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ABSTRACT
Network tra�c classi�cation plays an important role in tra�c engi-
neering and quality of service for community networks. In recent
years, it has become apparent that deep learning techniques are
e�ective for this classi�cation task, especially since classical ap-
proaches struggle to deal with encrypted tra�c. However, deep
learning models often tend to be computationally expensive, which
would weaken their suitability for low-resource community net-
works. This paper thus explores the e�ectiveness of two-dimensional
convolutional neural networks (2D-CNNs) deep learning models
for packet-based tra�c classi�cation for community networks, both
in terms of their computational e�ciency as well as their accuracy.
We �nd that 2D-CNNs models attain higher out-of-sample accuracy
than both traditional support vector machines classi�ers and the
simpler multi-layer perceptron neural networks, given the same
computational resource requirements – but that this improvement
in accuracy o�ered by the 2D-CNNs has a tradeo� of slower pre-
diction speed, which weakens their relative suitability for use in
real-time. However, we observe that by reducing the size of the
input supplied to the 2D-CNNs, we can improve their prediction
speed whilst still achieving higher accuracy than the simpler mod-
els. As a result, 2D-CNNs are shown to be strong candidates for
real-time tra�c classi�cation in low-resource community networks.

CCS CONCEPTS
•Computingmethodologies!Neural networks; Supervised
learning by classi�cation; • Networks ! Network manage-
ment.
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1 INTRODUCTION
Network tra�c classi�cation — the task of categorizing network
tra�c into di�erent classes — has many important applications
in tra�c engineering. One of these applications is providing net-
works with smoother quality of service (QoS) by assigning di�erent
priorities to di�erent applications’ �ows based on their classi�ca-
tion. For example, applications involving video and voice tra�c
rely on fast packet transmission, whereas speed requirements are
not as important for text services like email applications [16]. This
is especially prevalent in today’s coronavirus-a�icted world, due
to the increased digitization of the workplace and emphasis on
online/video communication. E�ective QoS could be of particular
value in low-resource community networks, where, for example,

school students in low-resource communities face particularly stren-
uous circumstances having to adapt to online curriculums. QoS
services, guided by the tra�c classi�cation task, o�er the potential
to prioritize those educational applications used by school students
to ensure as seamless a learning experience as possible. This is one
example that provides evidence of the potential positive impact
towards which work on the tra�c classi�cation task can strive.

Classic approaches that have historically been used for tra�c
classi�cation include port-based methods, payload-based methods
such as deep packet inspection (DPI), and then classical machine
learning techniques such as random forests or k-nearest-neighbours
algorithms. However, these approaches have each been shown to
have respective weaknesses in classifying modern network tra�c.
Classi�cation methods that rely on port numbers are no longer reli-
able sincemany applications do not use standard ports. Additionally,
some applications use a technique known as port obfuscation to
disguise their tra�c by using well-known port numbers [27]. DPI
techniques require substantial time and computational resources to
derive, update and maintain the rules and patterns used to identify
application signatures [4] — and this task has been made more
di�cult by the encryption of tra�c [8]. Additionally, a disadvan-
tage of classical machine learning approaches is that to be most
e�ective, they tend to rely on human-engineered features derived
from data �ows — which limits their generalizability [23]. In light
of the problems that these traditional approaches face with mod-
ern network tra�c, deep learning approaches have recently been
explored in order to improve on the performance of these methods.
Many such studies have reported excellent results, illustrating that
deep learning models o�er strong potential for successful, accurate
and generalizable approaches to tra�c classi�cation.

In particular, for our purposes, there is demand for a lightweight
deep learning approach to tra�c classi�cation that can be utilized
by community networks in low resource environments. This would
require such a model to balance the trade-o� between classi�cation
speed and timeliness on the one hand (to be suitable for real-time
classi�cation), and computational e�ciency in terms of lowmemory
resource usage on the other; all whilst meeting acceptable accuracy
performance requirements.

To this end, in this paper, we explore the e�ectiveness of two-
dimensional convolutional neural networks (2D-CNNs) for the traf-
�c classi�cation task within the context of community networks.
2D-CNNs have been shown to demonstrate success in the packet-
based classi�cation task, as a result of their ability to learn spatial
patterns in the packet data [16, 25, 26]. Additionally, their char-
acteristics of sparse interactions and parameter sharing enhance
their ability to meet computational resource-usage constraints and
hence their suitability to the needs of community networks. The
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above factors guided the choice to investigate 2D-CNNs for our use
case.

In order to evaluate the suitability of 2D-CNNs for this classi�-
cation task, their performance will be compared to baseline models
in the form of the simpler multi-layer perceptron (MLP) neural
network, as well as the support vector machine (SVM) traditional
machine learning algorithm. To facilitate this comparison, we �rst
build a robust preprocessing pipeline to preprocess raw network
packet data and output data in an appropriate format for develop-
ing tra�c packet classi�ers. In particular, the network tra�c data
used for training and evaluating these models was provided in the
format of raw PCAP �les by the Ocean View community network
in Cape Town.

In particular, two key research problems are targeted in this
paper. The �rst is to identify whether 2D-CNNs outperform the
baseline models on the basis of classi�cation accuracy. The second
research problem is to explore which of the models is best suited to
performing real-time classi�cation within the hardware constraints
of community networks. To address these research problems, we
experimentally investigate the following research questions:
(1) How much impact does the use of 2D-CNN deep learning mod-

els have on classi�cation accuracy compared to the simpler MLP
and SVM models given the same computational requirements?

(2) Are the classi�cation models fast enough for real-time classi-
�cation (in terms of the time taken to classify packets) — and
how do the 2D-CNN, MLP and SVM models compare in terms
of prediction speed (given the same memory and processing
power resources)?

(3) To what extent can reducing the number of bytes of a network
packet’s payload used as input features to the model increase
the prediction speed of 2D-CNN classi�ers, and at what cost to
the accuracy?
The rest of the paper is organized as follows. In Section 2 we

provide the background information that serves as context to our
project — de�ning community networks, and outlining the neural
network architectures. In Section 3 we explore related work per-
taining to deep learning applied to the tra�c classi�cation task.
We describe the design and implementation of our preprocessing
pipeline in Section 4. Our experimental methodology is described
in Section 5. Thereafter, we present and discuss the results of the
experiments in Section 6, and summarize our key conclusions in
Section 7.

2 BACKGROUND
Before delving into the details of our study into 2D-CNNs for tra�c
classi�cation for community networks, we �rst expand on some
concepts necessary for understanding the rest of the paper. We
�rst explain precisely what we mean when we refer to ‘community
networks’, and then outline and explain the structure of multi-layer
perceptrons, convolutional neural networks, and support vector
machine classi�ers.

2.1 Community Networks
Community networks refer to network systems that are built, de-
ployed and managed by local geographical communities (often with
the help of non-pro�t organizations) to support their community

by facilitating easier connectivity, communication and access to
online services [19]. Technically speaking, these network infrastruc-
tures are typically distributed, decentralized low-resource systems
that use low-cost hardware and wireless technologies to connect
network nodes [2].

Community networks aim to help close the digital divide by
providing cheaper connectivity in typically rural areas or devel-
oping regions that otherwise would struggle to obtain a�ordable
and reliable internet access [19]. An example of such a community
network in South Africa is the iNethi network [12], which is cur-
rently deployed in Ocean View — a township in Cape Town. It is
this community network that has provided the network tra�c data
that is used for our study.

The community network constraint of low-cost and low-speci�cation
hardware is pertinent to the tra�c classi�cation task. Classi�cation
models deployed on routers in such a network will likely have
access to low-speci�cation processors and limited memory. As a
result, these constraints form a key basis upon which we will eval-
uate and compare the classi�cation approaches considered in this
paper.

2.2 Multi-layer Perceptrons
Themulti-layer perceptron (MLP)model is the most basic neural net-
work architecture, a non-linear model used for supervised learning
[7].

As depicted in Figure 1, the model can be viewed as consisting
of an input layer, one or more hidden layers, and then an output
layer – with each layer consisting of a set of nodes, called neurons.
Deep learning models, in particular, refer to neural networks that
contain more than one hidden layer. Each neuron in a layer is fully
connected by edges to every neuron in the next layer, with each
edge having a weight parameter.

Input

Output

Hidden layerslayer

layer

Figure 1: Multi-layer perceptron architecture

The training data forms the input to the �rst layer, whilst there-
after each neuron computes a weighted sum of the outputs of the
previous layer’s neurons with each corresponding edge’s weight,
with a non-linear activation function applied to this weighted sum.
For each layer ✓ , this computation is typically expressed in vector
form as follows:

0 [✓ ] = f (, [✓ ]0 [✓�1] + 1 [✓ ] ),
where f is a non-linear activation function, 0 [✓ ] is a vector con-
taining the output ‘activation’ for each neuron in layer ✓ ,, [✓ ] is a
matrix containing the weights corresponding to the edges between
layer ✓ �1 and layer ✓ , and 1 [✓ ] is a vector containing the bias terms.
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The input layer is then set as 0 [0] = x8 where x8 contains the fea-
tures for the 8th training example. For the tra�c classi�cation task
in particular, each observation x8 will be a vector of length 1480
containing the bytes of the payload for each network packet.

The activations of the output layer are used for predictions. Train-
ing the model involves the network ‘learning’ – typically through
some variant of the gradient descent optimization algorithm, us-
ing gradients computed through the backpropagation algorithm
– weight parameter values that minimize a loss function captur-
ing the di�erences between predicted output and the ground-truth
output. For multi-class classi�cation tasks, the loss function that
is typically used is categorical cross-entropy error. The training
process thus results in the network’s predictions improving over a
series of iterations through the training data.

As the simplest neural network structure, MLPs will be useful
as a deep learning baseline to which to compare the 2D-CNNs.

2.3 Convolutional Neural Networks
Convolutional neural networks (CNNs) are one of the most popular
deep learning architectures that have been applied in the tra�c
classi�cation �eld, despite traditionally being applied to recognizing
patterns in image data [21]. CNNs are designed for processing data
stored in a grid-like structure, uncovering local spatial patterns
within the data [10]. Similar to MLPs, CNNs consist of an input
layer, a series of hidden layers, and then an output layer. However,
for CNNs, the hidden layers consist of convolutional layers and
pooling layers. Additionally, one or more fully-connected MLP
layers are typically added before the output layer to further capture
non-linearities in the data.

Convolutional layers use image kernels (also called �lters) with a
small number of learnable parameters to extract key spatial patterns
from the input. Rather than matrix multiplication, these �lters are
applied to the data through the convolution operation. Notably, the
same set of �lters are applied though convolutions across the layer’s
entire input to produce the next layer’s output and, as a result, they
are able to learn shift invariant features [23]. This parameter sharing
characteristic also reduces the memory usage of CNNs.

On the other hand, pooling layers are used to reduce the spatial di-
mensionality of the data by combining the outputs of elements from
one layer into a single output for the next. For example, the popular
max-pooling technique splits the input into non-overlapping rectan-
gular regions and outputs the largest element from each sub-region
for the next layer. Pooling helps with reducing computational com-
plexity, as well as controlling over�tting [9].

In particular, two-dimensional CNNs (2D-CNNs) require input
data to be stored in a 2D grid-like format and make use of 2D : ⇥ :
�lters to uncover patterns in the data. As such, for packet-based
tra�c classi�cation, the bytes of each packet’s payload will be
reshaped (‘imaged’) into a 2D image to be used as model input (the
bytes values can then be considered as image pixels). In this way,
the tra�c classi�cation task can be likened to image classi�cation.
Moreover, both the sparsity of information to be found in the packet
data, and the noisiness of the data in terms of variability amongst
packets, provide justi�cation for the suitability of 2D-CNNs for the
packet classi�cation task.

2.4 Support Vector Machines
Support vector machines (SVMs) are a traditional machine learning
classi�cation framework suitable for high-dimensional data. The
SVM algorithm attempts to transform the feature space in such a
way as to create a separating hyperplane that best classi�es the
observations in the feature space. In order to perform multi-class
classi�cation, the multi-class problem is reduced into multiple bi-
nary classi�cation problems. Just as for the MLP, for packet-based
tra�c classi�cation, the SVM model will take as input a vector of
length 1480 containing the bytes of each packet’s payload.

For our purposes, the SVM model provides a useful baseline for
comparison to the neural networks, as a representative lightweight
traditional machine learning classi�cation model applicable to high
dimensional packet payload data.

3 RELATEDWORK
Due to its many important applications, various approaches to
tra�c classi�cation have been studied extensively in literature. In
recent years, much of the research into tra�c classi�cation has been
around applying deep learning techniques — CNNs in particular –
to overcome the di�culties of encryption of tra�c. However, many
such approaches perform �ow-based classi�cation based on inter-
packet features, which is less suited to the real-time classi�cation
task necessary for QoS (since this would require packets to �rst be
identi�ed as part of a particular �ow before they can be classi�ed).
As such, the key works that are particularly relevant to our study
are rather those that have used CNNs for packet-based classi�cation
(that is, classi�cation based solely on each individual packet).

One such study is deep packet by Lotfollahi et al. [18] who use
1D-CNNs for packet-based classi�cation. The paper explains that
due to spatial dependencies between bytes in the packet data, their
deep learning models are able to learn the distinguishable patterns
within the encrypted data that characterize applications, despite
the content itself being inaccessible due to encryption. Their results
testify to this end, with their 1D-CNN model attaining a highly
impressive F1 score of 0.95, outperforming all prior similar works
in literature that perform classi�cation on the same public dataset.
However, Wang et al. [25] more recently performed a study termed
DataNet, applying 2D-CNNs to the same public dataset, attaining an
even higher F1 score of 0.98. These examples demonstrate how deep
learning networks — and CNNs in particular — can learn valuable
representations from the raw high dimensional data that comes
from individual packets.

Other studies that have applied 2D-CNNs to the packet classi-
�cation task include those done by Lim et al. [16] and Wang et al.
[26] for malware classi�cation. However, these studies all make
use of separate cleaned public datasets, which makes comparing re-
sults across di�erent studies di�cult. The conclusions drawn from
these studies, however, are still valuable; and in each case 2D-CNNs
demonstrate strong success in terms of classi�cation performance.
These papers thus provide further support for exploring 2D-CNNs
as an approach to the packet classi�cation task for community
networks.

Whilst packet-based classi�cation using 2D-CNNs has been
shown to be successful on particular public datasets, to the best
of our knowledge there are no studies yet that consider them in
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the context of computational resource utilization or classi�cation
speed constraints.

4 DESIGN AND IMPLEMENTATION
Before outlining our methodology to compare and evaluate the
classi�cation model architectures that have been introduced, we
�rst detail the robust preprocessing pipeline system that was de-
signed and developed to output data in an appropriate format for
developing packet-based tra�c classi�ers.

4.1 Overview of Preprocessing Pipeline
In order to compare and evaluate machine learning models for any
supervised learning task, appropriate labelled training and testing
datasets (often in the form of CSV �les) are required. For network
tra�c classi�cation in particular, tra�c data is usually captured in
PCAP �le format, which must then be preprocessed to construct
appropriately formatted datasets needed by themodels. Sincewe are
performing packet-based classi�cation, this preprocessing involves
labelling the packets, extracting the raw bytes of their payload to
be used as features, and then transforming the features such that
they are in the approptiate format for our models.

To this end, we scripted a robust pipeline that takes as input a set
of PCAP �les as input, and produces as output ‘train.csv’, ‘val.csv’
and ‘test.csv’ �les that are ready for model building, training, eval-
uation and testing. This scripting process was implemented using
a combination of Python scripts for ease of data manipulation, and
bash scripts for automation, sequencing and �le manipulation. The
code base was implemented with detailed easy-to-follow documen-
tation that outlines the prerequisites and steps to take to apply the
pipeline on a new system, given an arbitrary set of PCAP �les as
network tra�c data.

The end-to-end preprocessing pipeline applied to our study can
be summarized in the following diagram, and is expanded upon in
the subsections thereafter:

i) Raw PCAPs from the Ocean View community network

ii) Split into �ows using pkt2�ow

iii) Label �ows using nDPI

iv) Extract the IP payload from each packet

v) Sample 10000 packets each from 10 selected classes

vi) Output train.csv, val.csv, test.csv

Diagram 1: Preprocessing pipeline

4.2 Dataset
Training and testing classi�cation models to evaluate suitability for
low-resource community networks requires access to community
network tra�c data. To this end, we have used a dataset that was
collected from the Ocean View community network in Cape Town
[12]. The dataset consists of numerous raw PCAP �les that were
collected at the gateway of the network, capturing all tra�c �owing

between the network and the Internet from February 2019 onwards.
The PCAP �les were copied to a data repository at the University of
Cape Town, throughwhichwe accessed the data. However, it should
also be noted that any arbitrary set of PCAPs could be used as input
to this stage of the pipeline, and the rest of the preprocessing would
be applied in the same manner.

4.3 Labelling
Since tra�c classi�cation is a supervised learning task, each packet
needs to have a corresponding label to facilitate the learning and
testing process. Our study performs classi�cation by application,
and as such, examples of these labels are Facebook and YouTube.
A popular approach used in the literature for labelling the data
(when the labels are not recorded at the time of data collection,
as applicable to our data) is to use deep packet inspection (DPI)
packages which use a database of application signatures to identify
di�erent classes from tra�c traces [23]. Bujlow et al. [3] performed
an independent study of di�erent DPI tools, evaluating their tra�c
classi�cation accuracy, which showed that the open-source tool
nDPI 1 attains a very high labelling accuracy. This approach is
adopted for a tra�c-classi�cation study conducted by Lopez-Martin
et al. [17], who use the nDPI tool — which handles encrypted tra�c
— to label their dataset. These factors guided our decision to use
nDPI.

To make the labelling process cleaner, we �rst use the open-
source package pkt2�ow 2 to split the packets contained in the set
of PCAP �les into individual �ows (with a new PCAP �le for each
�ow). Thereafter, the �ows are labelled using nDPI — such that
each packet associated with a given �ow is assigned that �ow’s
label.

The output of this stage of the preprocessing is then a CSV �le
containing, for each �ow from the original set of raw PCAPs, the
�ow’s PCAP �le name and the application label that applies to each
packet in the �ow.

4.4 Extracting the IP payload
The next stage of the preprocessing pipeline involves extracting the
(up to) 1480 bytes of each packet’s IP payload to be used as features
as input for the classi�cation models. 1480 bytes is the maximum
size of a packet’s IP payload, since the maximum transmission unit
size over the internet is typically 1500 bytes [6] –with aminimum of
20 bytes used for the IP header, meaning the remaining at most 1480
bytes correspond to the payload. As discussed in the related work
section in Section 3, using the raw payload as model features has
been shown to produce high accuracy classi�cation in classifying
both encrypted and unencrypted tra�c.

To this end, the Python package scapy was used for processing
the packet data. Packets that do not contain a payload (such as TCP
handshake messages) are discarded. Transport-layer header bytes
are masked to increase the generalizability of our models (due to the
unreliability of using port numbers [27]). Packets with payloads less
than 1480 bytes are zero-padded to ensure that all feature vectors
1nDPI is a deep packet inspection tra�c classi�cation module. It is available at:
https://github.com/ntop/nDPI.
2pkt2�ow is a simple utility that classi�es packets into �ows. It takes single PCAP �les
as input and returns a set of PCAP �les where each �le contains a single �ow. It is
available at: https://github.com/caesar0301/pkt2�ow.
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are of the same length, as required by the classi�cation models. The
output of this stage is then a CSV �le with a row for each packet
containing its application label and the 1480 bytes of its payload.

4.5 Sampling balanced classes
The next preprocessing stage involves sampling from the packets
dataset to produce a balanced dataset. The emphasis on balanced
classes was motivated by literature showing that studies that do not
account for a class imbalance (e.g. having many YouTube packets
but few Facebook packets), such as Lopez-Martin et al. [17], do not
perform as well when classifying some of the underrepresented
classes, since models tend to skew their predictions in favour of
the majority classes. To solve this problem, we use a method called
under-sampling [16, 18], whereby classes containing more packets
than needed are sampled from to extract an equal number of packets
for each label class.

To this end, we sample 10000 packets each from 10 selected
classes, as displayed in the table below.

Application label Application type
YouTube Video
Facebook Social Media
GoogleServices Phone background services
Intagram Images
WhatsApp Instant messaging
BitTorrent Torrent �les
TeamViewer Remote desktop
Gmail Email
WindowsUpdate Desktop OS updates
PlayStore Mobile app store

The choice of 10000 packets per class is guided by the general
size of datasets typically used in the literature. The choice of which
10 classes was guided by considering the most popular classes in
the community network (and hence which would be most useful
to the community network) whilst also ensuring a representative
spread across di�erent application types to ensure the classi�ers
are evaluated on a diverse range of applications.

4.5.1 Training, validation, and testing datasets. Lastly, we create
training, validation, and testing datasets as the �nal output of the
preprocessing pipeline by randomly sampling from the 100000 ob-
servations in an 80-16-24 split, whilst preserving class proportions
in each dataset. This split choice is popular in the literature, for
example in the study by Lotfollahi et al. [18]. The training set will
be used for training the models, whilst the validation data will be
used as an estimate of how the models will perform on the test
set so as to guide the hyperparameter tuning process. Finally, the
unseen test data will yield an unbiased indication of each model’s
out-of-sample performance and ability to generalize to new data.

5 EXPERIMENTAL METHODOLOGY
In this section we describe the design, methodology and rationale
for our experiments to evaluate the suitability of 2D-CNNs for the
classi�cation task for community networks, using the training, val-
idation and testing datasets produced by the preprocessing system
outlined in Section 4 above.

5.1 Research Questions
Our project aims to evaluate the e�ectiveness of 2D-CNNs for the
packet-based classi�cation task, compared to simpler MLP and SVM
classi�ers. To this end, we aim to evaluate these models’ suitability
for the context of community networks, by aiming for the highest
accuracy, lowest computational resource requirements, and fastest
prediction speed (to be suitable for real-time usage). In order to
achieve these aims, as outlined in the introduction, our experiments
are designed to answer the following research questions:

(1) How much impact does the use of 2D-CNN deep learning mod-
els have on classi�cation accuracy compared to the simpler MLP
and SVM models given the same computational requirements?

(2) Are the classi�cation models fast enough for real-time classi-
�cation (in terms of the time taken to classify packets) — and
how do the 2D-CNN, MLP and SVM models compare in terms
of prediction speed (given the same memory and processing
power resources)?

(3) To what extent can reducing the number of bytes used as input
features to the model increase the prediction speed of 2D-CNN
classi�ers, and at what cost to the accuracy?

5.2 Evaluation Metrics
In order to quantitatively answer the given research questions, we
make use of the following evaluation metrics.

5.2.1 Accuracy. Firstly, an evaluation metric for indicating classi�-
cation success of a given model is needed. Accuracy is one of the
most popular metrics used for evaluation of classi�ers, indicating
the proportion of correct classi�cations relative to the total number
of predictions made.

The F1 score is another popular metric in the literature used for
evaluating models, since it gives a better indication of a model’s
performance on datasets that are unbalanced. However, since we
took care to preprocess our dataset to ensure equal number of
samples from each application class, for our study there is no reason
to consider F1 score over and above accuracy. Accuracy will thus
be used as our key metric for evaluating the performance of the
classi�cation models under consideration.

5.2.2 Number of packets classified per second. We also need a met-
ric for evaluating classi�cation speed, as a means of assessing how
models perform in meeting the real-time classi�cation constraint.
For this purpose, we will be using the average number of packets
that a given model can classify per second.

The reason for this choice of metric as opposed to the average
time taken to made a prediction, is that this will allow for easier
evaluation of whether models are suitable for real-time classi�ca-
tion. The internet link capacity for the Ocean View community
network is 10mbps, with the average number of bytes per packet
in our dataset, including the IP header, being 992.57B. As a result,
we can expect the network to be processing approximately 10 000
packets per second on average. 10 000 packets per second will thus
be used as a reference point to which to compare a given model’s
prediction speed in packets per second, as an indication of how
suitable it is for real-time classi�cation.
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5.2.3 Number of model parameters. Finally, we will be using a
given model’s number of parameters as a measure of its compu-
tational resource utilization — since the number of parameters of
a model is the clearest determinant of a model’s complexity. The
number of parameters gives a proportional indication of a model’s
size and associated memory usage (typically parameters are stored
as 32 bit �oats, and thus 4B are needed for each parameter). The
storage to de�ne the model architecture is trivial compared to that
needed for its parameters, such that the number of parameters of a
model is the main determinant of its memory usage. To this end,
low-parameter models are thus more desirable than high-parameter
models for low-resource environments since it implies lower mem-
ory usage requirements.

5.3 Architectures
We now outline the speci�cations of the model architectures that
will be compared over the course of the experiments.

5.3.1 2D-CNN. For the 2D-CNN networks, we will consider two
key architectures — a ‘shallow’ network with just one convolutional
layer, and a ‘deep’ network with four convolutional layers. This will
allow us to compare whether the additional complexity associated
with a deeper CNN can be justi�ed.

The shallow CNN consists of the input layer, a convolutional
layer followed by a max pooling layer, and then a fully-connected
layer feeding into a 10-way softmax output layer. The more complex
deep CNN, however, is made up of two sets of two convolutional
then max pooling layers, followed again by a fully connected layer
feeding into a 10-neuron softmax output layer. The architecture is
depicted in Figure 2 below.

Convolutional layer [×2] Convolutional layer [×2]

Max pooling Max pooling

Fully-connected layer

output‘Imaged’ packet input
Softmax

Figure 2: Deep 2D-CNN network architecture

For both networks, the �lters in the convolutional layers are 3⇥3
in size, with “same” padding (meaning each layer’s input is zero-
padded in such a way as to preserve its spatial dimensions in its
outputs). Such �lters with small receptive �elds have been shown to
have strong success for CNNs [24], and also reduce the number of
parameters per �lter which is desirable for reducing computational
requirements. The number of �lters in the convolutional layers
and sizes of the fully-connected layer will be varied and outlined
in the experiment design in Section 5.4 below. Max pooling has
been chosen for the pooling layers due to the strong success it has
demonstrated with CNNs [11, 15, 24].

All hidden layers make use of Recti�ed Linear Unit (ReLU) [15]
activations to introduce non-linearity. The Adam optimization al-
gorithm has been chosen due its computational e�ciency and sub-
sequent reduction in training time, as well as its success in practice
compared to other optimizationmethods [14]. To reduce model vari-
ance and prevent over�tting in the fully-connected layers, we use
both dropout and l2-regularization. The learning rate and dropout

rate hyperparameter-tuning will be discussed in the experiment
design in Section 5.4 below. Note that the 2D-CNN requires the
input packets’ features to �rst be reshaped (‘imaged’) into an # ⇥"
matrix. For example, when the full 1480 bytes of the IP payload are
used as model input, we reshape the bytes into a 40⇥37matrix. The
byte values (ranging from 0 to 255) are also scaled to be between 0
and 1 in order to facilitate faster training, and the labels are one-hot
encoded as required by the model for multi-class classi�cation.

5.3.2 MLP. For our baseline MLP models, against which the 2D-
CNNs will be compared, we will again consider two main archi-
tectures - a ‘shallow’ network with one hidden layer, and a deeper
network with three hidden layers. The shallow network will pro-
vide a benchmark to allow us to evaluate the performance bene�t
o�ered by deep learning compared to ’shallow’ learning.

Like for the CNNs, we make use of the ReLU activation function
and the Adam optimizer. Dropout and l2-regularization are used to
avoid over�tting. The number of neurons in each hidden layer, and
the hyperparameter tuning of the learning rate and dropout rate
are discussed in the experiment design in Section 5.4 below.

5.3.3 SVM. Lastly, an SVM model will also be considered as a
baseline model to which to compare the neural networks. Since we
expect the SVM classi�er to be lightweight in terms of memory
usage, and have a fast classi�cation speed, the neural network
architectures will need to show superior accuracy to justify their
additional complexity. Because the number of packets in our dataset
is large relative to the number of features (64 0000 packets in the
training set compared to 1480 features), we use a linear kernel for
our SVM classi�er, as recommended by Ng [20].

5.4 Experiment Design
Wemake use of two experiments in order to investigate the research
questions. Experiment 1 involves comparing the models’ accuracy
and prediction speed across a varying number of parameters, with
reference to the �rst two research questions. Experiment 2 varies the
number of bytes of each packet’s payload used as model input, and
evaluates the e�ect on the deep 2D-CNN’s accuracy and prediction
speeds to answer the third research question.

5.4.1 Experiment 1: Comparing Accuracy and Prediction Speeds
against Number of Parameters. For each ? 2 {211 = 2048, 213 =
8192, ..., 221 = 2097152} where ? is the number of parameters of
the model, we train a shallow MLP, a deep MLP, a shallow 2D-
CNN, and a deep 2D-CNN (using the above-described architecture),
each with approximately ? parameters. The number of parameters
are considered on an exponential scale in order to more compre-
hensively cover the sample space. De�ning the number of model
parameters is done by varying the number of �lters in each con-
volutional layer and the size of the fully-connected layer in the
CNNs, and varying the number of neurons in the hidden layers in
the MLPs. For example, the deep 2D-CNNs for each given number
of parameters are constructed by letting the number of �lters for
the convolutional layers and the size of the fully connected layer
be 5 for each 5 2 {4, 8, 16, 32, 64, 128}. The speci�c con�gurations
for each model are outlined in the appendix.

For each model with a given number of parameters, we per-
form a grid-search hyperparameter tuning process. To this end,
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the grid search involves tuning the learning rate — since the learn-
ing rate is widely regarded as the most important hyperparam-
eter to tune for neural networks [10] — as well as the dropout
rate to identify what level of dropout is desirable to reduce over-
�tting for a particular con�guration. The learning rates consid-
ered are {0.01, 0.005, 0.001, 0.0005, 0.0001} and dropout rates of
{0.05, 0.1, 0.2, 0.5}. Each model with one of the combinations of
these hyperparameter options is trained for a maximum of 50
epochs through the training data, with early stopping used to halt
training if the validation accuracy has not improved over the last 5
epochs. Thereafter, the trained model is selected as the model at
the number of epochs that attained the highest validation accuracy.
Then the hyperparameter combination that results in the highest ac-
curacy on the validation set is chosen as the optimal con�guration
for the given model architecture and number of parameters.

An SVM classi�er is also trained to serve as a lightweight baseline
comparison, with the SVMhaving just 1481 parameters (a parameter
for each byte feature from the 1480 bytes in the IP payload, plus a
bias term).

We then evaluate each of the chosen models’ out-of-sample
performance by computing their accuracy on the test set, and then
evaluate their prediction speed by calculating the average number
of packets predicted per second. This is done by choosing a sample
of 10000 packets from the test set, and averaging the time taken
to classify the sample over 25 trials. The number of packets in the
sample is then divided by the average time taken in seconds, to
produce an estimate of the average number of packets that can be
classi�ed per second, along with an estimate of the standard error
to aid in error analysis.

The experiments are performed on a low-resource virtual ma-
chine instance with only a single core in order to simulate deploy-
ment in a low-resource environment (see Section 5.6 for hardware
speci�cations). As a result, the results pertaining to prediction
speeds are made with reference to this speci�c hardware environ-
ment. However, the comparative results and inferences drawn can
be extrapolated and extended to di�erent hardware environments
as needed.

5.4.2 Experiment 2: E�ect of Input Size on 2D-CNN Accuracy and
Prediction Speed. This experiment is designed to determine the
e�ect that decreasing the number of payload bytes used as features
for the 2D-CNN has on the prediction time and accuracy. For each
:2 2 {82 = 64, 162 = 256, 242 = 576, 322 = 1024}, we train a deep
2D-CNN using the �rst :2 bytes of the payload as model input for
each packet (reshaped into a : ⇥ : image). The number of bytes be-
ing chosen on a quadratic scale is appropriate due to the 2D-nature
of the input required for 2D-CNNs. The model architecture is that of
the deep 2D-CNN described in Secion 5.3.1 above, with four convo-
lutional layers, two max-pooling layers, and a fully-connected layer
feeding into a softmax output layer. Each convolutional layer con-
sists of 32 �lters, with the fully connected layer consisting also of 32
neurons. For each input size : , the corresponding model con�gura-
tion is chosen according to a grid-search across the hyperparameter
space. The hyperparameters considered in the search are again the
learning rate chosen from {0.01, 0.005, 0.001, 0.0005, 0.0001}, and
dropout rate from {0.05, 0.1, 0.2, 0.5}.

As in Experiment 1, each selectedmodel’s accuracy on the test set
will be computed as an indication of its out-of-sample performance,
and its prediction speed is estimated by calculating the average
number of packets predicted per second (along with the associated
standard error). These results will be used to draw inferences about
the relationship between the size of the input and the prediction
speed and accuracy of the 2D-CNN.

5.5 Software
The CNN and MLP networks were implemented in Python through
the Keras Sequential API [5] with a Tensor�ow 2.0 backend [1].
Keras was chosen as our deep learning framework because of its
ease of use and modularity for model building, without reducing
�exibility [13]. This allowed for rapid model development, and
enabled more time to be spent on experimentation. The SVM clas-
si�ers were implemented in Python using the scikit-learn API [22].
Similar to the rationale for choosing Keras for developing the neural
networks, scikit-learn was chosen for its simplicity and e�ciency in
building machine learning models, including SVMs, for multi-class
classi�cation.

5.6 Hardware
To simulate a low-resource environment, the model testing and
evaluation for the experiments were preformed on a single-core
Intel Xeon 2.50 GHz processor with 3.75GB RAM. The models were
trained using GPUs via Google Colaboratory.

6 RESULTS AND DISCUSSION
In this section we present and discuss our �ndings from the ex-
periments conducted. We explore the relationships between both
accuracy and prediction speed with number of parameters across
the di�erent classi�cation models, and compare the classi�ers based
on these evaluation metrics. We then reduce and vary the number
of bytes used as input to the 2D-CNNs, and explore to what extent
the prediction time can be reduced and at what cost to the model
accuracy. Full results are provided in the appendix.

6.1 Accuracy Results
Figure 3 compares the deep 2D-CNN, shallow 2D-CNN, deep MLP,
shallow MLP, and SVM models on the basis of their accuracy on
the test set containing 24000 packets, for each given number of
parameters. The test accuracy indicates each model’s out-of-sample
performance and, thus, is indicative of the model’s ability to gener-
alize to unseen data. As a result, as per convention in the machine
learning �eld, the accuracy results displayed in the plot are con-
sidered a reliable measure of model out-of-sample performance
without conducting statistical error analysis.

It is clear that test accuracy increases as the number of param-
eters increases across the models. This matches our intuitive ex-
pectations, as increasing the number of parameters improves the
�exibility of the models to �t patterns in the data. However, added
�exibility in machine learning models has the potential to result in
over�tting to the training data, causing out-of-sample performance
to worsen as models become more complex. This e�ect is not ob-
served in our results, however, with the most likely explanation
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Figure 3: Accuracy results against number of parameters for
the MLP, 2D-CNN and SVM classi�ers

being the multiple measures we took to prevent increasing complex-
ity from causing over�tting (using dropout and l2-regularization).
Notably, however, the rate of increase in test accuracy decreases
for each of the models as the number of parameters increases. For
example, the 2D-CNN test accuracy can be seen to plateau from a
log2 parameters of 15. An inference that can be drawn from this ob-
servation is that it would likely be unnecessary to �t larger models
with log2 parameters greater than 21 — since at this point, the added
model size appears empirically to only yield a marginal improve-
ment in performance. Notably though, models with log2 parameters
of 21 only require approximately 2MB of storage for the param-
eters — which is unlikely to pose memory problems on a router
in production. However, due to our preference for low-parameter
models for low-resource networks, we still tend to favour models
at the beginning of plateaus in accuracy if increasing model size
does not result in a signi�cant improvement in performance.

Now, comparing the models’ accuracy, we �rst note that the SVM
classi�er attained a test accuracy of 64.6%, and, being the smallest
model in terms of number of parameters, provides a baseline accu-
racy to which to compare the other models. Comparing the neural
networks, it is immediately apparent that the deep 2D-CNN model
performs signi�cantly better on the unseen test data than all of the
other models across the range of number of parameters — with the
largest deep 2D-CNN attaining a test accuracy of 90.1%. Thus, if
we were to decide on the best model based solely on performance
in terms of accuracy, we would choose this deep 2D-CNN model
with log2 number of parameters of 21. We can also conclude that
the use of 2D-CNN deep learning models has a signi�cant impact
on attaining higher classi�cation accuracy compared to the simpler
MLP and SVM models for a given model size, in answer to our �rst
research question.

The deep 2D-CNN outperforms the shallow 2D-CNN model for
any given number of parameters, which shows the bene�t that
added convolutional layers can o�er in terms of �tting more com-
plex patterns in the data. The shallow MLP, deep MLP, and shallow
CNN perform relatively similarly across the range of number of
parameters. When the number of parameters is su�ciently large,

though, we note that the shallow 2D-CNN does outperform the
MLP models. This provides evidence that the more sophisticated
2D-CNN models o�er better out-of-sample performance than the
baseline MLP and SVM models for the tra�c classi�cation task
given su�cient model complexity. We also observe that the deep
MLP model attains a higher test accuracy than the shallow MLP
model once the log2 of parameters is larger than 15, thus showing
the bene�t of ‘deep’ learning when given su�cient model �exibility.

6.2 Prediction Speed Results
In Figure 4 we compare the prediction speed of the various models
in terms of average number of packets per second that can be
predicted by each model, for each given model size. The associated
standard errors for each average packets per second estimate for
each model are relatively small (most less than 1%) and hence are
omitted from the plot, but they are included in the results in the
appendix. The small standard errors can be attributed to the results
being computed as an average taken over 25 trials, thereby testifying
to the reliability of the observed results.

Figure 4: Prediction speed (in packets per second) against
number of parameters for the MLP, 2D-CNN and SVM clas-
si�ers.

The general trend observed amongst the models is the greater
the number of parameters, the fewer average packets per second
that can be classi�ed. This matches our expectations, since hav-
ing more parameters corresponds to larger weight matrices being
involved in the matrix multiplications performed when making pre-
dictions for the MLPs, in addition to more convolution operations
(since additional �lters are responsible for increasing the number of
parameters in the CNN convolutional layers) when the CNNs make
predictions. These consequently result in longer computational
time required to make predictions.

The lightweight SVM classi�er predicts on average 236726.9
packets per second, which is substantially faster than all other mod-
els considered — in fact, this is more than �ve times more packets
than the fastest MLP model considered. However, as discussed in
the experiment design, 10000 packets per second can be considered
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an approximate benchmark for a model’s ability to process packets
in time for real-time classi�cation for a 10mbps network. Thus the
SVM’s fast prediction speed is not necessary for our low-resource
purposes, but could o�er value to a very high capacity network
that supports a very large tra�c volume.

Comparing the neural networks, we observe that the MLP clas-
si�ers are signi�cantly faster in terms of prediction speed than the
2D-CNNs for any given �xed number of parameters. The reason
for this observation is that for each �lter in a convolutional layer
in a CNN (and similarly for the pooling layers), the convolution
operation using the �lter must be applied to every element of the
preceding layer’s output. Therefore the parameters for each �l-
ter are used repeatedly in multiple computations for a given layer,
which is responsible for the high computation time required. This is
in contrast to fully-connected layers in an MLP where each layer’s
weight matrix is only used once in making a prediction for a packet.
This observation then also explains why the shallow 2D-CNN at-
tains a faster prediction speed than the deep 2D-CNN for a given
number of parameters, due to fewer convolution operations needing
to be applied.

The MLP models are relatively similar in terms of prediction
speed, with the shallow MLP generally able to predict slightly more
packets per second than the deep MLP. This could be attributed to
fewer computational overheads involved in performing a large ma-
trix multiplication for the shallow MLP compared to three smaller
matrix multiplications for the deep MLP (with three hidden layers)
for a �xed number of parameters.

We now consider the neural networks’ suitability for real-time
classi�cation, keeping in mind our benchmark of 10000 packets per
second. The deep 2D-CNN, although achieving the highest accuracy
amongst the classi�ers across the entire range of parameters, is the
slowest in terms of prediction speed and does not appear suitable for
real-time classi�cation regardless of the model size — the maximum
packets per second even amongst the small deep 2D-CNNmodels is
just 1931.4. The results of the next experiment in Section 6.3 below
will, however, explore to what extent this prediction speed can be
improved but high accuracy maintained by reducing the size of the
input supplied to the 2D-CNNs.

The shallow 2D-CNNs only attained a higher accuracy than the
MLPs from log2 parameters of 17 onwards — however, in this range
the shallow 2D-CNN recorded a maximum of 3435.2 packets per
second, which is again likely too slow to be suitable for real-time
classi�cation relative to our benchmark. In contrast, both MLP
models seem to be suitable for real-time classi�cation across the
range of parameters considered, since on average they are able to
predict more than 10000 packets per second.

6.3 The E�ect of Reducing Input Size
Figure 5 plots the test accuracy and average packets predicted per
second for the deep 2D-CNN model across varying input sizes (that
is, using only the �rst = bytes of the packet payload for some =).
The standard errors associated with the average prediction time
estimates were again small and thus have been omitted from the
plot for readability purposes, but can be seen along with the full
results in the appendix.

Figure 5: Accuracy and prediction speed (in packets per sec-
ond) against root input size for the deep 2D-CNN

The general trends we empirically observe match our expec-
tations. As we reduce the number of bytes used as model input,
the test accuracies decrease, as a result of losing the information
contained in the latter bytes of the payload. However, reducing
the number of input bytes does result in an increasing average
number of packets that can be predicted per second (since fewer
convolutions need to be performed in the convolutional layers, and
fewer pooling operations in the pooling layers) - thus improving
the model’s suitability for real-time classi�cation.

We now consider whether this approach of reducing the input
size can enable the 2D-CNN model to be suitable for real-time
classi�cation but still maintain high accuracy. Recall that the deep
2D-CNN model using the full payload with this given model com-
plexity (log2 number of parameters of 17) attained an accuracy of
88.95%, but an average prediction speed of only 851.3 packets per
second. This meant that this model was not suitable for real-time
classi�cation with reference to our benchmark of 10000 packets per
second. However, we notice now that when the

p
input size is 8 or

less (i.e. using only the �rst 64 bytes or fewer), the average pack-
ets per second is greater than 10000, thus meeting our benchmark
for real-time classi�cation. The associated test accuracy is 79.2%,
which is superior to the MLP and SVM models that were deemed
suitable candidates for real-time classi�cation. For faster networks,
we could use even fewer input bytes (just the �rst 16 bytes) to get
a faster prediction speed of 33472.0 packets per second, and 76.7%
accuracy, which still exceeds the highest observed MLP accuracy.

This shows that, by reducing input size, the 2D-CNN model
can be suitable for real-time classi�cation and still outperform the
other classi�cation models in terms of accuracy. It is thus clear
that reducing the number of bytes can signi�cantly improve the
prediction speed of the 2D-CNN without the cost to its accuracy
decreasing its predictive performance advantage over the simpler
models.

6.4 Replicability
Due to the importance of replicability as part of the scienti�c pro-
cess, numerous steps have been taken to ensure the experiments
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and the corresponding results could be replicated. Firstly, the code
used to run the experiments will be open-source and has been
thoroughly documented. This, combined with the experimental
methodology outlined above, should enable to the process to be
easily replicated. Furthermore, each of the trained models that were
evaluated and tested as part of the experiments, have been saved
and can be easily reloaded and used.

7 CONCLUSIONS
The experiments demonstrated that 2D-CNN models are indeed su-
perior to the baseline model candidates of SVM and MLPs when the
basis of comparison is solely classi�cation accuracy, given the same
computational resources (in terms of memory allocation, based on
the number of parameters). In answer to our �rst research ques-
tion, we can thereby conclude that 2D-CNNs do have a signi�cant
impact on classi�cation accuracy compared to the simpler models.
Notably, the largest 2D-CNN model successfully attained an accu-
racy of 90.1% on the test set, indicative of excellent out-of-sample
performance. We observed that the neural network architectures
attained higher test accuracies than the SVM traditional machine
learning model, which is evidence of the added predictive power
that these deep learning architectures o�er over a traditional ma-
chine learning approach for tra�c classi�cation. The bene�ts of
‘deep’ learning over ‘shallow’ learning were also highlighted by
the fact that both the deep CNNs and deep MLPs outperformed the
shallow CNNs and shallow MLPs respectively.

Our second research question was set up to investigate whether
the classi�ers are fast enough for real-time classi�cation, and how
the models compare on this basis. To this end, we noted that despite
clearly o�ering the strongest predictive power on out-of-sample
data, the 2D-CNNs models were signi�cantly slower than the other
models in terms of prediction time, which weakens their suitability
for real-time classi�cation. In comparison, the MLP and SVM mod-
els predicted packets at a much faster rate, which is certainly more
appropriate for use in real-time.

However, we observed that by reducing the proportion of the
payload used as model input to just 64 bytes, the prediction speed
of the deep 2D-CNN model can be improved to 14581.5 packets per
second, whilst maintaining an accuracy of 79.2%. This exceeds the
10000 packets per second benchmark for real-time classi�cation on
a 10mbps network, and still o�ers superior out-of-sample perfor-
mance relative to the other models considered. This then provides
an answer to our third research question, demonstrating that by
reducing the input size, the prediction speed of 2D-CNNs can be
signi�cantly improved, without the cost to its accuracy detracting
from its accuracy advantage over the baseline models. As a result,
we would recommend this 2D-CNN approach as the most suitable
for use in real-time in community networks.

In conclusion, 2D-CNNs have been shown to be excellent candi-
dates for the real-time packet-based tra�c classi�cation task in low-
resource community network environments. As a result, through
its application in QoS provisioning (amongst other areas), tra�c
classi�cation using 2D-CNNs has the potential to o�er signi�cant
value to the members of community networks and make important
contributions towards closing the digital divide.

8 LIMITATIONS
Since the Ocean View tra�c data was not labelled at the time when
it was collected, we had to use an open source labelling tool nDPI to
obtain approximations of the ground-truth labels. This is, however,
the approach recommended by the literature for this scenario [17,
23]. Additionally, a primary constraint on the experiments was
the length of training time required for the deep learning models.
Although we took several measures to reduce this constraint –
such as using a validation set for model validation purposes rather
than :-fold cross-validation, and restricting our analysis to only
10 classes – the large number of networks that required training
for use in the experiments placed limitations on how many model
architectures could be tested.

9 FUTUREWORK
There are several avenues that present valuable opportunities for
future work to extend the work investigated in this paper. Firstly, it
could be useful to test the trained models on a di�erent community
network’s labelled data, to investigate their ability to generalize to
unseen data from a potentially di�erent distribution. Additionally,
it could be bene�cial in future work to include further classes
to classify, and identify whether adequate performance can be
maintained as the number of classes increase. A further avenue
that future work could explore is the application of other deep
learning architectures to the packet-based classi�cation task. This
could involve applying Stacked Auto-Encoders for dimensionality
reduction, or potentially hybrid architectures combining CNNs
with recurrent neural networks (RNNs) to aim to learn both spatial
and temporal patterns in the data.

10 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

The project has faced few ethical, professional, and legal issues.
This is mainly because we have not interacted with individual
people or with sensitive data that could be traced to individuals.
The most important ethical issue that we have considered is the
con�dentiality of the aggregated network tra�c data that was
provided by the Ocean View community network for use in training
and testing our models. Whilst the network granted us permission
to use the data for research purposes, it is still important that the
privacy of the network is protected. As a result, we have ensured
that the data has only been accessed by our team and not distributed
publicly.

Our source code will be made publicly available for future re-
searchers to use and build upon. If publishing the �nal paper, it will
be done under the creative commons license as per the University
of Cape Town’s policy.
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APPENDIX A
(SUPPLEMENTARY INFORMATION)
Experiment 1 2D-CNN Model Con�gurations:

Experiment 1 MLP Model Con�gurations:

Experiment 1 Results:

Experiment 2 Results:
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