
Review of Language Modelling Techniques for use in
Low Resource Settings

Luc Hayward
University of Cape Town
Cape Town, South Africa
hywluc001@myuct.ac.za

ABSTRACT
Recent work in natural language processing (NLP) has shown
great advances in synthetic benchmark scores when given
sufficient training data. This paper aims to provide an overview
of the current state of languagemodelling techniques - specif-
ically examining N-gram, Long Short Term Memory (LSTM)
and Transformer variants - and their potential effectiveness
on low resource South African languages.

CCS CONCEPTS
• Computing methodologies → Neural networks; Ma-
chine translation; • Information systems → Language
models.

KEYWORDS
languagemodelling, neural networks, low-resource languages,
LSTM, N-Gram, Transformer

1 INTRODUCTION
Statistical language modelling is an important part of many
natural language processing tasks such as speech recogni-
tion, translation, auto correct and summarisation amongst
others [7, 24]. Whilst this has been shown extensively in
languages such as English and Mandarin Chinese, resource
rich languages where large datasets are available on which
to test models, many languages do not have datasets as large
or of equal quality. These languages are referred to as Low
Resource Languages due to the relative lack of data on which
to train and evaluate language models.
This paper examines the three main types of language mod-
els used: N-grams [3], Long Short-Term Memory models
(LSTM) [13] and Transformers [28]. We hypothesise that the
recent state of the art architectures for LSTM and Trans-
former models will continue to show good performance on
low resource languages, specifically South African Nguni
languages such as Zulu and isiXhosa.

2 LANGUAGE MODELLING
A statistical language model can be defined as the probability
distribution of a set of strings over a given context[3, 24], or
as a model capturing the probability of a string S occurring
in a given context C. Defining this context and how it is

derived is the key differentiating factor between the three
types of models examined. Properly trained models are able
to capture more complex structures such as grammatical
rules based only on this statistical distribution.

3 EVALUATING LANGUAGE MODELS
Language models can be evaluated either extrinsically or
intrinsically. Extrinsic evaluation is done through integrat-
ing the model into a real world application and evaluating
whether the application improves.[15] This could be con-
structed as user studies in which participants may be asked
to rate which generated text was "better" in order to compare
the output of text generation models for instance. Intrinsic
evaluation is the use of synthetic metrics to approximate
the performance of a model in a real world environment,
and measure relative performance against other models. The
advantage of intrinsic evaluation is that they require no user
feedback and can be measured independent of any specific
application.

Perplexity
One way to measure the performance of a model intrinsically
is by measuring the probabilities assigned to a sequence on
which the model has not been trained, relative to the true
probabilities found in the test set. In practice, perplexity is
used which measures the inverse probability assigned to
the test set, normalised for the number of words in the test
set. [15] As perplexity is an inverse probability, minimising
perplexity scores is equivalent to better model performance
over the test set. Although this is not guaranteed to translate
to better performance in real world applications, it is much
faster to calculate perplexity and is an appropriate analogue
when comparing models initially.

Cross Entropy
For a variable 𝑥𝑖 in a given distribution 𝑋 with probabil-
ity 𝑃 (𝑥𝑖 ), the entropy of 𝑥𝑖 is calculated as in Jurafsky and
Martin[15]:

𝐻 (𝑋 ) = −
∑
𝑥𝑖𝜖𝑋

𝑝 (𝑥𝑖 ) log2 𝑝 (𝑥𝑖 )



Luc Hayward

Entropy can be thought of as the amount of information
encoded by some 𝑥𝑖 , alternatively lower entropy is indicative
of an event or value with a high probability of occurring
whilst a high entropy value implies the event occurs less
frequently. Measuring the entropy of a language requires
measuring infinitely long sequences, however the Shannon-
McMillan-Breiman theorem states an acceptable estimate of
the entropy of a language 𝐿 can be found for a sequence of
length 𝑛 which is "long enough". Following this, the cross en-
tropy of a model𝑚 on some distribution 𝑝 can be calculated
as [15]:

𝐻 (𝑝,𝑚) = − lim
𝑛→inf

1
𝑛
log𝑚(𝑤1𝑤2...𝑤𝑛)

Cross entropy can be thought of as a measure of the overlap
in entropy between two sets. In the case of language mod-
elling, cross entropy measures how well the entropy of the
test set is captured by the language model being examined.
A lower cross entropy value represents the model which best
models the test sets distribution. [24]

4 MODEL ARCHITECTURES
N-Gram
N-gram models are the simplest of the three models dis-
cussed. N-gram models are based on the Markov assumption
that rather than calculate all possible sequences of words, a
model can approximate the distribution of a language using
a shorter sequence length 𝑁 to provide context[15]. More
formally:

𝑃 (𝑆𝑖 ) = 𝑃 (𝑆𝑖 |𝑆𝑖−1...𝑆𝑖−1−𝑛)
Where 𝑛 is the number of words (or values in the sequence)
used to provide context. Following this, n-gram models are
based on the frequency of a word S in a sequence, relative to
the frequency of all other sequences of the same length in
the training corpus.
N-gram model complexity is related to the number of po-
tential sequences and grows exponentially as more words
are considered in a sequence (increasing n). Additionally
as sequence length grows, the size of the training corpus
must grow in order to ensure there are sufficient examples
of sequences to create an accurate model. Conversely, it is
initially simple to scale the models to take advantage of dif-
ferent sizes of dataset. A number of techniques have been
proposed to allow the use of a combination of large n-grams,
with smaller n-grams used to provide additional information
for less frequently occurring sequences. [3]

N-grammodels typically have trouble capturing long term
dependencies where there are large gaps between the rele-
vant parts of the sequence. This is due to the exponential
increase in the number of possible n-grams, and therefore
model size, as you increase the "window" or "context" size
of the n-gram model. This results in n-grams being unable

to model long term dependencies as the "context" available
extends back only N words in the sequence. [5, 27]
A limitation of n-gram models which rely purely on the

absolute frequency of sequences in the training set is their
inability to handle unseen n-grams1. Given some unseen se-
quence𝑊1 ...𝑊𝑛 , a model would output a probability of 0 for
the sequence. This causes issues both in synthetic tests such
as perplexity as well as real world applications. For example,
if such amodel were used to assist in a speech-to-text applica-
tion, regardless of the clarity of the spoken sequence it would
never select the correct results.[3] To alleviate this issue the
concept of smoothing was devised whereby the probability
estimates of a model are adjusted in an attempt to improve
the accuracy of the model. Smoothing algorithms tend to
raise low (or zero) probability sequences whilst lowering the
probability for very high likelihood sequences. Intuitively
this smooths the distribution of all probabilities in a model.

A popular variant on the standard n-gram model, Kneser
Ney smoothing [17], and its modified version, initially pro-
posed in Chen et al. [3] and improved2 further by Heath-
field et al. [12] provides an efficient smoothing method for
building n-gram models. Kneser-Ney smoothing is a form
of backoff smoothing in which higher order 3 n-grams are
combined with lower order models when a given sequence
or n-gram has a count of zero.

In addition to Kneser-Ney smoothing, Katz smoothing and
Jelinek-Mercer smoothing present the next best performing
models with Jelinek-Mercer outperforming Katz in small
datasets although Kneser-Ney performed best overall in sit-
uations where lower order n-grams made up the majority
of the model (which is more often the case when dataset
sizes are small). We hypothesise that the performance of the
n-grammodels in these smaller datasets will translate well to
tests on low resource languages which are also characterised
by similarly small datasets.

Recurrent Neural Networks
In the buildup to more advanced neural network based lan-
guage models, n-gram models can be replaced by a simple
feed forward neural network (FFNN) [1, 14]. By concatenat-
ing the previous 𝑛 − 1 word vectors as input to the network,
it is possible to train the network to predict (or classify) the
next word in the sequence. This is in effect a "neural n-gram".
This technique introduced its own limitations, namely that
the dimensionality of the input vector is directly related to
the vocabulary size and the context length. [11]

1Here "n-gram" refers to a sequence of token of length 𝑛
2Heafield et als. improvements are in the implementation efficiency, rather
than an improvement in model performance. However their approach en-
ables large, more scalable models to be used in turn leading to better per-
forming models on certain tasks.
3The order of an n-gram model refers to the size, N, of the context window



Review of Language Modelling Techniques for use in Low Resource Settings

A more appropriate network which can be used in place
of FFNNs for sequence modelling is the Recurrent Neural
Network (RNN). A benefit of RNN models over the described
FFNN is that at each time step only one token in the sequence
is fed as input, preventing the need for very large input
vectors as context length is increased. RNNs are well suited
to the sequential process of language modelling thanks to the
use of a shared hidden state or persistent model across time
steps [13]. Between each timestep the RNN model passes the
output of the hidden layer as input to the hidden layer in the
next timestep, allowing previous inputs to influence future
timesteps outputs. (Figure 1)

Figure 1: RNNs can be "unrolled" better showing the flow of
information between timesteps

This intuitively allows for modelling of sequential data as
the output at each time step depends not only on the cur-
rent input, but all those inputs that come before it. Critically,
RNN models are not limited to a fixed input or output se-
quence length allowing them to adapt to different sequence-
to-sequence tasks.

Formally an RNN can be described as follows: [9]
𝑎𝑡 = 𝑏 +𝑊ℎ𝑡−1 +𝑈𝑥𝑡

ℎ𝑡 = tanh (𝑎𝑡 )
𝑜𝑡 = 𝑐 +𝑉ℎ𝑡

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑜𝑡 )

(1)

When applied to languagemodelling, an additional change
is often made where the output from the network is fed
directly as input into the network in the following timestep
in cases where the model is intended to generate sequences
of tokens itself.(Figure 2) [28]
As each hidden layer output contributes to the result of

the hidden layer at the next time step, during training this
needs to be accounted for in the loss function. The back-
propagation through time (BPTT) algorithm allows for each
hidden layer to contribute to the loss at the previous timestep.
This repeated multiplication gradually pushes the gradients

Figure 2: A simple RNN network can be "unrolled" as a se-
quence of RNN cells, the output of each cell being fed as in-
put to the next

towards zero as sequence lengths increase. [16, 30] This is
known as the "Vanishing gradient problem" in which dur-
ing training the gradients tend towards zero, preventing the
model from learning to encode long context sequences. Vari-
ations such as LSTM models aim to increase the model’s
ability to model long term dependencies and thus improve
performance on sequence modelling tasks.

Long Short-Term Memory
Long Short-Term Memory (LSTM) models are a popular vari-
ation on the RNN architecture allowing for longer term de-
pendencies to be modelled effectively. An LSTM network
expands on the traditional RNN architecture by introducing
the "context" or "memory" vector which is passed between
timesteps in addition to the usual hidden layer vector. Put
simply the LSTM context vector encodes long term depen-
dencies by allowing the model to explicitly "decide" to add
or remove information from the context vector at each time
step.
A standard LSTM model with input and state size𝑚 and

𝑛 respectively can be described more formally in Melis et al.
as: [19]

𝐿𝑆𝑇𝑀 : 𝑅𝑚 × 𝑅𝑛 × 𝑅𝑛 −→ 𝑅𝑛 × 𝑅𝑛

𝐿𝑆𝑇𝑀 (𝑥, 𝑐𝑝𝑟𝑒𝑣, ℎ𝑝𝑟𝑒𝑣 = (𝑐, ℎ)
The updated state 𝑐 and the output ℎ can then be computed
as follows:

𝑓 = 𝜎 (𝑊 𝑓 𝑥𝑥 +𝑊 𝑓 ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑓 )
𝑖 = 𝜎 (𝑊 𝑖𝑥𝑥 +𝑊 𝑖ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑖

𝑗 = tanh(𝑊 𝑗𝑥𝑥 +𝑊 𝑗ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑗

𝑜 = 𝜎 (𝑊 𝑜𝑥𝑥 +𝑊 𝑜ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑜 )
𝑐 = 𝑓 ⊙ 𝑐𝑝𝑟𝑒𝑣 + 𝑖 ⊙ 𝑗

ℎ = 𝑜 ⊙ tanh(𝑐)

(2)



Luc Hayward

where 𝜎 is the logistic sigmoid function, ⊙ is the elementwise
product,𝑊 ∗∗ and 𝑏∗ are weight matrices and biases.
A major difficulty for LSTMs (and all RNN based mod-

els) is the inherently sequential nature of the network. This
necessitates that the model be trained on sequences of in-
put, making parallel training and prediction more difficult.
This becomes particularly apparent in large models due to
memory constraints. Furthermore, without proper regular-
isation’s LSTMs often suffer from overfitting the training
data. [21]

Regularisation in RNNs
Regularisation describes a set of techniques used to improve
generalisation performance of neural networks and prevent
overfitting. Attempts to apply standard techniques such
as dropout [26] are not successful when applied between
timesteps on the recurrent connection as it inhibits the mod-
els ability to retain long term dependencies. [21, 31] Merity
et al. introduced the use of a weight-dropped LSTM using
DropConnect[29] on the hidden-to-hidden weights. This
method is particularly useful as it is applied once to the
weight matrices before the forward and backward pass, al-
lowing the use of black box RNN implementations such as
NVIDIA’s cuDNN LSTM which can be many times faster due
to hardware optimisations [21].

Merity et al.[21] examined a range of regularisation tech-
niques, of which variational dropout[6] had the greatest
impact on model performance based off model ablation test-
ing.
Variational dropout generates a dropout mask once which is
then used over the entire forward and backward pass, rather
than resampling at every timestep.

AWD-LSTM
Merity et al. proposed a combination of DropConnect for
the hidden-to-hidden transitions within the LSTM and varia-
tional dropout over the inputs and outputs, the AWD-LSTM.[21]
In addition to the specified regularisation strategies, it in-
cludes the use of a neural cache [10], whereby the previous
hidden states are stored and the probability distributions
produced by the model and cache are combined to give a
final prediction. The neural cache is used as it was shown to
given an improvement on perplexity scores of 6-11 points
in the PennTreebank(PTB) and Wikitext-2(WT2) datasets
respectively. Moreover the hyperparameters can be tuned
on the validation set after having trained the model making
it a relatively inexpensive technique.[21]

Morgrifier
Morgrifier LSTM networks represent the current state of the
art RNN models and achieve state of the art performance on
certain datasets. Melis et al. [19] proposed an extension of the

standard LSTM in which the input is gated conditioned on
the output of the previous step resulting in an contextualised
representation of the input. This is achieved by gating the
input𝑋 0 on the output of the previous stepℎ0𝑝𝑟𝑒𝑣 , followed by
gating the output of the previous step (ℎ0𝑝𝑟𝑒𝑣) with the gated
X value (𝑋 1). This can be repeated more than once before
feeding the resultant 𝑋𝑛 and ℎ𝑛−1𝑝𝑟𝑒𝑣 into the LSTM. Setting
the number of round, 𝑛, to zero results in a standard LSTM.
As such the Morgrifier can be thought of as a preprocessing
step allowing the possibility of pairing it with other LSTM
variants which may lead to further improvements.

The model was tested on the PTB and WT2 datasets and
shown not only to outperform the standard LSTM models by
2.8-4.3 perplexity points [19], they also present a new state
of the art performance over the previous FRAGE [8] and
AWD-LSTM [21] models in both word level and character
level tests.

Furthermore in the larger Enwik8 character level dataset,
although unable to outperform the results achieved using
Transformer-XL[4], it was able to close the gap in cases
where model size was kept relatively small at 40-50M pa-
rameters. Additional tests on other language modelling tasks
showed that the model was capable of extending to non-
English datasets.

Quasi-Recurrent Neural Networks
Inspired by the RNN models, Quasi-Recurrent Neural Net-
works (QRNNs) [2] allowed for parts of the typical RNN
architecture to be computed in parallel. It was found that the
models were capable of state of the art results on the smaller
PTB andWT2 datasets while requiring shorter training times,
seeing as much as as 16x speedup over conventional RNNs
(longer sequence lengths led to greater differences in speed).
Similar performance on larger word-level datasets or in char-
acter level models was not found.

Transformer
Transformers are a relatively new form of language model
which rely solely on attention mechanisms, removing the
need for recurrence in the networks [28]. This results in a
more parallelisable model allowing for far faster training and
consequently enabling much larger models. Furthermore the
parallel nature of the model allows for much longer sequence
lengths, this coupled with the attention mechanism allows
for dependencies to be modelled over longer contexts than
would be possible in an RNN/LSTM network. In addition
to modelling longer term dependencies, transformer self
attention layers are faster to compute than recurrent layers
when the sequence length is smaller than the embedding
dimensionality.



Review of Language Modelling Techniques for use in Low Resource Settings

Standard transformer models are held back by the reliance
on a fixed length context which they are capable of encod-
ing. Transformer-XL [4] provides an approach to enabling
variable length input sequences to be processed and depen-
dencies longer than the length of the context to be captured.
Additionally performance is greatly improved as context frag-
mentation (the splitting of sentences or contexts due to fixed
size context window) is reduced. This is shown by testing the
model on the One Billion Word dataset which does not bene-
fit from long term dependencies, isolating the improvements
to the reduced context fragmentation. Specifically, reducing
context fragmentation results in an improvement in perplex-
ity from 27.1 to 25.2 points. [4] Transformer-XL introduces
recurrence in the form of reusing the hidden states obtained
in previous segments (more than one segmentmay be cached,
depending on the GPU memory available), the hidden states
thus act as "memory" resulting in the ability to model much
longer dependencies. Consequently the absolute positional
encoding of standard transformers is replaced with relative
positional encoding, further helping the model to generalise
to sequence lengths longer than those seen during training.
Due to their ability to model long range dependencies,

Radford et al. [23] demonstrated that a transformer model
trained on a sufficiently large dataset was capable of encod-
ing information required to perform a variety of language
modelling tasks such as question answering and machine
translation. Despite the performance achieved, training these
models is extremely computationally intensive. Specifically
the largest model produced, GPT-2, is an order of magnitude
larger than the previous GPT model produced by OpenAI.

5 DISCUSSION/COMPARISON OF METHODS
Gandhe et al. [7] showed that in spite of the current state
of the art models all being built from either Transformer
or RNN architectures, n-gram models have the potential
to outperform RNN models when small datasets (less than
100k) are used. However this could not take into account the
improvements offered by LSTM networks and other variants
on the RNN model.

We take particular interest in the results on both the PTB
and WT2 results of the discussed models as these are the
smallest of the commonly examined datasets and as such are
most likely to approximate the performance in low resource
languages where datasets are similarly restricted in size.

Chen et al. [3] showed in a comparison of different n-gram
model types, including both backoff and interpolated smooth-
ing, that modified Kneser-Ney smoothing consistently out-
performs all other tested models across multiple datasets.
Character level language models(LMs) are useful in re-

ducing the vocabulary size of a model whilst increasing the
number of tokens that must be generated whilst a word level

LM encodes more information into each token but is com-
putationally harder to train due to the increased vocabulary
size. Conversely, character level LMs are slower to process
than word level LMs and are more susceptible to the vanish-
ing gradients problem as many more tokens are needed to
provide context. [20]

Byte Pair Encoding (BPE) [25] represents a useful middle-
ground between character and word level models allowing
the vocabulary size to be tuned as an additional hyperpa-
rameter in the model. [22, 23] This is achieved by splitting
word level tokens into smaller subword tokens which are
common amongst many different words (although in real-
ity these sub words are built up by merging common pairs
of tokens starting from a character level vocabulary). Addi-
tionally as the set of subwords used to build up the model
vocabulary contains all the characters in the training set
as tokens, any novel word in the test set is still able to be
explained by the model. This "subword" technique is par-
ticularly useful in languages where compound words are
common, such as German, where a concept which would in
English be conveyed through multiple words is written as a
single compound word. [25]
In addition to the models discussed above, it has been

shown that in certain cases, provided enough compute re-
sources, a properly optimised and well trained more standard
model can produce comparable results and even out perform
some more complex models.[18] This is due to model per-
formance depending not only on the model architecture and
data available during training but also the tuning of the hy-
perparameters. The growth in computing power available
today makes it affordable to control for hyperparameter tun-
ing through the use of black box optimisers in spite of the
large computational costs involved.

Transformer models have been shown to be able to model
complex and long term dependencies making them partic-
ularly well suited for language modelling tasks. However
due to the performance seen when trained on large datasets,
little data is available to reliably predict performance in low
resource settings, however on the PTB dataset transformer-
xl set a new state of the art. In large datasets Transformer
models readily outperform previous state of the art models.
This suggests transformer models may generalise well even
on smaller datasets, although this is for specifically tuned
models. The more generalised GPT-2 is still prohibitively
expensive to train at this stage.

Based on these results we hypothesise that the Morgrifier
or AWD-LSTM variants should produce acceptable results on
the low resource languages to be examined. This is backed up
by their strong performance on a wide range of datasets with
particular emphasis on the PTB and WT2 datasets which are
relatively small compared to the more popular, large scale
datasets that transformers excel on. Whilst not discounting



Luc Hayward

n-grams for datasets which are particularly small, previous
results suggest that RNNs ability to model longer term de-
pendencies will produce better results. Transformers may
also produce good results based on the strong performance
on the PTB dataset set by Transformer-XL.

6 CONCLUSIONS
Due to the use of large scale datasets in language modelling
research many of the new state of the art models have been
trained and evaluated on datasets orders of magnitude larger
than those considered to be available in "low resource" lan-
guages. However the results from testing models against the
PTB and WT2 datasets could reasonably approximate the
results we hypothesise to find when training and evaluat-
ing on South African Nguni languages for which large high
quality datasets are not widely available.

ACKNOWLEDGMENTS
This work is based on the research supported in part by the
National Research Foundation of South Africa as well as the
University of Cape Town.

REFERENCES
[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin,

Jauvinc@iro Umontreal Ca, Jaz Kandola, Thomas Hofmann, Tomaso
Poggio, and John Shawe-Taylor. 2003. A Neural Probabilistic Language
Model. Technical Report. 1137–1155 pages.

[2] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher.
2017. QUASI-RECURRENT NEURAL NETWORKS. In International
Conference on Learning Representations. arXiv:1611.01576v2

[3] Stanley F Chen and Joshua Goodman. 1999. An empirical study of
smoothing techniques for language modeling. Technical Report. 359–
394 pages. http://www.idealibrary.comon

[4] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le,
and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive Lan-
guage Models Beyond a Fixed-Length Context. (jan 2019), 2978–2988.
arXiv:1901.02860 http://arxiv.org/abs/1901.02860

[5] Gernot A. Fink. 2014. Integrated Search Methods. In Markov Models
for Pattern Recognition: From Theory to Applications (2nd ed.), Sameer
Singh and Sing Bing Kang (Eds.). Springer, Chapter 12, 216. https:
//doi.org/10.10007/978-1-4471-6308-4

[6] Yarin Gal and Zoubin Ghahramani. 2016. A Theoretically Grounded
Application of Dropout in Recurrent Neural Networks. In Proceedings
of the 30th International Conference on Neural Information Processing
Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook,
NY, USA, 1027–1035.

[7] Ankur Gandhe, Florian Metze, and Ian Lane. 2014. Neural Network
Language Models for low resource languages. In Proceedings of the An-
nual Conference of the International Speech Communication Association,
INTERSPEECH. Carnegie Mellon University, International Speech and
Communication Association, 2615–2619.

[8] Chengyue Gong, Di He, Xu Tun, Tao Qin, Liwei Wang, and Tie-Yan
Lie. 2018. Frage: frequency-agnostic word representation. In Advances
in Neural Information Processing Systems. 1334–1345.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. [n.d.]. Deep
Learning. https://www.deeplearningbook.org/

[10] Edouard Grave, Armand Joulin, and Nicolas Usunier. 2017. Improving
neural language models with a continuous cache. In International
Conference on Learning Representations.

[11] Kenneth Heafield. [n.d.]. N-Gram Language Modelling including
Feed-Forward NNs. https://ufal.mff.cuni.cz/mtm16/files/08-n-gram-
language-modeling-including-feed-forward-kenneth-heafield.pdf

[12] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp
Koehn. 2013. Scalable Modified Kneser-Ney Language Model Es-
timation. In Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, Sofia, Bulgaria, 690–696. https:
//www.aclweb.org/anthology/P13-2121

[13] Sepp Hochreiter and Jürgen Schimdhuber. 1997. Long Short-Term
Memory. Nerual Computation 9, 8 (1997), 1735–1780. https://doi.org/
doi.org/10.1162/neco.1997.9.8.1735

[14] Yinghui Huang, Abhinav Sethy, and Bhuvana Ramabhadran. 2017.
Fast Neural Network Language Model Lookups at N-Gram Speeds. In
Interspeech. https://doi.org/10.21437/Interspeech.2017-564

[15] Dan Jurafsky and James H. Martin. 2015. Language Modeling with
N-Grams. In Speech and Language processing (2nd ed.). Chapter 4.

[16] Dan Jurafsky and JameH.Martin. 2019. Speech and Language Processing
(3rd ed.). https://web.stanford.edu/{~}jurafsky/slp3/

[17] R. Kneser andH. Ney. 1995. Improved backing-off forM-gram language
modeling. In 1995 International Conference on Acoustics, Speech, and
Signal Processing, Vol. 1. 181–184 vol.1.

[18] Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On the State of
the Art of Evaluation in Neural Language Models. In International
Conference on Learning Representations. arXiv:1707.05589v2

[19] Gábor Melis, Tomáš Kočiský, and Phil Blunsom. 2020. MOGRIFIER
LSTM. In ICLR. arXiv:1909.01792v2

[20] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. An
Analysis of Neural Language Modeling at Multiple Scales. (mar 2018).
arXiv:1803.08240 http://arxiv.org/abs/1803.08240

[21] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Reg-
ularizing and optimizing LSTM language models. In 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings. International Conference on Learning Representations,
ICLR. arXiv:1708.02182

[22] Sabrina JMielke and Jason Eisner. [n.d.]. Spell Once, SummonAnywhere:
A Two-Level Open-Vocabulary Language Model. Technical Report.
John Hopkins University, Baltimore, MD, USA. arXiv:1804.08205v4
www.aaai.org

[23] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. [n.d.]. Language Models
are Unsupervised Multitask Learners. Technical Report.
https://d4mucfpksywv.cloudfront.net/better-language-models/
language{_}models{_}are{_}unsupervised{_}multitask{_}learners.pdf

[24] Alessandro Scarcella. 2018. Recurrent neural network language models
in the context of under-resourced South African languages. Technical
Report. University of Cape Town, Cape Town. https://open.uct.ac.za/
handle/11427/29431

[25] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Ma-
chine Translation of Rare Words with Subword Units. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Computational Linguistics,
Berlin, Germany, 1715–1725. https://doi.org/10.18653/v1/P16-1162

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine learning
research 15, 1 (2014), 1929–1958.

[27] G Tur and R De Mori. 2011. Spoken Language Understanding: Systems
for Extracting Semantic Information from Speech. Wiley. https://books.

http://arxiv.org/abs/1611.01576v2
http://www.idealibrary.comon
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
https://doi.org/10.10007/978-1-4471-6308-4
https://doi.org/10.10007/978-1-4471-6308-4
https://www.deeplearningbook.org/
https://ufal.mff.cuni.cz/mtm16/files/08-n-gram-language-modeling-including-feed-forward-kenneth-heafield.pdf
https://ufal.mff.cuni.cz/mtm16/files/08-n-gram-language-modeling-including-feed-forward-kenneth-heafield.pdf
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121
https://doi.org/doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.21437/Interspeech.2017-564
https://web.stanford.edu/{~}jurafsky/slp3/
http://arxiv.org/abs/1707.05589v2
http://arxiv.org/abs/1909.01792v2
http://arxiv.org/abs/1803.08240
http://arxiv.org/abs/1803.08240
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1804.08205v4
www.aaai.org
https://d4mucfpksywv.cloudfront.net/better-language-models/language{_}models{_}are{_}unsupervised{_}multitask{_}learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language{_}models{_}are{_}unsupervised{_}multitask{_}learners.pdf
https://open.uct.ac.za/handle/11427/29431
https://open.uct.ac.za/handle/11427/29431
https://doi.org/10.18653/v1/P16-1162
https://books.google.co.za/books?id=RDLyT2FythgC
https://books.google.co.za/books?id=RDLyT2FythgC


Review of Language Modelling Techniques for use in Low Resource Settings

google.co.za/books?id=RDLyT2FythgC
[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Processing
Systems 30, I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus,
S Vishwanathan, and R Garnett (Eds.). Curran Associates, Inc., 5998–
6008. arXiv:1706.03762v5 http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf

[29] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus.
2013. Regularization of neural networks using dropconnect. In Inter-
national conference on machine learning. 1058–1066.

[30] P. J. Werbos. 1990. Backpropagation through time: what it does and
how to do it. Proc. IEEE 78, 10 (1990), 1550–1560.

[31] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2015. RE-
CURRENT NEURAL NETWORK REGULARIZATION. (2015).
arXiv:1409.2329v5 https://github.com/wojzaremba/lstm.

https://books.google.co.za/books?id=RDLyT2FythgC
http://arxiv.org/abs/1706.03762v5
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1409.2329v5
https://github.com/wojzaremba/lstm.

	Abstract
	1 Introduction
	2 Language Modelling
	3 Evaluating Language Models
	Perplexity
	Cross Entropy

	4 Model Architectures
	N-Gram
	Recurrent Neural Networks
	Long Short-Term Memory
	Regularisation in RNNs
	AWD-LSTM
	Morgrifier
	Quasi-Recurrent Neural Networks
	Transformer

	5 Discussion/comparison of methods
	6 Conclusions
	Acknowledgments
	References

