
A Comparative Evaluation of Deep Learning Approaches to
Online Network Traffic Classification for Community Networks

Project Proposal

Matthew Dicks
University of Cape Town
Cape Town, South Africa
dckmat004@myuct.ac.za

Jonathan Tooke
University of Cape Town
Cape Town, South Africa
tkxjon001@myuct.ac.za

Shane Weisz
University of Cape Town
Cape Town, South Africa
wszsha001@myuct.ac.za

CCS CONCEPTS
•Computingmethodologies→Neural networks; Supervised
learning by classification; • Networks → Network manage-
ment.

KEYWORDS
Network traffic classification, deep learning, community networks

1 PROJECT DESCRIPTION
Community networks have emerged as a promising solution to
providing internet connectivity in rural areas around the world.
These networks typically involve a small group of people coming
together to develop a network infrastructure in their local com-
munity. An internet gateway is then created to connect the local
network infrastructure to the wider internet [8]. It is important
that these community networks provide a positive user experience
to the network users for the full benefits of the network to be
experienced.

An approach commonly used to improve user experience on
networks is Quality of Service (QoS). QoS engineering works by
prioritizing the traffic from some applications over others in accor-
dance with the network’s requirements [2]. For example, a network
administrator may decide that it is critical that video calls provide
a "smooth" user experience. To reduce network jitter, latency, and
packet loss for video calls, the network can be configured to forward
video call packets before other packets. For the QoS mechanism
to be able to prioritize packets of a certain class before others, it
first has to classify incoming packets into their respective
application classes.

Traffic classification used to be a fairly straightforward task,
but with the increasing prevalence of encryption and other net-
work security standards, this classification has become challenging,
reducing the effectiveness of QoS. Researchers have investigated
increasingly advanced methods of performing this classification.
Most recently, studies have shown that deep learning algorithms
can demonstrate significant success in the online traffic classifica-
tion task. These algorithms usually work by using patterns within
a packet or time series features, both of which would be incompre-
hensible to a human attempting the same classification [9].

It is the recent success of deep learning classifiers and the need
for effective QoS in community networks that has inspired this
project. In addressing the traffic classification problem for com-
munity networks, some variations of the deep learning classifiers
discussed in related literature will be implemented. However, the
critical difference to conventional literature is that the choice and

evaluation of deep learning architectures will be informed by the
computational limits imposed by hardware constraints of commu-
nity networks. Furthermore, the classifier will be tested on traffic
from the Ocean View community network [5], which may have a
different distribution to data from networks that traffic classifiers
have traditionally been trained on.

2 PROBLEM STATEMENT
Although research into deep learning network traffic classifiers
has shown positive results in other studies, such studies have all
focused on classifying traffic for specific datasets and cannot neces-
sarily be generalized to traffic for all networks. Furthermore, the
limitations of building a computationally inexpensive model, sub-
ject to community network resource constraints, has not yet been
investigated.

2.1 Research Problems
Twomain research problemswill be targeted in the formation of this
project. The first is to build three different traffic classifiers using
different deep learning architectures. These deep learning models
will consist of a 1D Convolutional Neural Network (1D-CNN), a 2D
Convolutional Neural Network (2D-CNN) and a Long Short-Term
Memory (LSTM) model, which will be compared on the basis of
their classification accuracy. Furthermore, two benchmark models
will be built against which the three deep learning frameworks can
be further compared. The second research problem is to build these
models such that they can perform the classification within the
hardware constraints of community networks.

2.2 Research Questions
To address the two research problems outlined above, the following
key research questions are proposed:

(1) Which of the chosen deep learning architectures provides
the highest classification accuracy subject to community
network resource constraints?

(2) What is the least computationally expensive model that can
be built for each deep learning architecture such that it meets
a minimum accuracy requirement?

(3) Howmuch impact does the use of an advanced deep learning
framework (such as a CNN or LSTM model) have on classifi-
cation accuracy as compared to the more basic Multi-Layer
Perceptron (MLP) deep learning framework, assuming the
same computational requirements?



Matthew Dicks, Jonathan Tooke, and Shane Weisz

(4) Howmuch impact does the use of an advanced deep learning
framework (such as a CNN or LSTM model) have on classifi-
cation accuracy as compared to the Support Vector Machine
(SVM) traditional machine learning framework, assuming
the same computational requirements?

3 RELATEDWORK
Due to its many important applications, various approaches to
traffic classification have been studied extensively in literature. In
recent years, much of the research into traffic classification has
been around applying deep learning techniques to overcome the
difficulties of encryption of traffic. However, many such approaches
perform flow-based classification based on inter-packet features,
which is less suited to the real-time classification task necessary
for QoS. As such, the key works that are particularly relevant to
our project are rather those that use deep learning techniques for
packet-based classification (that is, classification based solely on
each individual packet).

One such study is deep packet by Lotfollahi et al. [7] who use 1D-
CNNs for packet-based classification. Lotfollahi et al. suggested that
1D-CNNs are ideal architectures for the traffic classification task
using packet data, since they are able to recognize dependencies
between successive bytes in order to learn key patterns that enable
successful classification. The paper explains that their deep learning
models are thus able to learn the distinguishable patterns within the
encrypted data that characterize applications, despite the content
itself being inaccessible due to encryption. Their results testify to
this end, with their 1D-CNNmodel attaining a highly impressive F1
score of 0.95, outperforming all prior similar works in literature that
perform classification on the same public dataset. This highlights
the success that deep learning can have on traffic classification
tasks.

A similar recent study performed by Wang et al [10] used the
same public dataset and achieved F1 scores of 0.96 and 0.98 for their
MLP and 2D-CNN networks respectively. The study also performed
experiments on a smaller, balanced version of the same dataset and
attained another impressive set of results, with the MLP reaching an
F1 score of 0.93 and the 2D-CNN achieving an F1 score of 0.96. The
slight drop in performance can be attributed to the reduced number
of data points on which they had to train and test the networks.
This is another example of how deep learning networks can learn
valuable representations from the raw high dimensional data that
comes from individual packets. The paper thus provides further
evidence for using deep learning as a tool in packet classification.

Whilst packet-based classification using deep learning has been
shown to be successful, to the best of our knowledge there are
no studies yet that consider computational resource utilization
constraints on deep learning models.

4 PROCEDURES AND METHODS
This section will be used to explain and justify the procedures and
methods that will be implemented in order to answer the research
questions.

4.1 Obtaining Network Traffic Data
The first step for the project involves accessing the community net-
work traffic data that will be used for training and testing our deep
learning models. To this end, we will be using a dataset that was
collected from the Ocean View community network in Cape Town
[5]. The data consists of numerous PCAP files that were collected
at the gateway of the network, capturing all traffic flowing between
the network and the Internet from February 2019 onwards. The
PCAP files have been copied to a data repository at the University
of Cape Town, through which we will accessing the data.

4.2 Preprocessing
The preprocessing stage will take as input a set of PCAP files, and
will label each packet and extract the raw data that will be used
as features. The stage will then transform those features so that
they can be used as input to the neural networks. This section will
describe the methods that will enable these tasks.

4.2.1 Packet labeling. The goal of this project is to use deep learn-
ing to perform traffic classification. Classification is a supervised
learning task. This means that each example must have a label asso-
ciated with it, which will allow the neural networks to learn from
their errors and adjust their parameters accordingly. The packets in
PCAP files do not have labels associated with them already, so we
will have to provide these labels. This will be done by splitting each
PCAP file into its respective flows using a tool called pkt2flow1. An
open-source deep packet inspection library called nDPI will then
be used to label each flow. Each packet associated with a given flow
will receive that flow’s label.

4.2.2 Feature extraction and transformation. The features that will
be used as input into the deep learning networks will be the bytes
extracted from the IP payload for each packet. This method was
chosen because it allows us to use both encrypted and unencrypted
packets. There is also evidence to suggest that using this data as in-
put into deep learning models in the context of traffic classification
can yield high prediction accuracy [7, 10].

Python has an open source library called scapy that will enable
us to process packets and flows found in PCAP files. The library has
methods that can extract the IP payload from packets and convert
it into bytes. These methods will be used to obtain the features
needed for each packet.

Once the raw data has been extracted from the packets, it has to
be transformed into an appropriate format so that a given model
can learn from it. For the 1D-CNN and the LSTM models, the one-
dimensional byte stream is an appropriate feature vector — the
only transformation that is necessary is to pad the vectors with
zeros to ensure that they are all the same length. The 2D-CNN
network accepts a two-dimensional image as input, therefore the
byte stream will have to be transformed into an image. This can
be done by creating an NxN matrix from the bytes in a stream.
Once the data has been transformed into the correct format, it will
be normalized to increase the learning algorithm’s stability and

1pkt2flow is a simple utility that classifies packets into flows. It takes a single PCAP
file as input and returns a set of PCAP files where each file contains a single flow. It is
available at: https://github.com/caesar0301/pkt2flow.



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification for Community Networks

decrease the training time, which could save valuable resources for
community networks.

4.2.3 Balanced dataset. Machine learning classification models
perform better when the number of examples per class are the
same [10]. If the classes are not balanced, then the model can learn
the unequal distribution between the classes and skew its predic-
tions in favor of the majority class – causing poor predictive ac-
curacy in the minor classes. To mitigate this, steps will be taken
to ensure that the dataset is balanced. Due to the large number
of packets collected from the Ocean View community network,
there will be enough examples even in the most underrepresented
classes. To create a balanced dataset we will thus randomly remove
examples from the majority classes until all the classes have the
same size.

4.3 Establishment of Benchmarks
To determine the minimum level of performance that would justify
using deep neural networks, we have chosen to implement a tra-
ditional machine learning model to be used as a benchmark. The
model that will be used as the benchmark will be the traditionally
highly successful Support VectorMachine (SVM). Besides the SVM’s
predictive capabilities, this model was chosen because it will be able
to learn and make predictions based on the same input data format
as the deep learning models. Other machine learning methods such
as Random Forests and Decision Trees would not be considered
viable options with such high dimensional data. Deep learning net-
works have a large number of parameters and are computationally
expensive to train and deploy – so, if our neural networks do not
significantly outperform the SVM, then the recommendation will
be against using deep learning models in community networks.

Since we will be implementing sophisticated neural network
architectures in the form of CNNs and an LSTM, we have decided
to compare these sophisticated models with the simpler MLP. The
CNNs and LSTM networks will have to have significantly greater
predictive accuracy to justify their additional features. The bench-
mark is also set up to help answer our third research question
regarding the impact of advanced deep learning frameworks com-
pared to the more basic MLP.

4.4 Learning the Sequential Patterns in the
Data

The byte stream obtained from each packet is inherently sequen-
tial, because the order of bytes matters. Long Short-Term Memory
(LSTM) networks and one dimensional Convolutional Neural Net-
works (1D-CNN) are built to learn from sequential data and have
consequently been chosen to detect the sequential patterns in these
byte streams.

The 1D-CNN has been chosen because it has two important
characteristics – namely sparse interactions and parameter sharing
– that enable it to be more computationally efficient. Sparse inter-
actions limit the amount of dependencies between neurons and
therefore reduces the training time, and parameter sharing means
that parameters can be reused which will decrease the memory
requirements needed by the network. This neural network architec-
ture also showed great predictive performance in a previous study
[7].

LSTM networks are a type of recurrent neural network that can
learn long term dependencies between inputs. Due to the success
of 1D-CNNs in previous studies, it is expected that a more powerful
sequence model would increase the accuracy. However, the increase
in accuracy of such a model does come at a price – because of the
inherently sequential structure of the LSTM model, it cannot be
trained or run in parallel, thereby increasing the training time and
its requirement for computational resources. Therefore, the 1D-
CNN may still prove to be the better model for community network
purposes, even if its accuracy is lower than the LSTM. As far as
we are aware, the LSTM network and the 1D-CNN have not been
directly compared in packet-based classification, and therefore this
project will yield novel results in this regard.

4.5 Learning the Spatial Patterns in the Data
There is also evidence to suggest that 2D-CNNs can be effective
for packet-based classification due to their ability to learn spatial
patterns in the data. Both the sparsity of information to be found
in the packet data, and the noisiness of the data in terms of vari-
ability amongst packets, provide justification for the suitability of
2D-CNNs for the packet classification task. This is supported by a
study done by Wang et al [10], who built a system called Datanet
that used a 2D-CNN to classify individual packets. They achieved
an F1 score of 0.96 and 0.98 on a balanced and an unbalanced dataset
respectively. Furthermore, the 2D-CNN has also achieved high ac-
curacy and F1 scores compared to other machine learning models in
classifying flows [1, 6, 11], which suggests that the network archi-
tecture is able to learn meaningful patterns in sequential data. The
2D-CNN also takes advantage of sparse interactions and parameter
sharing, which will make the network’s forward propagation pass
and the training timemore efficient. This is important in the context
of a community network. Whilst the LSTM and 1D-CNN neural
networks are designed to detect sequential patterns in data, the
2D-CNN architecture is a specialized kind of neural network for
learning spatial dependencies in data that has a known grid-like
topology, such as an image [4]. As a result, comparing the 2D-CNN,
the 1D-CNN and the LSTM networks will also allow us to deter-
mine whether the patterns within packet data are purely sequential,
or if there also exist useful spatial patterns that can be uncovered
through a grid-like topology in the data.

4.6 Implementation of the Machine Learning
Models and Deep Learning Networks

The deep learning networks will be built in Python using Tensor-
flow’s implementation of the Keras API. Keras was chosen because
it provides easy ways of building networks without sacrificing flex-
ibility. It also supports eager execution and input pipelines built in
Tensorflow, which will decrease the memory requirements when
training the models. The inputs will need to be padded in order
to be used as input for the models. Hence, another reason for us-
ing Tensorflow is that it supports automated padding. Removing
the complexity of building networks and data pipelines by using
these libraries will allow us to focus on hyperparameter tuning and
experimentation with different network structures.

The Support Vector Machine (SVM) will be built with Python’s
scikit-learn library. The decision to use this library was on the basis



Matthew Dicks, Jonathan Tooke, and Shane Weisz

that scikit-learn includes the ability to make multi-class classifica-
tions with an SVM model. This is important because we will be
classifying traffic into multiple application classes.

4.7 Hyperparameter Tuning
Hyperparameters are values that are set before the training of the
networks and therefore are not learned during the training process.
Some examples of hyperparameters in neural networks include the
network topology, the learning rate of the optimization algorithm,
as well as the training batch size and the number of training epochs.
Since these parameters have to be defined prior to training, the
best way to find the parameters will be to systematically try out
different combinations and then pick the best set. To do this, we will
be implementing randomized grid search together with k-fold cross-
validation. In this regard, for each neural network architecture, we
will enumerate the set of hyperparameters that need to be tuned,
including for example the filter size for the CNNs and the number
of LSTM cells for the LSTM model. For each hyperparameter in the
set, we will then list a suitable representative set of values that we
wish to explore, for example for the learning rate using values of
0.1, 0.05, 0.01 and 0.001. These possible values will then be used
to randomly choose combinations of the hyperparameters, each
of which will be used for retraining the model and evaluating its
performance using k-fold cross-validation. The combination that
produces the lowest cross-validation error will be an approximation
to the optimal set of hyperparameters and hence will be used as
the hyperparameters for the final model.

4.8 Evaluating the Models
To evaluate the performance of the models, we will be creating
training and test datasets. Networks will be trained and evaluated
on the training set using k-fold cross-validation. After this process,
the best models will be chosen and will then be evaluated on the
test set. The scores that are achieved on the test set will give us an
indication of each network’s ability to generalize to new examples.
The scores obtained on the test set will thus be used to compare
each model’s predictive power.

Themodels will be evaluated based on two characteristics, namely
predictive performance and computational efficiency. The metric
we will use for predictive performance is accuracy, and the formula
is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100

The computational efficiency of the algorithms will be measured
in two ways – the time it takes to make a prediction, and the
amount of memory needed to make a prediction. Since the algo-
rithms are going to be deployed to produce real-time classifications,
the speed of the predictions is key. Therefore, we will be using
the average time it takes a model to make a prediction as a metric
to analyze computational efficiency. To estimate the amount of
memory needed to make a prediction, we will use a python library
called tracemalloc that can calculate the amount of memory used
in a section of code. A prediction function will be implemented
and tracemalloc’s methods will be invoked to measure the memory
used by this function. The average amount of memory needed by

a given architecture to make a prediction will then be used as the
second metric to measure computational efficiency.

5 ANTICIPATED OUTCOMES
This section is going to describe what we expect to build and ac-
complish by the end of the project. It lays out the key aspects of the
system, the predicted impact that our project will have, and how
we expect to evaluate the success of our project.

5.1 System
The following subsections will describe the key software systems
that will have been built by the end of this project.

5.1.1 Data pipeline. The data pipeline will be used to implement
the preprocessing steps described in the preprocessing section (Sec-
tion 4.2). The pipeline will be the part of a system that takes in
raw traffic data and transforms it into an appropriate structure on
which networks can be trained and tested. It will be able to take in
a set of PCAP files, and for each packet, it will label it and extract
the data from it to provide the feature label pairs. It will then take
these feature label pairs, place them into batches, and pad them so
that efficient training can be accomplished.

5.1.2 Deep Learning Models. At the end of this project, we will
have trained and tested four deep learning models and one machine
learning model. It is expected that these models will be able to clas-
sify traffic based on raw byte streams obtained from a given packet’s
IP payload. These models will be coupled with the data pipeline
previously described, and using these two systems together, a user
will be able to train and classify both encrypted and unencrypted
traffic. We will also determine the relative performance of these
models based on accuracy and computational efficiency, which will
allow us to conclude which model or models will be best suited for
deployment in a low resource environment.

5.2 Impact of Project
Community networks host a wide range of application services
such as VoIP, content distribution, on-demand and live streaming
media, instant messaging, as well as back-ups and updates. The
challenge is that they have to provide these services on links and
servers with limited capacity. They also have to manage the diverse
and volatile resources in the network [3]. Therefore to be able to
provide successful QoS to the users, network administrators should
be able to know how their resources are being used – which our
project will help with. The traffic classification will provide a way
for the citizens and non-profit organizations who are running the
network to view which applications are using which resources, and
then network managers can analyse these patterns to ensure that
resources are being used in the most efficient way. Our systems
will also be able to perform near real-time classification that can be
used to adjust traffic engineering schemes, by giving certain traffic
types higher priority and deprioritizing others. This will enable the
networks’ QoS algorithms to provide a better experience for the
users in the network.



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification for Community Networks

5.3 Key Success Factors
To classify our project as a success, the following points will have
to be satisfied. Firstly, the data pipeline will have to be implemented
such that it can perform all of our preprocessing. The data pipeline
will have to be integrated with each of our models so that they can
be trained and tested on the preprocessed data. Furthermore, we
will have to correctly implement our machine learning model and
our deep learning networks so that they can yield valuable results.
We will have to perform rigorous experiments so that we can defini-
tively answer all of our research questions. Lastly, we will need to
determine whether deep learning is a suitable approach for real
time packet classification in a resource constrained environment.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

The project faces few ethical, professional, and legal issues. This is
largely due to the fact that the team is not interacting with individ-
ual people, or sensitive data that can be traced to individuals. The
most important ethical issue to consider is the confidentiality of
the aggregated network data that has been provided by the Ocean
View community network in South Africa for the purposes of train-
ing and testing our models. The network has granted permission
for the team to use the data for research purposes. However, it is
still important that the privacy of the network is protected, so the
team will ensure that the data is only accessed by the team and not
distributed publicly. There are no legal issues faced by the project.

Upon completion of the project, the source code will be made
public for future researchers to use and build upon. If the research
paper is published, it will be published under the creative commons
license as per the University of Cape Town’s policy.

7 PROJECT PLAN
In this section we provide a detailed account of our proposed project
plan, including key required resources, anticipated risks and asso-
ciated management strategies, a project timeline along with key
deliverables and milestones, as well as a specification of how the
work will be distributed amongst the team members.

7.1 Required Resources
The below categories contain our identification of the key data,
software and hardware resources necessary for the success of the
project.

7.1.1 Data. The primary data resource required for our project
is the iNethi [5] data logs, containing numerous PCAP files with
traffic traces collected at the gateway of the OceanView community
network. The packets in these traces, after being labelled, will
form the training and testing sets essential to the development of
successful deep learning classifiers.

7.1.2 Software. In terms of software, we will make use of the Any-
Connect VPN for off-campus login to UCT’s network in order to
access the iNethi data logs. The tools and libraries we plan to use
for preprocessing include pkt2flow for splitting packets into flows,
nDPI for labelling, and the Python library scapy for processing
packet data. We plan on using Python 3 as our primary program-
ming language for development of our deep learning models, and as

such key libraries we expect to use are numpy, pandas, matplotlib,
scikit-learn and tensorflow.

7.1.3 Hardware. We will be making use of our personal comput-
ers for the majority of the development process. However, when
training our deep learning models, we plan on utilizing a GPU to
speed up the training process, either through Google Colab or AWS.
Additionally, we may consider requesting access to UCT’s HPC
cluster for model training in order to further reduce training time.

7.2 Risks
We have identified a number of key risks that could be responsible
for significant project disruption if not appropriately anticipated
and managed. These have been detailed in the risk matrix in Ap-
pendix A, where each risk is outlined along with our estimation of
its likelihood, its impact on the project, the risk consequences, and
associated mitigation, monitoring and management strategies.

7.3 Timeline
The timeline for our project begins with work on the project pro-
posal from the 4th of May and culminates with a completed web
page showcasing our work on the 19th of October. The full detailed
breakdown of the project timeline can be seen in the Gantt Chart
in Appendix B. As shown in the Gantt chart, preprocessing and
benchmarks will be completed as a team, whereafter each team
member will work concurrently on an individual deep learning
architecture approach to the problem. Work on the project papers
will begin early in the development process, to allow for ample time
for change, feedback, revisions and developments.

7.4 Milestones
The table below outlines the key project milestones as specified by
the Computer Science Department.

Due Date Deliverable
12 May Literature Review
4 June Project Proposal
29 June Revised Project Proposal (after staff feedback)
3-11 August Initial Software Feasibility Demonstration
11 September Final Complete Draft of Paper
21 September Final Submission of Project Paper
25 September Final Submission of Project Code
5-9 October Final Project Demonstration
12 October Poster Due
19 October Web Page
TBA Open Evening

Of these, milestones of particular note regarding the culmina-
tion of the project are the submissions of our final papers on 21
September, the final submission of project code on 25 September,
the project demonstration in the week starting 5 October, and the
project poster and web page completed by 12 October and 19 Octo-
ber respectively. The dependencies between the tasks associated
with the milestones, and additional intermediary milestones, can
be seen on the timeline in the Gantt Chart in Appendix B.



Matthew Dicks, Jonathan Tooke, and Shane Weisz

7.5 Deliverables
The following is a list of the deliverables that will be produced
during the course of the project (with the literature reviews already
complete):

• Three literature reviews on deep learning approaches to
network traffic classification

• Project proposal
• A demonstration of software feasibility, including prepro-
cessing approach and implementation of deep learning mod-
els

• Three complete final papers evaluating each deep learning
technique’s success relative to our research objectives

• Completed software system with modules for preprocess-
ing the data, training each deep learning architecture, and
running the models on test data

• Project poster outlining key findings pertaining to our re-
search objectives

• Project web page with key components and deliverables
from the project

7.6 Work Allocation
As mentioned in reference to the project timeline, the project work
will be distributed amongst the team members. The team will to-
gether build data processing tools and conduct the data preprocess-
ing, in terms of dividing the raw PCAP files into flows and labelling
them accordingly. Additionally, the benchmark models — to which
our individual deep learning models will be compared — will be
developed together as a team. Thereafter, each team member will
begin individual work on applying their allocated deep learning
architecture to the classification task. Namely, Matthew will be

developing the LSTM RNN, Jonathan will be working on the 1D-
CNN and Shane will take on the 2D-CNN. The associated model
building, training, hyperparameter-tuning, testing and evaluation
of each implementation will thus be done individually. Thereafter,
the respective comparisons between the architectures in terms of
performance and resource utilization will be carried out together.

REFERENCES
[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.

2019. Mobile encrypted traffic classification using deep learning: Experimental
evaluation, lessons learned, and challenges. IEEE Transactions on Network and
Service Management 16, 2 (2019), 445–458.

[2] A. O. Adedayo and B. Twala. 2017. QoS functionality in software defined network.
In 2017 International Conference on Information and Communication Technology
Convergence (ICTC). 693–699.

[3] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro
Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Viñas,
et al. 2013. A case for research with and on community networks.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[5] iNethi Technologies. 2020. https://www.inethi.org.za/deployments/ Accessed:
2020-04-29.

[6] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. 2017. Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things. IEEE Access 5 (2017), 18042–18050.

[7] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[8] P. Micholia, M. Karaliopoulos, I. Koutsopoulos, L. Navarro, R. Baig Vias, D. Boucas,
M. Michalis, and P. Antoniadis. 2018. Community Networks and Sustainability: A
Survey of Perceptions, Practices, and Proposed Solutions. IEEE Communications
Surveys Tutorials 20, 4 (2018), 3581–3606.

[9] S. Rezaei and X. Liu. 2019. Deep Learning for Encrypted Traffic Classification:
An Overview. IEEE Communications Magazine 57, 5 (2019), 76–81.

[10] Pan Wang, Feng Ye, Xuejiao Chen, and Yi Qian. 2018. Datanet: Deep learning
based encrypted network traffic classification in sdn home gateway. IEEE Access
6 (2018), 55380–55391.

[11] Wei Wang, Yiqiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong
Huang, and Ming Zhu. 2017. HAST-IDS: Learning hierarchical spatial-temporal
features using deep neural networks to improve intrusion detection. IEEE Access
6 (2017), 1792–1806.

http://www.deeplearningbook.org
https://www.inethi.org.za/deployments/


A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification for Community Networks

APPENDIX A: RISK MATRIX

Risk Probability Impact Consequence Mitigation Monitoring Management
Higher difficulty col-
laborating between
team members, and
with supervisor, due
to working remotely
as a result of coron-
avirus restrictions

High Medium Slower project
progress due to
communication
delays. Potential for
miscommunication
resulting in further
delays to resolve
issues.

Use online confer-
encing tools such as
Jitsi, project manage-
ment tools such as
Trello and communi-
cation platforms like
Slack in order to op-
timize our remote
workflow.

Have regular meet-
ings with supervisor
and team members
to ensure all parties
are on the same page
and understands
where each other is
at.

Emphasize stronger
communication
and allocate more
time each week
towards collaborat-
ing with team and
ensuring mutual
understanding of
progress.

Insufficient practical
background and expe-
rience in applied deep
learning

Low High Project delays due to
extra time that must
be spent understand-
ing how to apply the
architectures at the
time of implementa-
tion.

Spend time before
the project term on
online coursework
and regular reading
and practice in
the area to ensure
sufficient prepa-
ration for when
implementation
starts.

Practice apply-
ing deep learning
through assignments
and applications
in typical problem
domains to check
understanding of
techniques.

Seek additional
sources for technical
information and
allocate more time
to the project to ce-
ment deep learning
understanding and
be able to implement
accordingly.

Difficulties with la-
belling the dataset effi-
ciently, and associated
project delays

Low Medium Unable to begin
work on the core
part of the project
- the deep learning
classification - until
labelling of training
data complete.

Spend a lot of time
before the project
term researching and
deciding upon the
best candidate tools
and pipeline script-
ing approaches for
preprocessing.

Test labelling and
preprocessing ap-
proach on a few
sample PCAP files
to identify potential
difficulties.

Consider restricting
flows to, for example,
HTTP flows in order
to make the labelling
task easier. Consider
using a public la-
belled dataset.

Insufficient hardware
for training deep
learning models

Medium Medium Significant disrup-
tion to project due
to difficulties in
training models in
reasonable amounts
of time.

Find and decide
upon suitable GPU
architectures to use
for training, such
as through AWS or
Google Colab.

Test GPU architec-
tures beforehand
to make sure they
are suitable for
training come
implementation
time.

Consider requesting
access to UCT’s HPC
cluster to improve
training time.

Team member drop-
ping out

Low Medium The component
of the research
objectives this team
member was respon-
sible for may need
to be dropped, and
the parts done as a
team will require
more work from the
remaining members.

Have regular check-
ins amongst team
members, and offer
significant emotional
support for one an-
other.

Communicate regu-
larly with teammem-
bers to monitor each
other’s progress and
well-being.

Work would have
to be redistributed
amongst remaining
team members, and
they will have to allo-
cate more time to the
project to ensure re-
maining research ob-
jectives are fulfilled.

Not meeting final
deadline

Low High Inability to complete
project report in
time, resulting
in failing course
objectives.

Communicate regu-
larly between team
members to ensure
each person’s work
is within scope and
on schedule.

Utilize regular
progress checks
between team mem-
bers and supervisor,
in line with the
timeline specified in
our Gantt chart.

Consider redefining
project scope, after
consultation with su-
pervisor, to allow for
timely project com-
pletion



Matthew Dicks, Jonathan Tooke, and Shane Weisz

APPENDIX B: PROJECT TIMELINE


	1 Project Description
	2 Problem Statement
	2.1 Research Problems
	2.2 Research Questions

	3 Related Work
	4 Procedures and Methods
	4.1 Obtaining Network Traffic Data
	4.2 Preprocessing
	4.3 Establishment of Benchmarks
	4.4 Learning the Sequential Patterns in the Data
	4.5 Learning the Spatial Patterns in the Data
	4.6 Implementation of the Machine Learning Models and Deep Learning Networks
	4.7 Hyperparameter Tuning
	4.8 Evaluating the Models

	5 Anticipated Outcomes
	5.1 System
	5.2 Impact of Project
	5.3 Key Success Factors

	6 Ethical, Professional and Legal Issues
	7 Project Plan
	7.1 Required Resources
	7.2 Risks
	7.3 Timeline
	7.4 Milestones
	7.5 Deliverables
	7.6 Work Allocation

	References

