. The weight decay argument of the AdamW optimizer [28] is shown as weight_decay. During
training, the model was evaluated every 5k steps. If a model failed to improve after any 4 consecutive evaluations the training
was stopped. The "Stopped Early" column shows whether or not a the model’s training was stopped by this mechanism. The
BPC column shows the bits per character score of the model on the NCHLT isiZulu validation set. All training runs used 8
hidden layers with 8 attention heads.

(a) Hyper-parameter tuning for isiZulu model trained only on isiZulu data.

Hyper-Parameters Metrics
d_model p_drop weight_decay vocab_size BPC Stopped Early
128 0.1 0 2000 1.305 No
256 0.1 0 2000 1.329 Yes
256 0.1 0.1 2000 1.268 Yes
256 0.2 0.1 2000 1.230 Yes
256 0.2 0 2000 1.274 Yes
256 0.3 0.2 2000 1.217 No
256 0.5 0.3 2000 1.321 No
256 0 0 8000 1.820 Yes
256 0.2 0.1 8000 1.247 Yes
256 0.3 0.2 8000 1.218 No
256 0.5 0.3 8000 1.268 No
256 0.1 0 14000 1.361 Yes
256 0.3 0.2 14000 1.249 No
512 0.1 0 2000 1.376 Yes
512 0.1 0.1 2000 1.377 Yes
512 0.3 0 2000 1.280 Yes
512 0.3 0.2 2000 1.244 Yes
512 0.4 0.2 2000 1.239 Yes
512 0.5 0.3 2000 1.226 No
512 0.5 0.5 2000 1.240 No
800 0.5 0.3 2000 1.268 Yes
800 0.6 0.5 2000 1.290 Yes
800 0.4 0.4 10000 1.448 Yes
800 0.5 0.5 10000 1.361 Yes

(b) Hyper-parameter tuning for isiZulu model trained only on data from all Nguni languages.

Hyper-Parameters Metrics
d_model p_drop weight_decay vocab_size BPC Stopped Early
400 0.1 0.1 2000 1.198 Yes
480 0.3 0.2 2000 1.167 No
512 0 0 500 1.332 Yes
512 0.1 0 500 1.230 No
512 0.1 0 2000 1.229 Yes
512 0.1 0.1 2000 1.202 Yes
512 0.2 0.2 2000 1.169 Yes
512 0.3 0.2 2000 1.154 No
512 0.5 0.4 2000 1.251 No

(c) Hyper-parameter tuning for isiZulu model trained only on all non-European South African language data.

Hyper-Parameters Metrics
d_model p_drop weight_decay vocab_size BPC Stopped Early
512 0.1 0.1 2000 1.209 No
512 0.1 0.1 8000 1.188 No
512 0.2 0.1 8000 1.163 No
512 0.3 0.2 8000 1.192 No
512 0.3 0.2 8000 1.202 No
968 0.3 0.2 8000 1.143 No

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 Literature Review
	2.1 Language Model Definition
	2.2 Model Evaluation
	2.3 Sub-word Tokenization
	2.4 Neural Language Models
	2.5 Feed-Forward Neural Networks
	2.6 Recurrent Neural Language Models
	2.7 Transformer Language Models
	2.8 Model Optimisation and Regularisation
	2.9 Transfer Learning
	2.10 Multilingual and Cross-Lingual Modelling
	2.11 Soft-Decoupled Encodings

	3 Prior Work on South African Language Modelling
	4 Methods
	4.1 Ethical Considerations
	4.2 Dataset Preprocessing
	4.3 Experiment Design
	4.4 Hyper-Parameter Tuning

	5 Results
	5.1 Shared Parameter Models
	5.2 Language-Specific Attention Layers
	5.3 Soft-Decoupled Encodings

	6 Discussion and Future Work
	6.1 Limitations

	7 Conclusions
	Acknowledgments
	References
	A Supplementary Information

