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ABSTRACT
Language models form an important starting point for many nat-
ural language processing tasks. Recent work in natural language
processing (NLP) has shown great advances in synthetic benchmark
scores when given sufficient training data. However comparatively
little work is done to improve language modelling techniques in
African languages. The use of Recurrent Neural Networks (RNNs)
has been shown to produce high performing language models on
English and other high resource languages. This paper examines
the performance of Long short term models (LSTMs) and Quasi
Recurrent Neural Networks (QRNNs) and their applicability to
South African low resource languages, with the aim of determining
whether the increased complexity of modern techniques sufficiently
improves on a more basic LSTM model. Testing across different
datasets shows that the newer, more complex variants continue to
significantly outperform more simplistic LSTM models. Moreover,
similar relative performance in both model accuracy and training
speed is seen between the LSTM and QRNN architectures as is seen
in English language testing.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Machine trans-
lation; • Information systems→ Language models.

KEYWORDS
languagemodelling, neural networks, low-resource languages, LSTM,
QRNN

1 INTRODUCTION
Statistical language modelling is an important part of many natu-
ral language processing tasks such as information retrieval, voice
recognition, machine translation, spelling correction and question
answering [3, 9, 18, 21]. Whilst this has been shown extensively in
languages such as English and Mandarin Chinese, resource rich lan-
guages where large datasets are available on which to test models,
many languages do not have datasets as large or of equal quality.
These languages are referred to as Low Resource Languages due to
the relative lack of data on which to train and evaluate language
models. Recent advances in language modelling have yielded signif-
icant improvements in performance, however these newer models
are typically developed with resource rich languages in mind. In
this paper we examine whether these improvements can also be
applied effectively in low resource South African languages. Addi-
tionally this paper examines whether the change in language affects
the relative performance of the models overall, and the impact of
different hyperparameters for the models on their performance.

This paper examines Long Short-Term Memory models (LSTM)
[12] and specifically the AWD-LSTM [17] and QRNN [2] variants
which we examine in further detail under Model Choice(3.3). We
hypothesise that the improved variations in LSTM models will
continue to show a performance increase over the standard LSTM
model on the examined South African Nguni languages, such as
isiZulu and Sepedi. Specifically the improved regularisation and
varying forms of dropout used by the AWD-LSTM variant to bet-
ter regularise the models and reduce overfitting. For the QRNN it
is hypothesised that the models will continue to train relatively
faster than the LSTM model architecture without sacrificing model
performance.

Long Short-Term Memory (LSTM) language models are a class
of artificial neural networks and up until recently had pushed the
state of the art in language modelling. While newer and more
complicated LSTM variants show a clear performance improvement
over the simpler basica LSTM models in a high-resource setting, it
remains to be observed whether these changes continue to yield
a significant improvement in the context of low-resource South
African languages.

In addition to the lack of high quality data for South African
languages, these languages are typologically1 very different to the
languages typically studied for language modelling. African lan-
guages can be classed as morphologically rich languages [19], lan-
guages in which grammatical relations (such as Subject, Object,
etc) are indicated by changes in the words rather than the relative
position of words in the sentence. Moreover african languages are
agglutinative, wherein the words within the language are made
up by combination of smaller morphological units or "sub-words".
This leads to potentially very large vocabulary sizes where each
word appears relatively few times, in spite of the "sub-words" on
their own being more prevalent across the vocabulary (as they are
used in the makeup of many different words).

We examined the effectiveness of the AWD-LSTM and QRNN
model architectures on isiZulu and Sepedi and compared the perfor-
mance against a more basic LSTMmodel without the newer models
improvements. Further we made use of byte pair encoding (BPE)
[22] to overcome the issue of extremely large word level vocabu-
laries. BPE is a technique which allowed for arbitrary vocabulary
sizes to be chosen without resulting in out of vocabulary tokens
and is explained in Byte Pair Encoding (3.4). Section 2 presents
background on the topics covered in this paper and related previ-
ous works. Section 3 describes the design of the experiments and
the implementation of the various models and testing frameworks
needed. Section 4 contains the results and a discussion thereof.

1Typology refers to the linguistic properties and characterization of a language.
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In section 5 we draw conclusions from the results, and finally in
section 6 we propose possible paths for future work on the subject.

2 BACKGROUND AND RELATEDWORK
2.1 Language modelling
A statistical language model can be defined as the probability distri-
bution of a set of strings over a given context[4, 21], or as a model
capturing the probability of a string S occurring in a given con-
text C. Properly trained models are able to capture more complex
structures such as grammatical rules based only on this statistical
distribution.

2.2 Evaluating Language Models
Language models can be evaluated either extrinsically or intrinsi-
cally. Extrinsic evaluation is done through integrating the model
into a real world application and evaluating whether the application
improves.[14] This could be constructed as user studies in which
participants may be asked to rate which generated text was "bet-
ter" in order to compare the output of text generation models for
instance. Intrinsic evaluation is the use of synthetic metrics to ap-
proximate the performance of a model in a real world environment,
and measure relative performance against other models. The ad-
vantage of intrinsic evaluation is that they require no user feedback
and can be measured independent of any specific application.

2.2.1 Perplexity. One way to measure the performance of a model
intrinsically is bymeasuring the probabilities assigned to each token
in a sequence on which the model has not been trained. In practice,
perplexity is used which measures the inegative log likelihood
assigned to the test set, normalised for the number of words in
the test set. [14] As perplexity is an inverse probability, minimising
perplexity scores is equivalent to better model performance over
the test set. Although this is not guaranteed to translate to better
performance in real world applications, it is much faster to calculate
perplexity and is an appropriate analogue when comparing models
initially.

2.2.2 Cross Entropy. Entropy can be thought of as the amount of
information encoded by some 𝑥𝑖 , alternatively lower entropy is
indicative of an event or value with a high probability of occurring
whilst a high entropy value implies the event occurs less frequently.
Measuring the entropy of a language requires measuring infinitely
long sequences, however the Shannon-McMillan-Breiman theorem
states an acceptable estimate of the entropy of a language 𝐿 can be
found for a sequence of length 𝑛 which is "long enough". Following
this, the cross entropy of a model𝑚 on some distribution 𝑝 can be
calculated as [14]:

𝐻 (𝑝,𝑚) = − lim
𝑛→inf

1
𝑛
log𝑚(𝑤1𝑤2 ...𝑤𝑛)

Cross entropy can be thought of as a measure of the overlap in
entropy between two sets. In the case of language modelling, cross
entropy measures howwell the entropy of the test set is captured by
the language model being examined. A lower cross entropy value
represents the model which best models the test sets distribution.
[21]

2.2.3 Bits Per Character. The bits per character or BPC is another
measure of the cross entropy of a language model. BPC attempts
to model the performance of models across vocabulary sizes, al-
though as with other measures direct comparisons across datasets
is not usually possible. The BPC is derived from the cross entropy
of the model, converted to base 2 if not originally calculated as
such, divided by the average number of characters per token for
models which are not character based. This allows for models to be
compared relative to one another in order to determine the optimal
vocabulary size.

2.3 Model Architectures
2.3.1 N-Grams. N-gram models are one of the simplest language
models, and are based on the Markov assumption that rather than
calculate all possible sequences of words, a model can approximate
the distribution of a language using a shorter sequence length 𝑁

to provide context [14]. This is done by basing the probability of a
word S in a sequence, on its frequency relative to the frequency of
all other sequences of the same length in the training corpus. More
formally:

𝑃 (𝑆𝑖 ) = 𝑃 (𝑆𝑖 |𝑆𝑖−1 ...𝑆𝑖−1−𝑛)
Where 𝑛 is the number of words (or values in the sequence) used
to provide context.
N-gram model complexity grows exponentially as more words are
considered in a sequence (increasing 𝑁 ). Additionally as sequence
length grows, the size of the training corpus must grow in order
to ensure there are sufficient examples of sequences to create an
accurate model. The simplicity of n-gram models leads to trou-
ble capturing long term dependencies where there are large gaps
between the relevant parts of a sequence. This is due to the expo-
nential increase in the number of possible n-grams (and thus model
size) as you increase the context window [6, 24].

2.3.2 Recurrent Neural Networks. In the buildup to more advanced
neural network based language models, n-gram models can be re-
placed by a simple feed forward neural network (FFNN) [1, 13].
By concatenating the previous 𝑛 − 1 word vectors as input to the
network, it is possible to train the network to predict (or classify)
the next word in the sequence. This is in effect a "neural n-gram".
This technique introduced its own limitations, namely that the di-
mensionality of the input vector is directly related to the vocabulary
size and the context length. [11]

Amore appropriate networkwhich can be used in place of FFNNs
for sequence modelling is the Recurrent Neural Network (RNN).
A benefit of RNN models over the described FFNN is that at each
time step only one token in the sequence is fed as input, preventing
the need for very large input vectors as context length is increased.
RNNs are well suited to the sequential process of language mod-
elling thanks to the use of a shared hidden state or persistent model
across time steps [12]. Between each timestep the RNN model
passes the output of the hidden layer as input to the hidden layer
in the next timestep, allowing previous inputs to influence future
timesteps outputs. (Figure 1)

This intuitively allows for modelling of sequential data as the
output at each time step depends not only on the current input, but
all those inputs that come before it. Critically, RNN models are not
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Figure 1: RNNs can be "unrolled" better showing the flow of
information between timesteps

limited to a fixed input or output sequence length allowing them
to adapt to different sequence-to-sequence tasks.

Formally an RNN can be described as follows: [10]

𝑎𝑡 = 𝑏 +𝑊ℎ𝑡−1 +𝑈𝑥𝑡

ℎ𝑡 = tanh (𝑎𝑡 )
𝑜𝑡 = 𝑐 +𝑉ℎ𝑡

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑜𝑡 )

(1)

Where {(t)} is the timestep, {x} is the input. {b} and {c} are bias
vectors whilst {U}, {V}, and {C} are the weight matrices for the input-
to-hidden, hidden-to-input and hidden-to-hidden connections re-
spectively. {o} is the unnormalized log probabilities of each value of
the discrete variable while {y} is the normalized probabilities over
the output.

When applied to language modelling, an additional change is
often made where the output from the network is fed directly as
input into the network in the following timestep in cases where
the model is intended to generate sequences of tokens itself.(Figure
2) [25]

As each hidden layer output contributes to the result of the hid-
den layer at the next time step, during training this needs to be
accounted for in the loss function. The backpropagation through
time (BPTT) algorithm allows for each hidden layer to contribute to
the loss at a fixed number of previous timesteps. This repeated mul-
tiplication gradually pushes the gradients towards zero as sequence
lengths increase. [15, 27] This is known as the "Vanishing gradi-
ent problem" in which during training the gradients tend towards
zero, preventing the model from learning to encode long context
sequences. Variations such as LSTM models aim to increase the
model’s ability to model long term dependencies and thus improve
performance on sequence modelling tasks.

2.3.3 Long Short-Term Memory. Long Short-TermMemory (LSTM)
models are a popular variation on the RNN architecture allowing
for longer term dependencies to be modelled effectively. An LSTM
network expands on the traditional RNN architecture by introduc-
ing the "context" or "memory" vector which is passed between
timesteps in addition to the usual hidden layer vector. Put simply

Figure 2: A simple RNN network can be "unrolled" as a se-
quence of RNN cells, the output of each cell being fed as in-
put to the next

the LSTM context vector encodes long term dependencies by allow-
ing the model to explicitly "decide" to add or remove information
from the context vector at each time step.

A standard LSTM cell, the computational unit for a single step,
with input and state size 𝑚 and 𝑛 respectively can be described
more formally as in Melis et al. : [16]

𝐿𝑆𝑇𝑀 : 𝑅𝑚 × 𝑅𝑛 × 𝑅𝑛 −→ 𝑅𝑛 × 𝑅𝑛

𝐿𝑆𝑇𝑀 (𝑥, 𝑐𝑝𝑟𝑒𝑣, ℎ𝑝𝑟𝑒𝑣) = (𝑐, ℎ)
The updated state 𝑐 and the output ℎ can then be computed as
follows:

𝑓 = 𝜎 (𝑊 𝑓 𝑥𝑥 +𝑊 𝑓 ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑓 )

𝑖 = 𝜎 (𝑊 𝑖𝑥𝑥 +𝑊 𝑖ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑖

𝑗 = tanh(𝑊 𝑗𝑥𝑥 +𝑊 𝑗ℎℎ𝑝𝑟𝑒𝑣 + 𝑏 𝑗

𝑜 = 𝜎 (𝑊 𝑜𝑥𝑥 +𝑊 𝑜ℎℎ𝑝𝑟𝑒𝑣 + 𝑏𝑜 )
𝑐 = 𝑓 ⊙ 𝑐𝑝𝑟𝑒𝑣 + 𝑖 ⊙ 𝑗

ℎ = 𝑜 ⊙ tanh(𝑐)

(2)

where 𝜎 is the logistic sigmoid function, ⊙ is the elementwise
product,𝑊 ∗∗ and 𝑏∗ are weight matrices and biases.

A major difficulty for LSTMs (and all RNN based models) is
the inherently sequential nature of the network. This necessitates
that the model be trained on sequences of input, making parallel
training and prediction more difficult as each step in the training
is impacted by each previous step in the sequence. This becomes
particularly apparent in large models as sequence length grows
in order to capture increasingly longer term dependencies, due to
memory constraints. Additionally, without proper regularisation’s
LSTMs often suffer from overfitting the training data resulting in
poor performance on unseen datasets. [17]

2.3.4 Regularisation in RNNs. Regularisation describes a set of
techniques used to improve generalisation performance of neu-
ral networks and prevent overfitting. Attempts to apply standard
techniques such as dropout [23] are not successful when applied be-
tween timesteps on the recurrent connection as it inhibits the mod-
els ability to retain long term dependencies. [17, 28] Merity et al. in-
troduced the use of aweight-dropped LSTMusingDropConnect[26]
on the hidden-to-hidden weights. This method is particularly useful
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as it is applied once to the weight matrices before the forward and
backward pass, allowing the use of black box RNN implementations
such as NVIDIA’s cuDNN LSTM which can be many times faster
due to hardware optimisations [17].

Merity et al.[17] examined a range of regularisation techniques,
of which variational dropout[8] had the greatest impact on model
performance based off model ablation testing. Variational dropout
generates a dropout mask once which is then used over the en-
tire forward and backward pass, rather than resampling at every
timestep. For the AWD-LSTM model, Merity et. al. proposed a
combination of DropConnect for the hidden-to-hidden transitions
within the LSTM and variational dropout over the inputs and out-
puts. Drop connect has a similar result as variational dropout (where
the is applied to the recurrent connections), although here the
dropout is applied to the recurrent weights. This helps to prevent
the overfitting of the recurrent connections.

2.3.5 AWD-LSTM. The AWD-LSTM is a variant on the standard
LSTM architecture which incorporates the improvements to the
regularisation techniques proposed by Merity et. al. These include
the Variational Dropout and Drop Connect techniques above as well
as Variable length backpropagation sequences, Embedding Dropout,
Weight Tying andActivation and Temporal Activation Regularization.

Variable length backpropagation sequences involves slightly
changing the sequence length for the forward and backward pass
such that the starting point for the BPTT window does not always
fall on the same tokens, leaving part of the dataset
(1/sequence_length specifically) unused. By changing the sequence
length slightly, this ensures that, given enough epochs of training,
all elements of the training set will be used. Embedding dropout is
equivalent to performing dropout on the embedding matrix at the
token level, and can be thought of as removing all instances of a
given token T from the sample. Activation and Temporal Activation
Regularization refer to L2 regularization and L2 regularization decay
respectively. L2 regularization is often used to control the network
weights to reduce overfitting by controlling the norm of the model.

2.3.6 Quasi-Recurrent Neural Networks. Inspired by the RNN mod-
els, Quasi-Recurrent Neural Networks (QRNNs) [2] allowed for
parts of the typical RNN architecture to be computed in parallel. It
was found that the models were capable of state of the art results on
the smaller PTB and WT2 datasets while requiring shorter training
times, seeing as much as as 16x speedup over conventional RNNs
(longer sequence lengths led to greater differences in speed). Similar
performance on the larger word-level datasets or in character level
models was not found.

2.3.7 Transformer. Transformers are a relatively new form of lan-
guage model which rely solely on attention mechanisms, removing
the need for recurrence in the networks [25]. This results in a
more parallelisable model allowing for far faster training and con-
sequently enabling much larger models. Furthermore the parallel
nature of the model allows for much longer sequence lengths, this
coupled with the attention mechanism allows for dependencies
to be modelled over longer contexts than would be possible in an
RNN/LSTM network. In addition to modelling longer term depen-
dencies, transformer self attention layers are faster to compute

than recurrent layers when the sequence length is smaller than the
embedding dimensionality.

Due to their ability to model long range dependencies, Radford
et al. [20] demonstrated that a transformer model trained on a suffi-
ciently large dataset was capable of encoding information required
to perform a variety of language modelling tasks such as ques-
tion answering and machine translation. Despite the performance
achieved, training these models is extremely computationally inten-
sive. Specifically the largest model produced, GPT-3, is an orders
of magnitude larger than the previous GPT models produced by
OpenAI.

3 DESIGN AND IMPLEMENTATION
3.1 Training Data
The Sotho-Tswana and Nguni language families are two of the
largest language families in South Africa, as such Sepedi and isiZulu
respectively were chosen as representative languages due to hav-
ing the largest dataset of similar size of the potential languages.
Standard practice was followed for research in language modelling,
the datasets were split into training, validation and test sets with
the BPE model trained only on the training set. The datasets were
collected from three separate sources. This allowed for the models
to be tested across different datasets. A comparison of the various
dataset sizes is available in table ??.

NCHLT: The South African Centre for Digital Language Re-
sources (SADiLaR) 2 provides monolingual corpora for all 11 of
SouthAfrica’s official languages. Corpora for Sesotho, Sepedi, isiZulu,
Siswati, Setswana, isiNdebele, tshiVenda and isiXhosa were col-
lected for the 2014 National Centre for Human Language Technol-
ogy (NCHLT) Text project [5]. A significant proportion of the texts
are scraped from governmental websites. The corpora range in size
from 1 to 3 million tokens. The Sepedi and isiZulu corpora were
used from this dataset. NCHLT is the largest of the three datasets,
with the isiZulu corpus having approximately ten thousand more
sentences but forty five thousand fewer total words than the Sepedi
corpus contained.

Newstools Isolezwe Corpus: News articles from the isiZulu
Isolezwe newspaper have been scraped and consolidated for the
newstools initiative3. The process has been automated and the
repository of news articles is updated on a continuous basis as
news articles are published. At the time of writing, we estimate
that this corpus contains under 1.2M words of acceptable quality.
However this provided only a Sepedi dataset and not isiZulu. The
Isolezwe dataset is comparable in the number of sentences to the
NCHLT-Sepedi corpus, though notably still has a similar total word
count as the NCHLT-isiZulu corpus.

Autshumato: The Autshumato4 dataset is aproximately one
third the size with respect to the total sentence counts, compared to
the other datasets chosen. Of note, the total word count for isiZulu
is approximately one quarter that of the other two datasets, whilst
the Sepedi corpus contains many more words and is only one third
the NCHLT-Sepedi corpus size in this regard. The data is drawn for
the South African Government domain and is presented as parallel

2Datasets are available at www.sadilar.org
3Available on Github at https://github.com/newstools
4Available at https://sourceforge.net/projects/autshumato/files/

https://github.com/newstools
https://sourceforge.net/projects/autshumato/files/
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corpora in a number of languages against English. This paper used
only the isiZulu and Sepedi data, English was also not used.

3.2 Data Processing
After downloading the data for the project from the different repos-
itories, each dataset goes through a data preprocessing step. In this
preprocessing stage a number of steps are taken to prepare the data
and normalise any inconsistencies. As most of the datasets originate
from articles scraped from the web, or scanned from government
documents, many instances of English, HTML and Javascript lines,
and other repetitive or erroneous data are mixed in. As these would
not naturally be found across general language they were removed
prior to splitting the datasets. After downloading the data, a num-
ber of lines was stripped from the start of each dataset to remove
any header info as well as removing the constitution from the Aut-
shumato datasets due to the sentences being poorly formatted and
out of order. The data was then cleaned by normalising punctua-
tion (such as quotations or ellipses), removing numberings (such as
"1.3.14" and (vii)) and trimming any whitespace or non-alphabetic
characters from the start of each sentence. Finally sentences which
were either too short (representing sections and headings) or sig-
nificantly too repetitive were removed. These parameters were
chosen experimentally to maximise both quality and quantity of
the remaining data and are different for each data source.

Each dataset was then split into a training, validation and test set
using an 80, 10, 10 split. The splits were done using sequential blocks
for each dataset, rather than a random permutation of sentences.
This was done so as to preserve the order or sentences and allow for
different batch sizes and sequence lengths to be used by the models
without changing the data processing stage. By keeping the splits
consistent across the different model runs no inconsistencies due
to changes in the training, validation or test data used that could
affect the models.

3.3 Model Choice
The initial choice of model centered around the AWD-LSTM model
proposed by Merity et. al. [17]. This was chosen in lieu of a more
recent model as it represents a foundational model upon which
more recent LSTM variants have improved. As additional models
against which the relative performance could be compared, it was
decided to explore the QRNN implementation from Merity et. al.
as well as a stripped down, basic LSTM model. The simpler LSTM,
without any of the improvements of the AWD-LSTM variant, was
created as baseline model. This model, the "Basic LSTM", would
serve as a reference point against which to compare the two more
complex models and determine whether the added complexity (and
thus training time) was offset by improved performance. These
three models were chosen in order to test whether similar relative
results would be found on our datasets as was found by Merity et.
al. on the PTB and Wikitext datasets when comparing the AWD-
LSTM and QRNN based models. Namely it is hypothesised that
the QRNN model will train faster whilst achieving equivalent or
better perplexity scores than the AWD-LSTM, with both models
significantly outperforming the basic LSTM.

3.4 Byte Pair Encoding
Byte Pair Encoding (BPE) [7] was originally designed as a compres-
sion technique, where the most frequent pair of bytes are replaced
with new unused byte and the substitution stored for later reference.
Sennrich et. al. [22] showed a variation of this algorithm could be
applied to word segmentation. In this method, characters rather
than bytes are merged together, one pair at a time, after starting
with an initial character level vocabulary (as well as a special end of
word symbol). For example, if the character pair ("A", "B") was the
most frequent pair this would be combined as a new symbol "AB"
and the merge would be recorded. The resulting merges represent
"subwords" of the vocabulary. Intuitively this can be though of in a
similar manner as making the word "colder" from the tokens "cold"
and "er". A BPE model has only one parameter, the final size of
the vocabulary. As each BPE model starts with a character level
vocabulary, the final vocabulary will be capable of encoding any
word in the original corpus as well as any unseen words. In such a
way BPE allows for the flexibility of an open vocabulary as with
character level models, as well as the efficiencies of word level
models whereby words can represented with fewer tokens.

For each model and dataset, a BPE model wast trained using a
vocabulary size of 5000 tokens, except in certain specific experi-
ments intended to determine a good vocabulary size for the models.
The BPE model was trained using only the training set for each
dataset. This was done to prevent the encoder from learning pairs
that may have been common in the validation or test set but did
not appear as often or at all in the training set. This would have
resulted in poorer performance by the models.

3.5 Overview of Experiment
The LSTM models were implemented in Pytorch and make use
of the AWD-LSTM framework [17], whilst the BPE preprocessing
uses the HuggingFace Library5. Models were evaluated intrinsically
by comparing the perplexity and BPC (Bits per character) scores
between the three models across the different datasets. In order
to train the models efficiently, Google Colab 6 and later the UCT
CHPC 7 were used for GPU access. The use of GPU training was
essential in order to allow for enough models to be in a timely
manner.

3.6 Model Evaluation
Models were to be evaluated intrinsically by comparing the BPC
and the perplexity of the models against each other. Specifically, by
comparing the performance of a basic LSTM network to the more
advanced QRNN and AWD-LSTM networks, it can be determined
whether these more complex networks would continue to yield im-
proved performance despite the low resource nature of the datasets
on which the networks are trained. In the case of results for which
the vocabulary sizes are different, the BPC scores were used to
approximate the performance across the models. This was done by
taking the bits per token value and normalising it by the average
token length for the dataset. The different models could thus be

5Available at https://github.com/huggingface/tokenizers
6Accessible at https://colab.research.google.com/
7Available at https://www.chpc.ac.za/

https://github.com/huggingface/tokenizers
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compared against each other on the same dataset, however com-
parisons across languages or datasets are not meaningful beyond
comparing the relative performance of models on their respective
datasets. For instance model A may be the better model for a given
dataset than model B whilst model B was better than model A on
an alternate dataset.

As the models examined are based largely or entirely off of the
frameworks made available by previous studies, the model imple-
mentations were first trained and tested on the Penn Treebank
(PTB) datasets and compared against the expected performance
as reported in the respective papers. This ensures that there were
no errors in the implementations that could affect model perfor-
mance as some changes to the code had to be made in order to
add the BPE encoders and fix some errors in the regularisation
parameters. Additionally the models were trained on systems us-
ing an unsupported version of CUDA which may have impacted
the performance. However it was determined that neither of these
factors affected the models with both the AWD-LSTM and QRNN
performing as reported by Merity et. al.

4 RESULTS AND DISCUSSION
In this section, the results of the experiments on the different mod-
els and their parameters are presented across the datasets and
languages. We discuss the implications of these results, possible
explanations for the outcomes and limitations of the experiments.
Detailed tables of results are available in the supplementary infor-
mation C. We examine each section and language largely in isola-
tion. This is due to the fact that comparing the results of language
models across datasets does not lead to meaningful comparisons.
Rather each dataset is considered in isolation and we will attempt
to draw some general conclusions in the final section regarding
any generalities in relative performance across the datasets.

4.1 NCHLT
The NCHLT dataset represents the largest portion of the experi-
ments tested due to its large size and varied, quality corpus of data
to work from. As such the testing and fine tuning of the models
parameters for each of the models tested on the other datasets was
refined initially on the NCHLT dataset. For both the QRNN and
AWD-LSTM models, the starting point was the parameters chosen
by Merity et. al. for their word level wikitext2 dataset. This was
chosen as it was the most similarly sized dataset to the NCHLT
isiZulu corpus. These results were effective but found to be improv-
able with larger models and longer training times. Although each
models results were stored, due to an undiscovered data error the
test results for the AWD-LSTM variant models for both NCHLT lan-
guages were not useable in the final results. The conclusions drawn
below are thus based solely off the validation data and cannot be
used as accurate or fair representations of the models performance
on unseen data when trained on this dataset.

4.1.1 isiZulu. The isiZulu corpus was chosen as the corpus for the
majority of testing when looking for the best model parameters as
it is present in both of the other two datasets used.

QRNN: The best model architecture overall was the QRNNmodel,
with the best models performing at least 0.08 bpc points (approxi-
mately 5% higher than the lowest bpc values) better than either the

Figure 3: Y-axis: Validation loss, X-Axis: epoch. A compari-
son of the AWD-LSTM model variants’ performance on the
validation set as training continues. The orange line repre-
sents the base AWD-LSTM model without any adjustments
to the intial parameters. The green, pink, grey line is the
same model, although the grey was able to train for longer.

AWD-LSTM or basic LSTM model variants.A number of variations
on the initial parameters were run in order to attempt to find the
best validation results. These included longer training times, chang-
ing the embedding size, changing the vocabulary size, changing the
number of hidden layers and changing the batch size (see Table 1).
Ultimately none of these variations produced significantly better
results than simply increasing the total size of the model by either
increasing the number of hidden layers or increasing the input
embedding size. Additionally, the tests involving the changing of
the vocabulary size were shown to not have a significant effect
on the overall model performance on the validation set. As such
going forward the QRNN model used the parameters of the model
labelled "wt2InspiredQRNNLongTrain", with a typical vocabulary
size of 5000, although the extra training length was omitted from
subsequent testing due to time constraints and a lack of evidence
that it significantly improved model performance based off the
validation set.

AWD-LSTM: A similar process as for the QRNN was followed
when optimising the AWD-LSTMmodel parameters. Figure 3 shows
the progression of validation score as the models train. The models
shown are the base AWD-LSTM model and a larger model (dou-
ble the embedding size at 800). Unlike the QRNN models where
increasing the model size did not drastically affect trianing speed,
here the AWD-LSTM is greatly impacted by the size of the model.
Although the larger model appears to train in far fewer epochs, it
should be noted that each epoch takes significantly longer. Though
both models were trained in approximately 12 hours, the larger
model took approximately 1.5 times as long per epoch. It was after
training this model that we were able to gain access to the UCT
CHPC which allowed for models to be trained far faster and more
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Val Order descriptive_name Test_BPC emsize nhid nlayers batch_size bptt dropouth wdrop nonmono vocab_size Val_BPC
1 wt2InspiredQRNNLongTrain 1.323 800 1550 4 40 70 0.2 0.1 8 10000 1.169039
2 testVocab7QRNNmk2 1.323 800 1550 4 40 70 0.2 0.1 8 7500 1.169542
3 wt2InspiredStuBiggerP100mk2 1.324 800 1550 4 40 70 0.2 0.1 8 5000 1.169857
4 testVocab2QRNNmk2 1.326 800 1550 4 40 70 0.2 0.1 8 2500 1.17255
5 testVocab10QRNNmk2 1.33 800 1550 4 40 70 0.2 0.1 8 10000 1.177129
6 wt2InspiredStuBiggerP100mk3SmallerEmbMoreLayers 1.339 400 1550 6 40 70 0.2 0.1 8 5000 1.183812
8 wt2InspiredQRNNBiggerBatch 1.339 400 1550 4 80 70 0.2 0.1 5 5000 1.195434
13 wt2InspiredQRNNBiggerBatch 1.4 400 1550 4 40 70 0.4 0.2 5 5000 1.245021
14 wt2InspiredQRNN_LongerBPTT 1.404 400 1200 4 40 120 0.2 0.1 5 5000 1.250593
19 wt2InspiredQRNN_NoRegularisation 1.548 400 1550 4 40 70 0 0 5 5000 1.392733
7 wt2InspiredQRNN 10 400 1550 4 40 70 0.2 0.1 5 5000 1.186465

Table 1: The different parameter tuning tests run on the QRNN model for NCHLT-isiZulu. Values in bold are changed from
the original QRNN parameters. Parameters which are consistent across all models are ommitted for brevity. The initial
wt2Inspired QRNN model was not tested beyond the validation set but is included for completeness. The NoRegularisation
model does not have any regularisation.

efficiently. As such in spite of the far longer training times it was
decided to continue the experiments using the larger model variant.

Basic LSTM The basic LSTM is a stripped down version of the
AWD-LSTM model. All additional regularisation techniques were
disabled leaving only the input dropout enabled. This serves to
provide an example of an older, more simple LSTM model. The
relative performance of this basic LSTM model would allow it to
be determined whether the added training time and complexity of
the two more complex models was effective. Our hypthesis that the
model would perform worse than the two more complicated models
was upheld during initial testing on this dataset. In addition to the
basic LSTMwith input dropout, we also exmined a basic LSTMwith
only variational dropout as well as with only embedding dropout.
It was found that the embedding and input dropout variants per-
formed similarly with only very minor changes in bpc results on
both the validation and test sets. This was expected as input and
embedding dropout both can be thought of as having similar effects,
reducing or removing a tokens impact on the model for a given
sequence. However the Variational only dropout showed slightly
better results of approximately 0.03 bpc on both validation and test
sets. This is likely due to variational dropout affecting many more
weights throughout the model than the other two dropout methods
at each step regardless of which words appear in the sequence.

4.1.2 Sepedi. Having completed the parameter tuning and decid-
ing upon the final models to test across the other datasets using the
results gathered from the isiZulu testing process. The relative results
of the models on the validation sets were the same as on the isiZulu
corpus, supporting the hypothesis that due to the similar nature of
isiZulu and Sepedi (both agglutinative African languages), models
would likely perform similarly when trained for either language
task. In this instance the difference in performance between the
QRNN, Variational dropout-only LSTM and input dropout LSTM
were also very close to the results from the isiZulu corpus. Again
this is likely due to the language similarities.

With respect to the basic Input Drop LSTM model, due to the
increased speed of the CHPC it was possible to run an additional
variant using a deeper LSTM with 3 hidden layers (up from one on
the basic model). However unlike the similarly sized AWD-LSTM or
QRNN models, this deeper basic LSTM trained erratically, rapidly
fitting the training data before stabilising at similar training scores
as the other basic LSTM models (see Figure 4). However the model

Figure 4: Y-axis: Training loss, X-Axis: epoch. Graph display-
ing the erratic training loss of the deep basic LSTM model
(blue) compared to the other LSTM models.

ultimately was unable to accurately model the validation data and
quickly diverged (see Figure 5)

4.2 Isolezwe
The Isolezwe dataset contained only an isiZulu corpus, no equiv-
alent Sepedi corpus was available. Isolezwe is roughly equivalent
to NCHLT in size and it was hypothesised that the results of the
different models tested would be equivalent to those seen on the
NCHLT isiZulu corpus. This hypothesis was upheld with respect to
the QRNN readily outperforming the other models tested. However
the AWD-LSTM model, though performing as expected relative to
the other models on the validation set, was unable to model the
validation set and was a full 1.68 bpc behind the QRNN and 0.8 bpc
worse than the next worst performing model (the "deep" basic (in-
put dropout) LSTM). This is a significant difference in performance
as bpc is on a log scale. It is not clear what caused the model to
perform this much worse than would be expected.
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Figure 5: Y-axis: Validation loss, X-Axis: epoch. Graph dis-
playing the growing inability of the deep basic LSTM to
model the validation dataset (blue) compared to the other
LSTM models (green: basic input dropout, orange: varia-
tional dropout only, red: AWD-LSTM model type).

4.3 Autshumato
The Authsumato dataset, being noticeably smaller than any of the
other datasets regardless of language, represents a much more
difficult modelling exercise. We hypothesised that a smaller AWD-
LSTM model would outperform the other model variants tested
due to the lack of training data available for the larger QRNN
model. However the QRNN outperformed all other models on the
isiZulu corpus and was within 0.008 bpc points of the AWD-LSTM
model variant on the larger sepedi corpus. Similarly the basic LSTM
model variants once again fell approximately 0.15 bpc behind the
other two models as in the other datasets (An interesting similarity
that the difference in bpc across the datasets remains steady, but
it should not be taken as a sign of any greater meaning beyond
coincidence due to similarly sized and constructed datasets. Direct
comparisons across datasets would not yield meaningful results). As
with the QRNN model, the isiZulu dataset though far smaller than
the Sepedi dataset resulted in similar relative performance among
the basic LSTM models as the other datasets, with the variational
only dropout model again outperforming the basic Input Dropout
and deep basic input dropout models. However the Sepedi corpus
tests resulted in the variational dropout underperforming all other
basic LSTM models tested. These results were unexpected as the
significantly smaller isiZulu corpus was expected to be more likely
to lead to different results than the other datasets given that it was
only one quarter the size due to large sections of badly constructed
test scans.

4.4 General Discussion
Overall the QRNN model architecture was the top performing
model in across all datasets and languages tested, with the excep-
tion of the autshumato sepedi dataset. On the larger NCHLT and

Isolezwe datasets, the QRNN model outperformed the other models
by at least 0.15bpc which represents a 10-15% increase in bpc for
the runner up model relative to the QRNN results. However for
the both autshumato datasets, the QRNN produced a very similar
result to the large AWD-LSTM model, with the AWD-LSTM in fact
producing a lower bpc (albeit by 0.008 points) than the QRNN in
the autshumato-Sepedi dataset. It is possible that the significantly
reduced size of the Autshumato dataset did not allow for the QRNN
to perform as well as it appears able to in the larger datasets relative
to the AWD-LSTM models.

In general the relative performance of the various models within
the datasets on the validation set was largely maintained. This
suggests that the chosen splits still allowed for an accurate rep-
resentation of the dataset in each split. With no one split being
decidedly different to each other. This is to be expected as each
dataset was drawn from similar sources, and specifically the Vali-
dation and Test sets were split from the last 20% of each corpus.

For all models across the datasets, although longer training times
were needed to produce the best possible results, the vast majority
of the models training improvements were completed within the
first 3 hours of the 12 hour training cycles used. This suggests that
the models could continue to improve if there was far more training
data available. This is expected as it is well known in other language
modelling tasks that this is a relatively small amount of training
data to be working with. Secondly this shows that in future works
on similar datasets, likely far more parameter tuning could be done
by stopping the training early as the relative performance of the
models typically did not change as training went on longer (see
Figure 6).

The hypothesis that the two more complex models would outper-
form the basic LSTM held in all test cases. This was not surprising
as though it is difficult to get large amounts of training data for
these languages, the training datasets we were able to collect were
still relatively similar in size to the English sets used by Merity et.
al., namely wikitext2. The only outlier contrary to this hpothesis
was that of the Isolezwe-isiZulu tests, in which the larger AWD-
LSTM model was the worst performing of the three model types
on the test set. This was doubly unusual as for the other datasets,
the relative ordering of the three models was largely maintained
(or the models performance was with less than 0.01 bpc points)
between the validation and test set results. However in this case
though the relative validation results were consistent with the other
datasets, the AWD-LSTM underperformed compared to the basic
LSTM models.

The limitations of these results are typical of language modelling
investigations andmachine learning as awhole. More data andmore
time tune hyperparameters would always be useful in improving
the breadth and reliability of results. The unexpected outliers in
the results of the isolezwe and autshumato datasets could be more
accurately examined by running multiple similar models to ensure
that the results could be consistently replicated and possible causes
examined. Further large datasets may contain other erroneous or
malformed sections as was the case in the Autshumato datasets,
which may have been missed due to the size of the datasets. Having
access to more reliable datasets structured as parallel corpus’ (as
with NCHLT) would further improve the examination of the models
across different languages.
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5 CONCLUSIONS
The conducted experiments demonstrated that the improvements
in regularization techniques and model architectures for RNNs over
the standard LSTM model continue to improve model performance
significantly when applied to African languages such as isiZulu and
Sepedi. Furthermore it was shown that the relative improvements
of QRNN models over the AWD-LSTM model variants seen in
English remain in African Language modelling tasks. Namely the
QRNN continues to train faster and produce equal or better results
than other models tested. These results are consistent with those
reported by previous works such as in Merity et. al. These relative
performance improvements are consistent across a range of dataset
sizes in both languages. This suggests that further improvements in
RNN based language modelling would likely be directly applicable
in low resource African languages going forward, without the need
to repeat the long testing process needed to optimise these new
models.

Additionally we show that the use of BPE to allow for open
vocabulary language modelling is an effective method to account
for the large word level vocabulary sizes of agglutinative African
Languages.

6 FUTUREWORK
The models examined in this paper, though once state of the art,
have since been iterated and improved upon further. Further work
could involve examining these more complex models to determine
whether there is sufficient training data to make use of their in-
creased complexity. Alternatively, this paper examined only intrin-
sic measures of model performance. Future works may choose to
explore a more user-centric study in which the trained models are
used to generate sequences of text which could be evaluated for
accuracy, readability and "humanness" metrics.
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Appendices

A DATASET SIZES

Sentences Words
Total Training Valid/Test Total Training Valid/Test

Autshumato isiZulu 27.5 22.0 2.8 330.8 264.6 33.1
Sepedi 33.9 27.1 3.4 684.2 547.4 68.4

Isolezwe isiZulu 76.9 61.5 7.7 1175.2 940.2 117.5

NCHLT isiZulu 96.8 77.5 9.7 1223.2 978.6 122.3
Sepedi 79.0 63.2 7.9 1696.6 1357.3 169.7

Table 2: A table showing the sizes (in thousands) of the used datasets. The sizes of each of the datasets are as found by manual
inspection, with the training and Validation/test sets estimates in an 80/10/10 split.

B ADDITIONAL GRAPHS

Figure 6: An illustration of the overall consistency ofmodel performance on the validations set relative to one another beyond
the 150th epoch or roughly the first 3 hours training. The lines (each representing a models performance over time) which
do no fit the trend are models which overfit the data, either by design or a lack of sufficient regularisation with respect to the
basic LSTM model variants.
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C OVERALL RESULTS




















