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ABSTRACT
Community networks are networks that are run by the citizens for
the citizens. Communities build, operate and own open IP-based
networks which promotes individual and collective participation.
These networks run with less resources than traditional Internet
Service Providers so understanding how these resources are be-
ing used is necessary to ensure a good Quality of Service. Traffic
classification has played an important role in helping achieve this.
This literature review will look at how deep learning has been im-
plemented to classify internet traffic. It will compare the different
deep learning architectures based on their predictive performance
as well as their computational efficiency and will also look at the
different ways that data can be extracted from network traffic and
compare their performances. It can be seen from this review that
deep learning outperforms conventional machine learning methods
and that raw data outperforms hand picked features. These findings
show that deep learning will be a key tool used to better understand
community networks.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks; • Networks → Network monitor-
ing.
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1 INTRODUCTION
This literature review will give a background on deep learning
methods used for traffic classification, the process of categorizing
network traffic into appropriate classes, and their potential to be
implemented in community networks. Traffic classification has be-
come vitally important to advanced network management. Quality
of Service (QoS) control, pricing, planning resource usage as well
as malware and intrusion detection all rely on accurate traffic clas-
sification [16]. Due to the increased throughput of internet traffic,
as well as new technology such as the Internet of Things (IoT)
becoming more prevalent in our lives, it is becoming vital to un-
derstand how a network’s resources are being allocated. Accurate
traffic classification will help network management understand
what applications are using the resources, and with this informa-
tion a better allocation of resources can be realized. This will help
in achieving the ultimate goal of this project, which is to improve
the quality of service and traffic engineering in the context of a
community network.

This project aims to to utilize deep learning to classify encrypted
internet traffic for the purpose of improving the QoS and traffic

engineering in community networks. Different deep learning ar-
chitectures and data collection techniques will be analysed. Their
accuracy and computational efficiency will be compared to deter-
mine the best model suited for traffic classification in a community
network.

Previous traffic classification methods used port numbers, Deep
Packet Inspection (DPI) or features hand crafted by an expert to
classify internet traffic. There are a number of issues with each of
these approaches. Using port numbers for traffic classification is the
simplest and fastest way to classify internet traffic but due to port
obfuscation, random port assignments, port forwarding, protocol
embedding and network address translation (NAT) the accuracy
of port-based methods has decreased [13]. The accuracy of DPI
methods have been reduced due to the increase in the amount of
encrypted traffic and user privacy agreements. DPI also has a large
computational overhead [16]. Features that have been handcrafted
by an expert can suffer a lack of generality because they focus on
only a few key features. Aceto et al notes that these hand-crafted
features rapidly become outdated due to the evolution and mix of
internet traffic. It is also an expensive method because experts have
to be hired and the hand picking procedure is subject to human
error [2].

Deep learning is a proposed solution to these issues. Deep learning
can learn a hierarchical set of features from raw or statistical flow
data. It therefore removes the need for features to be hand crafted
by an expert and also promises to be able to classify encrypted
traffic. A system can leverage the power of this approach to build
an end-to-end deep learning system which will limit the need for
feature selection and engineering which would reduce the amount
of prepossessing. Deep learning houses powerful architectures such
as convolutional and recurrent neural networks that can learn the
spacial and temporal patterns in the data. These methods thrive
when large amounts of data are available which makes it a great
approach to classify traffic.

2 COMMUNITY NETWORKS
A Community network is a network that is run by the citizens
for the citizens, where communities build, operate and own open
IP-based networks [3]. These networks promote individual and col-
lective digital participation in rich, poor, rural and urban areas [14].
They also have minimal barriers to entry because their governance,
knowledge and ownership is open [14]. These networks are usually
run by non-profit organizations who can interact with stakeholders
to provide services such as local networking, voice, data and inter-
net access [14]. Community networks are large-scale distributed



Matthew Dicks (DCKMAT004)

and decentralized systems with many nodes, links, services and traf-
fic. They are also characterized by their dynamic and heterogeneous
behavior [14].

2.1 The potential for traffic classification in
community networks

Community networks house a wide range of application services
such as VoIP, content distribution, on-demand and live streaming
media, instant messaging as well as back-ups and updates, but the
challenge is that they have to provide these services on links and
servers with limited capacity. They also have to manage the diverse
and volatile resources in the network [3]. Therefore to be able to
provide a good QoS to the users, network managers should be able
to know how their resources are being used. This is where traffic
classification comes in, it will provide a way for the citizens and
non-profit organizations who are running the network to view
what applications are using what resources. This will allow them to
take more informed actions to try and improve the QoS delivered
to their customers.

The end goal of this project will be to perform traffic classifica-
tion with deep learning models. These models have a large number
of parameters, which makes training and running them compu-
tationally expensive. Community networks try to provide their
service at a low cost and one of the ways they do this is to use
cheaper hardware and resources [3]. Since these models will need
to be deployed in a low resource environment they will need to be
compared not just based on their predictive performance but also
on their computational efficiency.

3 DATA COLLECTION TECHNIQUES
In machine learning the models are only as good as the data that
they are trained on. That is why it is imperative to collect a large
and representative data-set. This will allow the models to generalize
and perform well on unseen data. In the context of traffic classifi-
cation there are a few public data-sets but there is no commonly
agreed upon data-set that can be used for most traffic classifica-
tion problems [16]. This poses an issue because without an agreed
upon data-set it becomes hard to compare models, feature selection
techniques and performance across research papers. A common
data-set that has been used by some of the papers reviewed is the
“ISCX VPN-nonVPN” traffic data-set [5]. Models produced and sys-
tems built using this data-set can be reliably compared. The other
research done used public data-sets specific to the problem they
were working on, for example intrusion detection. Some researchers
collected their own data, Taylor et al created their own data-set
by creating accounts for applications and simulating interactions
which allowed them to perform application fingerprinting [17].
Since there is no single data-set to test and compare models, care
must be taken to ensure that reliable conclusions about the perfor-
mance of models are drawn.

Another area where the research differs is in data labeling. Ob-
taining the labels is often not trivial and in some studies labels
have to be obtained by by free DPI modules such as nDPI [16]. This
restricts the performance of the models being investigated.

One of the benefits of using deep learning is that the models can
learn a hierarchical set of features from raw data. This raw data can
come from individual packets or traffic flows. Some studies have
also used statistical data to classify packets or flows into categories.
This section will give an overview of how the data was extracted
from network traffic so that it could be used as input into a deep
learning model.

The object of classification can either be flows or packets. This
section is split into Flow and Packet classification since the inputs
provided to the models and the effect of the inputs on the mod-
els may differ depending on whether flows or packets are being
classified.

3.1 Data Collection for Flow Classification
More often than not the object of classification are flows [2], these
flows can be bidirectional or unidirectional. Bidirectional means
that the traffic flows in two directions, from source to destination
and from destination back to source. Unidirectional means that the
source to destination and destination to source paths are regarded
as different objects. Wang et al found that bidirectional and uni-
directional flows performed the same for data extracted from all
protocol layers, but bidirectional outperformed unidirectional by an
average accuracy of 2.15% on application layer data. The increase
in performance that comes from adopting flows as bidirectional
can be attributed to the extra interaction information which allows
the model to learn more features [21].

3.1.1 Types of data for flow classification.
In the papers that were reviewed it can be seen that there are four
approaches to collecting data from a traffic flow [2, 4, 12, 20, 21].

The first approach is to take raw data, in the form of bytes, from
some of the packets in the flow. This approach can be further di-
vided into two categories which are defined by where the data was
taken from in the packet. L7 data is where the data is only taken
from the application layer, and ALL data is where the data is taken
from all protocol layers. In application classification it is argued
that only the application layer data, L7, is relevant [21] because
this is where the characteristics of the traffic reside. The reason
ALL data is proposed is because it contains application layer data
and it reserves more information for the phase of encryption nego-
tiation [21]. An advantage of taking data from individual packets
is that you now have sequential data. This means that you have a
time dimension where temporal patterns in the data can be learned
by powerful sequence models like LSTMs.

Another approach is to extract raw data from a flow. This mean that
you only consider the first N bytes from the flow and you do not
care about individual packets [20]. The issue with this approach is
that you may be throwing away valuable time related information
that sequence models will be able learn, which would lead to in-
creased predictive performance. The advantage of just considering
the first N bytes is that it is a simple and computationally cheap
way to extract the data and since these models will be deployed in
community networks with less powerful resources, this will save
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valuable computational power.

The third approach that will be discussed is to get time series data
like packet sizes, packets directions and inter-arrival times from
individual packets [16]. The studies will take the first N packets
in a flow and extract this information for classification. This data
can also be used in conjunction with header information such as
port numbers [16]. When using deep learning models, usually more
data yields better results, the problem with using time series data
instead of raw packet data is that it compresses the data for a given
packet into a lower dimensional space which reduces the amount
of information given to the models. This method can work well
with standard machine learning methods that cannot handle high
dimensional data but deep learning models, such as CNNs and
LSTMs have this ability [16]. However, an advantage of reducing
the dimensions of the input data is that it will lead to smaller models
which will be cheaper to train and deploy on community networks.

Flow statistics is the fourth way that data can be extracted from a
flow. Examples of flow statistics are means, standard deviations as
well as minimums and maximums for packet sizes and inter-arrival
times. The advantage to using flow statistics is that it keeps the
input dimensions low and allows us to build classical machine learn-
ing classifiers and sometimes multi-layer perceptrons (MLP) [16].
This approach needs to use more packets from a flow so that esti-
mates do not have too much variance, [16] notes that this may not
be suitable for fast real time classification.

3.1.2 Comparison of performances for the types of flow classifica-
tion data.
As mentioned above a common approach to flow classification is
to look at the data provided by individual packets.Wang et al ex-
tracted raw data from packets in a flow to create an image for the
flow, which was then classified by a one dimensional convolutional
network. Bytes where taken from either the application layers (L7)
or bytes were taken from all protocol layers (ALL) [21]. When
comparing the different types of data extracted from the packets
it can be seen that on average ALL data out performed L7 [21].
This could be because information from previous layers, such as
the transport layer, house extra information about the application.
Aceto et al compared ALL and L7 data to hand picked time series
and header features obtained from the first twenty packets. The
models performed better on the ALL and the L7 data [2]. A pos-
sible explanation for this would be that the hand picked features
compressed the raw data which caused important information to
be lost. It also showed the power of deep learning’s ability to learn
general patterns from raw information.

Studies such as [4] allowed us to compare whether packets sizes,
inter-arrival times and packet directions obtained from the first ten
packets outperformed flow statistics. Flow statistics in this study
refers to means, standard deviations and minimums and maximums
for packet sizes as well as inter-arrival times. For standard machine
learning models such as Support Vector Machines (SVM) and Ran-
dom Forests (RF) there was no clear evidence to show that one
input type was better then the other. However, for the multi-layer
perceptron (MLP) the packet sizes, inter-arrival times and packet

directions from individual packets outperformed flow statistics by
an average accuracy of 6.21% [4]. A possible reason for the added
performance is because statistics per packet have a time series as-
pect to them and deep learning models, like MLPs, can learn this
extra information.

Using the first 600 bytes in a flow Wang et al achieved an accuracy
of 99.69% [20]. This shows that raw data obtained from a piece
of the flow, and not just from specific packets in a flow or flow
statistics, can also lead to very good performance. Note that this
method was not compared to a method that leveraged a time series
component.

If data is going to be hand picked from packets it is important
to know what features give the best performance. Lopez-Martin et
al used the first twenty packets with six features each to classify a
flow. The features that they used were source and destination ports,
TCP window sizes, inter-arrival times and packet directions. They
compared the importance of the features and found that source
and destination ports were the most important features and the
models lost 15% accuracy when they were removed [12]. This is
not surprising since it is known that port numbers were essential
in traffic classification and should still be a key part of a packets
features.

3.2 Data Collection for Packet Classification
Amore fined grained approach would be to classify individual pack-
ets. The next few studies show that individual packet classification
is possible and can yield very good results.

When doing individual packet classification times series features
are not useful since you only have one packet. This means that
individual packet classification is tough but deep learning offers a
solution. As it has already been said deep learning has the ability
to learn high dimensional data [16] and therefore it can learn from
the raw data of a packet.

Using the ISCX VPN-nonVPN traffic data-set Lotfollahi et al clas-
sified individual packets into categories such as chat, email and
streaming. When dealing with individual packets additional pre-
processing is needed. They disguarded any packets with SYN, ACK
or FIN tags that had no payload and they removed the Ethernet
headers. Using the first 1480 bytes of the IP payload as well as
the IP header as input, they obtained an F1 score of greater than
92% for both of their deep learning architectures. The researchers
masked the IP addresses because they only used a limited number
of hosts and servers [13]. This did not allow the model to use the
information provided by the IP addresses which would have caused
unreliable results.

In a similar study, [19] used the same data as [13] but disregarded
the IP header and got performance of greater than 96%. They also
used the ISCX VPN-nonVPN traffic data-set. The data that this
study used was unbalanced which could affect the models’ perfor-
mance. The deep learning models would have learned the unequal
distribution of classes and skewed its predictions in favor of the
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majority class, which could have caused poor performance in the
underrepresented classes. The study did not show per class perfor-
mance which would have been vital information to determine how
well the model classified underrepresented classes. To counter this
the researches used the same model architectures on a balanced
version of the same data-set and got results that were 2 to 3 per-
cent less [19]. This could be due to less data in the training set,
which have would affected the model’s learning and it would have
increased the variance in the test set. Therefore there is insufficient
evidence to suggest that the drop in performance was because of the
balanced data. The study did manage to build a remarkably accurate
model with over 90% on both unbalanced and balanced data which
shows that using raw data for individual packet classification to-
gether with deep learning can provide good predictive performance.

This section described and compared the different ways the data is
extracted from traffic flows and/or packets. How this data is trans-
formed to be used as input to a deep learning model will be talked
about in the context of specific deep learning architectures.

4 SUPERVISED LEARNING
Supervised learning is the process where models predict values
or classify objects into categories and they do this by learning
from a large set of labeled examples. This section will describe the
deep learning architectures and compare their performances on
classifying flows and on classifying packets.

4.1 Types of Deep Learning Networks
4.1.1 Multi-layer perceptron (MLP).
The multi-layer perceptron is the quintessential deep learning
model and forms the basis for many commercial applications. For
example convolutional neural networks, which will be described in
the next section, is a type of MLP [6]. A MLP is a directed graph
that consists of a set of nodes and edges, see figure 1. The nodes
are either the input values, if they are at the input layer, or they
are the activation functions. The edges are weights which are the
parameters that will have to be learned. Every node besides the
input nodes takes a weighted sum of all the nodes in the previous
layer as input, which is then passed through a non-linear activation
function. In a classification task, the outputs of the last layer are
fitted with a softmax function and the neuron, which represents a
category, with the highest value is taken. It can be seen that these
models have a large amount of parameters and therefore training
and deploying these models will be very computationally intensive.
Due to this complexity and their low accuracy these models have
not been widely used in traffic classification [16].

4.1.2 Convolutional Neural Network (CNN).
Convolutional Neural Networks (CNN) are a special kind of net-
work that is useful for processing data with a grid like topology,
like time series and image data. The name convolutional neural
network indicates that the network employs a mathematical opera-
tion called a convolution, which is a linear operation that is used
in place of matrix multiplication in the convolutional layers [6]. In
a convolutional layer a small set of kernels with a small number of
learnable parameters are used on the entire input to produce the
next output layer [16], see figure 2. In classification tasks matrix

Figure 1: MLP

multiplication, dense layers, are used in the last layers of the model
to produce the desired class predictions. The motivation for using
a convolutional network comes from three key characteristics of
the model namely, sparse interactions, parameter sharing and equi-
variant representations.
In an MLP a single node is connected to every other node in the
previous layer, which creates a large number of dependencies and
makes the model hard to train. CNNs use sparse representations
which reduces the number of neurons that that a single neuron
depends on. This is done by using kernels that are smaller than the
input [6]. This drastically reduces the number of parameters in the
model.
Another way the number of parameters in the network is reduced
is by using parameter sharing. Parameter sharing is achieved by
having the same parameters used for more than one function in
the model. This means that instead of learning new parameters
at each location just one set of parameters is learned over every
location [6].
Equivariant representations means that if the input changes then
the output changes in the same way. So when processing time series
data, this means that the convolution produces a sort of timeline
where the features appear in the input [6]. So if an event is moved
later in the input then the representation of that input will also be
moved later.
CNNs are useful when trying to discover if something exists rather
than where something exists. The network achieves this if pool-
ing is introduced. Pooling is where the input is reduced by taking
summary statistics, like a maximum, of input values that are close
together. This allows the models to learn shift invariant features [6].
CNNs have proved to be powerful models and with parameters shar-
ing as well as sparse interactions it is also efficient. This makes the
CNN a good candidate network to be used for traffic classification
in community networks.

4.1.3 Recurrent Neural Networks (RNN).
Recurrent Neural Networks are used for processing sequential data
where the current state may depend not only on the current input
but also previous inputs, for example language modeling and time
series predictions [6]. To be able to model these sequences the net-
work contains loops, as shown in figure 3. Like a CNN’s ability to
scale in size and process grid like topology, RNN’s have the ability
to scale to longer sequences than otherwise would be possible by
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Figure 2: CNN

employing a different model architecture [6]. These networks also
take advantage of parameter sharing because they look for informa-
tion that could occur in multiple locations, and as found with CNNs,
parameter sharing drastically reduces the memory requirements.
The issue with RNNs is that they cannot learn long term depen-
dencies due to the vanishing and exploding gradients problem that
comes from applying the same function over and over again [6].
To solve this problem Long Short-Term Memory (LSTM) networks
were created. These are gated RNNs where the gates are used by
the network to remember or forget states depending on what time
step you are at. This is useful because it allows the gradients to
propagate further into the future without exploding or vanishing. In
traffic classification approaches LSTMs are used instead of vanilla
RNNs because they can learn long term dependencies. They are
particularly useful when classifying flows into categories because
they can learn the temporal patterns between individual packets.
Some studies used a combination of a CNN and an LSTM [12, 20].
There motivation for doing this was that the CNN can extract spa-
tial features and the LSTM can extract the temporal features and
this would lead to greater performance. LSTMs are very good at
modeling sequential data, they also make use of parameter sharing
but they are inherently sequential which makes them very hard to
train and run in parallel. Therefore they should take longer to train
and run, when compared with other networks, which could use up
vital resources in a community network.

Figure 3: RNN

4.1.4 Stacked Autoencoder (SAE).
An autoencoder is a neural network that is usually used in un-
supervised learning where the model tries to generate output as

close to the input as possible. These networks have been used for
dimensionality reduction by making the hidden layers smaller than
the input and output layers [16]. A Stacked Autoencoder (SAE) is a
stacked network of autoencoders where the input of the next au-
toencoder is the output of the previous autoencoders hidden layer,
this allow the SAE to be trained in a greedy fashion, see figure 4.
After the unsupervised learning part is done the encoded layer gets
fitted with a softmax function and the network gets fined tuned
by a supervised learning approach. SAE have the advantage that
they can leverage both the unsupervised and the supervised aspects
of the data and they can be efficiently trained which is great for
deployment in community networks.

Figure 4: SAE

4.2 Deep learning’s performance in flow
classification

As spoken about before, when the objects of classification are flows,
the data collected changes and therefore the inputs to the models
change. Due to the changes in the structure of inputs new model
architectures become useful, such as the Long Short-Term Memory
(LSTM) network. This deep learning architecture can find long and
short term temporal relationships in the data. The 2D-CNN also
gets used to find spatial patterns.

The data used to classify flows is generally taken from individ-
ual packets. The list of packet data from a flow forms a sequence.
Therefore models that are built for sequential data should outper-
form other model types.

A 1D-CNN and a 2D-CNN were used to classify flows with in-
puts in the form of ALL and L7 data. In both data representations
the first 784 or 1000 bytes of the bidirectional flows were converted
either into a 1D vector, for the 1D-CNN, or into a 2D images, for
the 2D-CNN. The study did not specify how they transformed the
inputs into those vectors. The 1D-CNN had an accuracy of 91.25%
and the 2D-CNN had and accuracy of 90% [21]. This is not a surpris-
ing result since 1D-CNNs are better suited to processing sequential
data [10]. The study also compared the 1D-CNN to the state of the
art C4.5 decision tree. The CNN’s average recall was 8.1% higher
than the average recall of the decision tree [21]. This showed that
end-to-end deep learning proved to be better than state-of-the-art
machine learning. Aceto et al also found that 1D-CNNs outperform
2D-CNNs. As mentioned before LSTMs are used to find long term
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dependencies between inputs and it is currently one of the best
models to use when processing sequential data. The study showed
this to be true by observing the LSTMmodel outperform a 2D-CNN.
A couple of surprising results came out of this study, the SAE had
an average accuracy of 36.47% showing that it may not be suited
to process sequential data, and the LSTM had the most efficient
training time [2]. This is a surprising result because the training
and running of an LSTM cannot be done in parallel but most of the
other architectures can be run in parallel. As expected the MLP had
better results than the SAE but worse results than the three other
models.

In the last two studies presented, the 2D-CNN model was not per-
forming as hoped. Chen et al took a different approach and encoded
the static as well as the dynamic aspects of the flow into an im-
age. They used the first nine packet sizes, inter-arrival times and
packet directions as input data. This data is encoded as 𝐼1, 𝐼2, ..., 𝐼𝑁 ,
where 𝐼 𝑗 is either the jth packet size, direction or inter-arrival time.
To understand the static and dynamic properties of the flow they
estimated the marginal distributions, 𝑃 (𝐼 𝑗 ), and the conditional
distributions, 𝑃 (𝐼 𝑗+1 |𝐼 𝑗 ), of the flow statistics. To estimate the distri-
butions they used the Reproducing Kernel Hilbert Space embedding.
This is an efficient and non-parametric approach to represent these
distributions [4]. Since there are three statistics per packet there are
six distribution estimates related to each packet. They transformed
a list of packets into a six channel image. They then used a 2D-CNN
to classify the images into application types and achieved an accu-
racy of 99.84% which far outperformed the Support Vector Machine
(SVM), MLP, Naive Bayes (NB) and decision tree models. They also
tested the 2D-CNN on real world data and obtained an accuracy of
88.42% which was a over 11% higher than the next best model [4].
This approach saw the 2D-CNN work really well since there was
a well thought out and a well executed way of transforming flow
data into an image.

So far studies have used 2D-CNN models to find spatial patterns
and they have used LSTM models to find the temporal patterns.
There have been approaches that try to combine the two models to
try learn both spatial and temporal patterns [12, 20]. Lopez-Martin
et al used the first 20 packets and 6 features from each packet to
make a 20x6 matrix, with the rows as the time dimension and the
columns as the feature dimension. They passed that matrix into
a 2D-CNN-LSTM network. The output of the CNN part is a 3D
matrix, with the extra dimension coming from the number of filters.
Since the LSTM accepts a 2D matrix, this matrix was squashed
along the feature axis to preserve the time and the filter dimensions
which was past into the LSTM. The 2D-CNN-LSTMmodel obtained
an F1 score of 96% which was an improvement over the standard
2D-CNN and LSTM models, which achieve F1 scores of 94.5% and
95.5% respectively. The plain LSTM model seemed to capture the
same information as the 2D-CNN-LSTM [12]. This may be due to
the CNN compromising the time dimension of the input matrix by
passing over it with 2D kernels. Therefore the LSTM part of the
model did not have a meaningful sequence to learn.

Another approach to this which did preserve the time aspect of the
data was taken by [20]. They took 100 bytes from each of the first

6 packets. They converted the data from each packet into an image
until they ended up with 6 images. They used 6 CNN models, one
for each packet to extract the spacial features out of the images.
Each CNN model had a dense last layer which created a feature
vector for each packet, thus preserving the time dimension. These
feature vectors were then run into the LSTM part of the model to
classify the flow. The CNN-LSTM model had an accuracy of 99.89%
and outperformed the plain CNN network [20]. By splitting up the
data into 6 images and processing them separately they allowed
the output of the CNNs to be stacked in a manner which would
preserve the order of the packets and therefore the time. This is a
much more suitable input for the LSTM part of the model when
you compare it with the previous study.

4.3 Deep learning’s performance in packet
classification

One of the most successful deep learning architectures is the Convo-
lutional Neural Network (CNN). This model has lead to incredible
performances in image recognition and object detection. Normally
CNNs are used on 2D images but they can be adapted to be used
on 1D vectors. Lotfollahi et al used a 1D-CNN to classify individ-
ual packets into classes, on the ISCX VPN-nonVPN data-set, and
obtained an F1 score of 98% in application classification, and an F1
score of 93% in traffic categorization. The study also used a Stacked
Auto-encoder (SAE) to classify internet traffic [13]. Auto-encoders
are used as an unsupervised learning algorithm to try an generate
output that is as close to the input as possible. This allows the model
to learn a more comprehensive feature set which can be used to
train supervised learning models [8]. The SAE was trained and
then fitted with a soft-max layer to classify the traffic. The model
performed slightly worse than the 1D-CNN and achieved F1 scores
of 95% and 92% for application classification and traffic characteriza-
tion respectively [13]. A similar done study by [19] on application
classification saw the CNN and SAE achieve F1 scores of 98.4% and
98.8% respectively. They also compared that with a Multi-Layer
Perceptron (MLP) which had an F1 score of 96.5%. The MLP was a
smaller model with only two hidden layers and six neurons each,
which probably caused the reduced performance. In both of these
studies the input to the models was a 1D vector that corresponded
to the first 1480 bytes of the IP payload data, but in [13] they also
added the IP header.

4.4 Comparison of the computational
efficiency of the deep learning architectures

In community networks they try to lower the cost of entry by using
cheaper resources [3]. Deep learning models are typically large in
terms of the number of parameters that they have. To optimize
these parameters you need to have a large amount of data and good
computing resources or the models will not have sufficient accuracy
and may take too long to train to be feasible as a solution. This
section will compare key characteristics of deep learning models to
try find out which ones might be better suited to a low resource
environment.

As discussed before MLPs are the quintessential deep learning archi-
tecture [6] but they are very complex. They have a large number of
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parameters which will use up a lot of memory and the dense nature
of the network creates many dependencies per neuron which will
make the training time longer. On the other hand, CNN models use
parameter sharing which will decrease the number of parameters
in the model [6] and free up memory. They also use sparse interac-
tions [6] which reduces the number of dependencies and allows the
model to be trained easier and to be run in parallel. CNNs have also
show better classification accuracy in the above studies. LSTMs are
another model type that makes use of parameter sharing, but this
model cannot be run in parallel because it is inherently sequential.
One of the criticisms of LSTM models is that they take a long time
to train. However, this model seems to perform better than the
CNNs on prediction accuracy, therefore a trade-off between time
and accuracy will have to be made. SAEs can be trained in a greedy
layer-wise fashion [16] which would create an efficient training
time but SAEs do have to be trained twice. The training time will
depend on how well the unsupervised step initialized the weights
for the supervised learning algorithm.

The nature of deep learning is that you have to make a trade-off
between the accuracy of the network and computational efficiency.
This section just gives an overview of what characteristics of the
networks should be taken into account when running them in a
low resource environment.

5 UNSUPERVISED, SEMI-SUPERVISED,
GENERATIVE LEARNING

In the studies that have been looked at so far most of the models
were trained and evaluated on unbalanced data-sets. The data-sets
have a majority class, which will contain most of the training exam-
ples. The machine learning models’ predictions will then be skewed
towards the majority class, and the evaluation of these models will
not reflect true results. Machine learning models work best when
classes are balanced [1]. To solve this problem Vu et al used an
Auxiliary Classifier Generative Adversarial Network (AC-GAN) to
over sample minor classes and under sample major classes and cre-
ate a balanced training data-set. This model has the ability, unlike
regular GANs, to generate samples from specific classes [18]. They
used a RF, SVM and a decision tree to perform the classification.
After augmenting the training data with synthetic data, the models
increased their accuracy, F1 and AUC scores. The AC-GAN method
proved to perform better than the other generative models and had
a faster training time [18]. This showed that using deep genera-
tive models to balance data-sets before training can increase the
performance of the models and it can do so in the most efficient way.

In traffic analysis there is a large amount of unlabeled data and
labeled data is expensive and hard to come by. In building deep
learning networks we want to be able to take advantage of all the
data available. Liu & Rezaei developed a semi-supervised learning
approach that used the unlabeled data to increase their prediction
accuracy. They trained a 1D-CNN, on the unlabeled data, to predict
the statistical features of a flow by using packet length, direction
and inter-arrival times as inputs. Using the small amount of labeled
data they had, they then used supervised learning to train a MLP
attached to the end of the CNN to predict class labels for the flows.

The accuracy of the MLP without the pre-training on the labeled
data was 40.37% and the accuracy with pre-training was 84.82% [15].
This is a remarkable increase in accuracy and proves that taking a
semi-supervised learning approach, when only a small amount of
labels are available, will dramatically increase a networks predictive
capabilities.

If only unlabeled data is available then traffic classification is still
possible with unsupervised deep learning. A neural auto-encoder
and statistical flow features were used by Höchst et al to achieve an
F1 score of 76%. They took the encoder from the auto-encoder and
applied a soft-max layer to it, which split the flows into clusters.
The clusters were labeled based on their characteristics. Examples
of the cluster names are upload, download and browsing [7]. The F1
score shows that even with unlabeled data traffic classification can
give network managers a high level understanding of the network.

6 DISCUSSION
One of the issues with the study of traffic classification is that there
is no widely used data-set where models can be evaluated [16]. Stud-
ies tend to use their own data-sets or publicly available data-sets
that are designed for specific tasks. Due to this it becomes tough to
compare results from different studies and most of the conclusions
drawn, will be from intra-study comparisons.

The rise of data-sets such as MNIST [11] and the CI-FAR data-
sets [9] have allowed areas such as computer vision and object
detection to thrive. A possible way to increase the reliability of
results and the performance of models would be to identify key
areas where traffic classification can be applied, such as intrusion
detection and application classification, and to create large data-sets
specific for these tasks, which can then be used as benchmarks. This
will allow for more robust conclusions to be drawn from studies.

When using flows as the object of classification you can either
use bidirectional flows or unidirectional flows. It has been found
that using bidirectional flows increases the accuracy of a mod-
els predictions, which can be attributed to the extra interaction
information [21]. There are also multiple ways to extract raw in-
formation from the flows, such as using ALL or L7 data. A key
finding of this review was that using data from all protocol layers
(ALL) performed better than just using the data found in the ap-
plication layers (L7) [2]. They also found that using raw data was
better than using hand picked time series features. These findings
have shown that if you increase the raw information available to
the deep learningmodels theywill yield greater prediction accuracy.

One of the issues with raw data is that it can have a high dimension-
ality. To be able to classify this data accurately the deep learning
models will need to be larger but these models have to be deployed
in community networks which limits their size. Therefore it may
not be feasible to use raw data for traffic classification in commu-
nity networks. To reduce the dimensions of the data, packet or flow
statistics can be used. It must be noted that using packet statistics
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instead of summary flow statistics allowed models to learn the dy-
namic structure of the flows, which lead to an increase in predictive
capabilities [4].

Packet sizes, directions and inter-arrival times tend to be the fea-
tures used in time series data. They have proved to be valuable and
have allowed models to perform well, but there has been minimal
analysis on these features in the context of deep learning. Lopez-
Martin et al did some feature analysis and found that port numbers
were a really important feature in their study. They also found that
the inter-arrival time was providing some information that was not
well aligned with the port numbers. When the inter-arrival infor-
mation was used in conjunction with the port numbers there was a
lower accuracy then when the inter-arrival time was removed [12].
More analysis like this could lead us to a better understanding of
the features and how they interact with each other and it will allow
us to design better feature variables that will increase the quality
of the classifications.

Flow classification has the benefit of being able to learn time related
features but if you want real time fast classification then packet
classification is the way to go. In packet classification you do not
have to wait to collect multiple packets before you can perform a
classification task. Two studies [13] and [19] showed that packet
classification is not only possible but can yield impressive perfor-
mance because of deep learning. This may be a better option in a
community network because the data needed per object of classifi-
cation is lower which means that the deep learning models can be
smaller which will decrease the amount of computational power
needed to run them.

CNN, LSTM and SAE models generally have performed better than
the MLP model [4, 19] and these models are more computation-
ally efficient. SAEs were shown to do well on packet classifica-
tion [13, 19] but they struggled when classifying flows [2], this may
be because the model struggled to detect patterns in the sequence of
packets. The two networks that showed the most promise were the
CNN and LSTM networks. In flow classification the 1D-CNN and
the LSTM networks were able to capture the time series features
better than the 2D-CNN and therefore yielded greater prediction
accuracy [2, 19]. However, the 2D-CNN network should not be dis-
carded because when the dynamic aspects of the flow were encoded
into the image the network was able to achieve great accuracy [4].
The 1D-CNN and the LSTM are more suited to sequential data
and thus perform well on flow classification. The LSTM is likely
to have better accuracy but it is more computationally expensive
to run which will need to be taken into account when running it
on a community network. A direct comparison between these two
model types would provide valuable information.

The 1D-CNN model had a high predictive accuracy when clas-
sifying individual packets [13, 19]. This gives some evidence for a
sequential structure to the data. Therefore LSTM models which are
more suited to processing this data should be tested and compared
with the 1D-CNN in this context as well.

7 CONCLUSION
Deep learning has shown to be better at classifying internet traffic
when compared with regular machine learning models. They can
limit the need for pre-processing by using raw data as input and they
are able to accurately classify the high dimensional and complex
data that network traffic produces. Deep learning can be a valuable
tool that community network managers use to better understand
how their limited resources can be better utilized. This will lead to
increased QoS in community networks and will allow more people
to have access to affordable internet.
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