DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours
Final Paper 2020

UNIVERSITY OF CAPE TOWN g

Title: Online Network Traffic Classification in Community Networks

Author: Jonathan Tooke
Project Abbreviation: DLOGs

Supervisor(s): Josiah Chavula

Category Min | Max | Chosen
Requirement Analysis and Design 0120
Theoretical Analysis 0125 5
Experiment Design and Execution 0120 20
System Development and Implementation 0120 10
Results, Findings and Conclusions 10| 20 15
Aim Formulation and Background Work 10| 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 0|10

allowed only with motivation letter from supervisor)

Total marks

80

Online Network Traffic Classification in Community Networks

Jonathan Tooke
jonathantooke@gmail.com
University of Cape Town
Cape Town, South Africa

ABSTRACT

Networks that support Quality of Service (QoS) configuration re-
quire an online network traffic classification tool to separate individ-
ual packets into their respective application classes at the network
gateway. Machine learning techniques have proven to be effective
for this classification task, even when the traffic is encrypted or
routed through a VPN. Out of the machine learning techniques
considered, deep learning models have typically attained the high-
est accuracy in research on traffic classification. However, research
has not extensively considered the performance requirements of
the models trained, incentivizing the development of larger, slower
models in pursuit of higher accuracy. This poses a problem for
online classification, particularly in low resource environments,
where classification must be near instantaneous to avoid introduc-
ing unnecessary latency. This paper considers the trade-off between
prediction speed and accuracy for the packet-based network traf-
fic classification task by developing a framework that builds and
compares hundreds of 1D CNN and MLP deep learning models of
various sizes with varying payload lengths used as input. These
deep learning models are further compared to an SVM across the
same metrics. The models are evaluated using six different sets of
hardware constraints that might be found in a modern commu-
nity network, and the model that achieves the highest accuracy
is selected for each of these resource environments, subject to it
classifying the traffic efficiently enough. The study finds a clear
trade-off between prediction rate and attainable accuracy. In this
regard, it is only for resource environments with an exceptionally
slow CPU that an SVM should be used. For low to middle-range
CPUs an MLP can be used, and for the most powerful of CPUs, a
1D CNN is the preferred model.

CCS CONCEPTS

» Networks — Network management; - Computing method-
ologies — Supervised learning by classification; Neural net-
works.

KEYWORDS

deep learning, neural networks, network classification, community
networks, quality of service, machine learning

1 INTRODUCTION

Network traffic classification is a problem that has undergone sev-
eral evolutionary steps in line with improvements in network secu-
rity standards and the growth of computational power. Improve-
ments in network security, such as the reduction in dedicated ap-
plication ports and an increase in the prevalence of encryption
have made traditional network traffic classification algorithms less
effective at best, and obsolete at worst [13]. At the same time, the

growth in computational power and big data has resulted in the
ever-increasing popularity of machine learning (ML) frameworks
for this classification task.

The focus of this study is on packet-based online network traffic
classification, which requires that traffic is classified using individ-
ual packets in near real-time. The online classification task will be
considered from the perspective of a community network wanting
to make use of QoS engineering, which requires a traffic classifier.
Community networks typically experience slow internet speeds
compared to their urban counterparts and rely on inexpensive
hardware at the network gateway [4]. The slow internet speeds
experienced in these networks make QoS engineering especially
appealing as the benefits of prioritizing latency-sensitive packets be-
comes more pronounced when there is a bottleneck in the network.
The resource constraints imposed by the inexpensive hardware in
community networks means that a traffic classification tool must
be lightweight and efficient enough to avoid adding latency to the
network.

Deep learning techniques have shown significant success for
the network classification task in recent studies [2, 8, 13]). Despite
their capability of achieving higher accuracy on modern internet
traffic than traditional ML [13], large deep learning models come
with considerable computational overheads as compared to their
traditional ML counterparts due to the sheer number of calculations
that need to be performed. In low-resource environments, such as
in community networks, it is not yet clear if deep learning models
that are constrained in complexity by the network’s computational
limits would be capable of outperforming traditional ML models
that are not as computationally intensive.

To investigate the trade-off between speed and model complexity,
two deep learning models used in the network traffic classification
literature are selected, the 1D Convolutional Neural Network (1D
CNN) and the Multilayer Perceptron (MLP). Varying sizes of these
models are built using a randomised grid search technique and their
prediction speed and classification accuracy are recorded using a
dataset from a community network. These models are further com-
pared across the same metrics to a traditional and more lightweight
ML model, the Support Vector Machine (SVM). Additionally, these
models will be built with four different input lengths to investi-
gate the potential performance gains of only considering a smaller
section of each packet’s payload as features.

To contextualise the performance of the models, six sets of com-
munity network hardware specifications are considered and the
classification speed of the models on these hardware systems is
compared to the classification speed required by the network to
provide a model recommendation for each hardware specification
from the set of all models trained. This model recommendation will
be the model that achieves the highest accuracy subject to it being
fast enough to run on the hardware system for online classification.

On the basis of related literature, the hypothesis is that the 1D
CNN will outperform the MLP on accuracy [2]. Furthermore, the
literature suggests that deep learning models performs better than
traditional ML on modern network traffic, suggesting that the MLP
and 1D CNN will outperform the SVM on accuracy [13]. It is likely
that the SVM will be faster than the MLP which should be faster
than the 1D CNN due to the comparative model complexities. The
ability of each model to run efficiently enough on a community
network low-resource environment is as of yet unknown. The effect
on speed and accuracy of reducing the length of the payload as the
input to the model is also unknown.

The rest of the paper is structured as follows. In section 2, some
background is provided on QoS, community networks, and the ML
models used in this paper. Section 3 provides a summary of the
relevant related literature. Section 4 outlines the methodology fol-
lowed by the paper. Section 5 provides the results and a discussion.
Conclusions are given in section 6, and limitations, future work,
ethical issues, and acknowledgements are provided thereafter.

2 BACKGROUND

In this section, some background is given on QoS and community
networks to justify the need for a computationally efficient online
network traffic classifiers. Thereafter, the theory behind the ma-
chine learning models used in this paper is discussed to give some
insight into their inner-workings in the context of the network
traffic classification problem.

2.1 Quality of Service (QoS)

QoS engineering is used to manage network traffic with the goal
of reducing latency, packet loss and jitter. This can be done by
prioritizing traffic from some applications over others according
to predefined network rules [3]. Successful QoS engineering will
improve user experience by ensuring that latency-sensitive traffic
(such as video calls) can be prioritised over traffic that can be delayed
for longer without frustrating users (such as email) . The router
can only choose which packets to prioritize if it can first classify
the incoming packets. This is done using online network traffic
classification tools, such as the machine learning ones implemented
in this paper.

2.2 Community Networks

Community networks are a solution to providing internet access in
rural areas across the globe. They are typically formed by a small
group of people coming together to develop a network infrastruc-
ture in their local community and then creating an access point
to connect their network to the wider internet [9]. Community
networks typically experience slow internet speeds, making QoS
engineering particularly useful for ensuring a positive network
experience. Furthermore, most community networks are built with
inexpensive hardware [4], meaning that computationally intensive
traffic classifiers, such as large deep learning models, may be too
slow for online classification. Smaller deep learning models and
traditional ML models may be required under these circumstances.
The machine learning models trained in this paper use network
traffic data sampled from the Ocean View community network in

Jonathan Tooke

South Africa, meaning that the data is representative of network
traffic coming from a community network.

2.3 Support Vector Machine (SVM)

The SVM is a traditional machine learning model that is typically
used for binary classification problems. In a binary classification
problem, the SVM attempts to distinguish classes along a maximum-
margin hyperplane, which is essentially a straight line that splits
the two data classes most convincingly in the features space [10].
In situations where the data is not linearly separable, a kernel func-
tion is used to transform the data into higher dimensions to allow
for a linear separation. To prevent overfitting with this approach,
and since most real-world datasets contain outliers, the basic SVM
algorithm has been modified to allow for some values to fall on the
wrong side of the hyperplane. This is known as the soft margin. In
the case of multi-class classification, a one-versus-rest approach is
used, where each class is separated from all of the other classes in
the dataset. The one-versus-rest is the approach that is used in this

paper.

2.4 Multilayer Perceptron (MLP)

Input Hidden Output

Figure 1: MLP Architecture

The multilayer perceptron is a type of feedforward artificial neu-
ral network. It consists of an input layer, one or more hidden layers,
and an output layer. Each layer (1) consists of one or more nodes that
are each connected to every node in the subsequent layer [12]. For
each connection in the network, a weight value (w) is stored, and
these values are adjusted as the network is trained. Additionally,
each non-input node is assigned a non-linear activation function
(0) and stores a bias value (b) that is also learned during training.
The data for the network is passed to the input layer, with each
node in the input layer representing a feature of the data. Each sub-
sequent node in the network calculates its output (a) by applying
an activation function to the sum of the outputs of the previous
layer multiplied by the connected weight and adding its bias value
as shown by the equation below.

d. = J(Z wheal ! +bh) 1)

An MLP can be used for both regression and multi-class clas-
sification. In the case of multi-class classification, as used in this
paper, the number of output nodes is set to be equal to the number

Online Network Traffic Classification in Community Networks

of classes to predict, where each output node is associated with
one of the classes. A softmax activation function is used on the out-
put layer, which results in each output node providing a predicted
probability of the input data coming from its associated class.

Training is performed with the input data being divided into
batches. After each batch passes through the network, the network
outputs are compared to the true outputs using a loss function.
An optimizer is used to reduce the error on the batch predictions
by differentiating the loss function and using backpropagation
(with some modifications depending on the optimizer) to adjust the
weights and bias values in the network. Commonly used optimizers
include stochastic gradient descent (SGD), RMSProp, and Adam
optimization which is used in this paper [7]. The exact details of
how these optimizers work is beyond the scope of this paper.

A technique known as regularization is commonly employed to
reduce overfitting in these models. There are various regularization
options available. In this paper, dropout is used, which randomly
prevents some nodes in each layer from firing on each training
iteration [14]. Another technique used is early stopping which
stops training when the validation error starts to increase. Early
stopping is also used in this paper for its regularization and training
time advantages.

2.5 1D Convolutional Neural Networks (1D
CNN)

A convolutional neural network is a more advanced deep learning
model. The main difference to the MLP is that the input data is
fed through convolutional layers first which performs the feature
extraction [8]. Thereafter, a dimensionality reduction technique,
such as max pooling is used, and the output of this is connected to
one or more fully-connected layers.

In a 1D CNN, the convolutional layers take a one-dimensional
vector as input. A kernel of some length is slid across each sub-
region of the input data, calculating the dot product between the
kernel and the sub-region of the input data at each point and ap-
pending the result to the output vector. This operation results in
dependencies between subsequent features being captured by the
model.

The equation for the output, z, from one kernel operation is
given below. Where w is the kernel vector with a different weight
value at each position a. The value [is the layer in the network and
m is the length of the kernel.

m-1
zf = U(Z wazl(lfjw) (2)
a=0

Max pooling is typically used after convolutional layers in order
to reduce the dimensions of the output. This works by taking the
maximum value from subsequent sub-regions of the output and
discarding the other values. The size of the sub-region can be chosen
and tuned.

A similar approach for regularization can be used for CNNs
as discussed in section 2.4 for the MLP, although dropout is less
common following directly from convolutional layers. The same
optimizer and output layer structure can be used as well.

3 RELATED WORK

Many different approaches to network traffic classification have
been studied in related literature. Deep learning techniques have
been studied in recent years in particular, partly due to the addi-
tional challenges imposed by the encryption of traffic [13]. Many
of these studies perform flow-based classification based on inter-
packet features. This is less suited to QoS which needs to perform
the classification in real-time. As such, the key works that are par-
ticularly relevant to this study are those that use deep learning
techniques for packet-based classification where network packets
are classified individually. This approach is less commonly studied
in the literature, meaning that there are not many papers to draw
insights from.

Two main studies made use of 1D CNNs for encrypted traffic
classification. The first used flow-based features [15], making it
less relevant for online classification. The second used the packet
payload as features, where each byte is a feature [8]. The second
paper suggested that 1D-CNNs are ideal architectures for the traf-
fic classification task using the packet payload since they are able
to recognize dependencies between successive bytes in order to
learn key patterns that enable successful classification. The paper
explains that their deep learning models are able to learn the dis-
tinguishable patterns within the encrypted data that characterize
applications, despite the content itself being inaccessible due to
encryption. Their results show the effectiveness of their approach,
with their 1D-CNN model attaining an F1 score of 0.95, outperform-
ing all prior similar works in literature that perform classification
on the same public dataset. This shows that 1D CNNs are promising
for this packet-based classification task.

While the MLP has been studied for the flow-based traffic classi-
fication task, it does not seem that any research has been done on
its effectiveness for packet-based classification. This leaves little to
share about relevant related work for this model.

Packet-based classification using a 1D CNN has been shown to
be successful. However, it does not appear that there have been any
studies that consider computational resource utilization constraints
on deep learning models, a critical constraint for online classifica-
tion. Additionally, the effectiveness of MLPs for this packet-based
task is yet to be discovered.

4 METHODOLOGY

The methodology was designed to ensure that the experiment can
be easily reproduced. This begins with preprocessing the raw traffic
data into the format required by the models. Thereafter, the specific
requirements for the systems that the models must be able to run
on as well as their required throughput rate were determined. Fi-
nally, the approach for building and evaluating the different models
through the use of a randomised grid search over possible model
architectures and hyperparameters is provided.

4.1 Preprocessing

Before building the traffic classifier models, the data needs to be
transformed into the required input format. The data is converted to
a packet-payload representation where each feature is a byte from
the payload. The IP and TCP headers are excluded to prevent the
model from using features such as port numbers and IP addresses

as features since these may change with time and are therefore not
necessarily representative. A bash script is written to automate the
transformation process from raw pcap input to csv output, and the
steps followed by the script are outlined in full detail below. The
script makes it straightforward to replicate the exact preprocessing
steps followed in this paper. The preprocessing took approximately
3 days to run on a standard AWS EC2 server instance for the 14.2GB
of the data used.

Raw pcap
files

L 2
e N

Separate raw pcap files
into individual flows

Separate raw pcap files
into individual flows

Extract IP payload from
each packet

Select and sample
balanced classes

Separate into train,
validation, and test sets

L

train.csv, val.csv, test.csv

Figure 2: Preprocessing Steps

4.1.1 Dataset. The data used for training the models is collected
from the network gateway of the Ocean View community network
in South Africa [6]. A sample of 145 raw pcap files from this net-
work, totalling 14.2GB in size, was used with the files picked over a
date-range from March to May 2019 to ensure that the sample is
representative over an extended time period.

4.1.2 Separate raw pcap files into individual flows. This step takes
raw pcap files as input and produces the pcap flows extracted from
the raw files as output. A flow consists of a number of packets that
share the same source IP address and port, destination IP address
and port, and protocol [13]. Each raw pcap file in the dataset con-
sists of many flows that represent traffic from different application
classes. The tool pkt2flow! was used to separate the flows in each
raw pcap file and save each flow to its own pcap file.

4.1.3 Label flows with nDPI. This step takes pcap flows as input
and produces a csv file with a label for each flow as output. The open-
source deep packet inspection tool, nDPI?, was used to produce the
labels for each of the flows extracted in the step above.

4.14 Extract IP payload from each packet. This step takes the flows
produced by pkt2flow and extracts the raw 1480 byte IP payload
from each packet in each flow and saves them to a csv file where
each byte is a feature as done in related literature [8]. For packets
that have less than 1460 bytes in the payload, the remainder of the

1 pkt2flow Available at: https://github.com/caesar0301/pkt2flow
2nDPI Available at: https://github.com/ntop/nDPI

Jonathan Tooke

payload is zero-padded. Additionally, the label produced by nDPI is
attached to this csv file, so that each packet payload has a label. The
python library scapy® is used to perform the IP payload extraction.

4.1.5 Select and sample balanced classes. nDPI produced labels for
65 different classes, but only 10 of the classes were selected for
the study. These classes were manually selected from the classes
that had sufficient data. 10 000 packets were sampled from each
of the 10 application class to ensure a balanced dataset, some of
which originally had as much as 100 000 packets. Related literature
suggested that this was a good amount of data per class [8] and
using more data would have taken longer to preprocess and resulted
in increased training time for the models. The classes selected can
be found in the appendix.

4.1.6 Separate into train, validation, and test sets. The entire pro-
cessed dataset consisting of 100 000 labelled byte-vectors (10 000
per class) is then split into train, validation, and test sets. 20% of
the data is reserved for the test set, 16% for the validation set, and
64% for the training set.

4.1.7 Post-processing. One additional step was followed after the
preprocessing was completed. The first 20 bytes of each packet
were removed as they contained transport-layer header information
which would allow the models to classify using port numbers. This
is undesirable as the port numbers could change depending on the
configuration of the application and system that it is running on.

4.2 Hardware Constraints Considered

The performance of the various models built in the experiment will
be compared to the six resource constraints provided in the table
below. The justification for considering these specifications can be
found in the appendix.

Table 1: Resource constraints considered

Effective CPU Speed
300 MHz
600 MHz
1.2 GHz
2.4GHz
4.8GHz
9.6GHz

AN U R W N

A number of assumptions are made around the resource con-
straints. Firstly, there will always be a minimum of 25% of the
CPU’s resources available for the model to perform its classifica-
tion. Secondly, differences in CPU architecture beyond clock speed
are ignored and the models are assumed to be perfectly paralleliz-
able where the effective CPU speed listed above is the number of
CPU cores multiplied by the clock speed per core. Thirdly, the com-
munity network servers do not have access to a GPU. Fourthly, the
RAM constraint is not considered. Lastly, the upload speed is fixed
at 10Mbps which is used to calculate the required throughput.

3scapy Available at: https://github.com/secdev/scapy

Online Network Traffic Classification in Community Networks

4.3 Required Classification Throughput

The required throughput refers to the number of packets that need
to be classified per second to match the number of packets trans-
ferred per second by the router. To calculate required throughput,
the maximum network upload speed is divided by the expected
size of each packet, where required throughput is the number of
packets that must be classified per second. A network speed of
10Mbps (1250000 bytes/s) is based on the Ocean View community
network. The expected packet size is calculated by taking the mean
of the payload lengths of the sample taken from the Ocean View
network, giving 970 bytes per packet. To be conservative, this value
will be used to calculate throughput instead of including the IP
header size as well. This produces the equation below.

RequiredThroughput = 1250000/970 = 1289packets/s (3)

4.4 Input Length

To investigate the effect of including less features in the input layer
on model accuracy and performance, the packet lengths presented
below are considered. When models are trained they will only take

Table 2: Number of bytes considered

Number of bytes (n) Payload length

1460 100%
1095 75%
730 50%
365 25%

the first n bytes from the payload as input. The number of bytes
will be varied across the different models built as per Table 2.

4.5 Evaluation Criteria

Classification accuracy is the metric chosen to evaluate the cor-
rectness of the models’ predictions. Related literature frequently
uses an F1 score, but this does not seem necessary as the classes
used in this paper are perfectly balanced and as such there is no
meaningful difference between false negatives and positives and
true negatives and positives.

Number of correct predictions
f P 100 (4)

Accuracy =
Y= Total number of predictions

Additionally, the models are evaluated on the speed at which
they can predict the test set of 20 000 packets on a CPU with a batch
size of 32 and later compared to see if the prediction is sufficiently
fast given varying resource constraints.

4.6 Architecture and Hyperparameter
Selection

In order to find the best set of hyperparameters and model architec-
tures for the varying resource constraints, a randomised grid search
technique is used to search over both the model architecture and
training parameters at the same time. The architecture parameters
considered are designed to produce models of varying size and
complexity.

4.6.1 Model architectures. MLP models are randomly constructed
with between one and 3 hidden layers. 10 different values for the
number of nodes in each layer are considered. However, the number
of nodes considered is capped at the input size, reducing the number
of options and complexity for smaller inputs used. For the CNN
models, one or two 1D convolutional layers are used, followed by
a max pooling layer, and then one or two dense layers. Details
regarding the architecture parameters considered can be found in
the appendix.

4.6.2 Hyperparameters. Other parameters searched over include
the dropout rate, the batch size, the learning rate and the activation
function. The input length (number of features) is also varied, but
not at random. For the convolutional layers, values for filter size,
kernel size, stride and padding are searched over. Different values
for the max pooling layer are also considered. Details regarding the
hyperparameters considered can be found in the appendix.

4.7 Experiment Procedure

4.7.1 Varying the input length. A method is written to transform
the input data to the input lengths specified in section 4.4 so that
the models can be built and evaluated on inputs of varying sizes.

4.7.2 Establishing a baseline with SVM. The first step of the ex-
periment involves setting a baseline classification accuracy on
the dataset with a traditional machine learning model using the
scikit learn LinearSVC library (SVM classifier) [11]. The model was
trained and evaluated across all 4 input lengths specified. A lin-
ear kernel along with a one-vs-the-rest scheme is used as per the
scikit-learn documentation.

4.7.3 Training deep learning models. 300 MLP and 1D CNN mod-
els are trained across the hyperparamater and model architecture
search space for each of the 4 input lengths outlined in section 4.4
using Keras [5] with Tensorflow [1]. This results in 1200 different
MLP models and 1200 different CNN models that can be evaluated.
The hyperparameters chosen for each of these models are saved to
a csv file and the model itself is also saved. Early stopping is used
to reduce training time and provide a regularization effect. A Tela
V100 GPU is used to do this training and it takes between 24 and
48 hours to train each set of 1200 models.

4.7.4 Performance evaluation. The models are now loaded into a
CPU instance where their prediction speed on the test set of 20
000 packets is recorded using a batch size of 32. The prediction
speed is added to the csv file generated above, along with the size
of the saved model in megabytes. The hardware specs for the CPU
instance used is retrieved with a bash script and saved to a text file
for later consideration.

4.7.5 Comparison to hardware constraints. A python script is writ-
ten to take a csv file containing the model prediction speeds and
the effective processing power of the system that produced that
prediction speed. The ratio between the clock speed on the system
that the model was tested on and the hardware constraints under
consideration is calculated and the prediction rate is scaled by that
same ratio. Thereafter, the calculated prediction rate is reduced by
75% to account for the assumption that only 25% of the system’s

resources should be allocated to the traffic classification. The predic-
tion rate is now compared to the required throughput calculated in
section 4.3 to see if the hardware under consideration can support
the model. An example showing how this is calculated is included
in the appendix for additional clarity.

5 RESULTS AND DISCUSSION

In this section, the results of the experiment are reported. Insights
are provided into the prediction rate and accuracy attainable for the
different models as well as the trade-off between the two. Addition-
ally, insights into the effect of reducing the payload length are given.
For all of the graphs plotted below, prediction rate is calculated by
predicting on the 20 000 packets in the test set and then calculating
the number of packets predicted per second. This was performed on
an Intel Xeon CPU with 2 cores with a clock speed of 2.30GHz per
core (effective CPU speed of 4.6GHz). This rate is later adjusted to
match the CPU requirements of the hardware constraints specified
in the methodology section in order to provide a model allocation
per hardware specification.

5.1 SVM Accuracy and Prediction Rate

Table 3: SVM Results

No. bytes (n) Accuracy (%) Prediction Rate (packets/s)

1460 64.59% 142116
1095 47.95% 193205
730 48.09% 260783
365 48.24% 322039

Table 3 shows that the SVM is capable of predicting at an accu-
racy of just under 65% when the full payload is used as the input.
The prediction rate improves as the number of bytes included de-
creases, showing the improvement in performance of considering
less features. However, this comes at the cost of a decrease in ac-
curacy of just over 15% as soon as the full payload of 1460 bytes
is no longer considered. There does not seem to be a significant
difference between the accuracy of the SVM models that use less
than the full payload, suggesting that the model does not extract
any additional useful information from bytes 365 to 1095.

5.2 Model Accuracy Comparison

Figure 3 shows the difference between the distribution of accuracy
on the test set for each of the deep learning models using each of
the input lengths considered. It is clear that models with the full
payload are capable of achieving a higher accuracy than models that
use less bytes as input, but there does not seem to be a significant
difference between the accuracy attainable for input lengths of any
other size. The higher accuracy achieved by the 1460-byte models
could be attributed to either some very useful features in the later
bytes in the payload or that the payload length is a useful feature
that the models can only learn when they have the full payload.
Table 4 shows a comparison between the maximum accuracy
attained by the models of each class as well as the input length
used and the prediction rate. There is a clear difference in accuracy
across the classes, with the 1D CNN outperforming the MLP, which

Jonathan Tooke

Figure 3: Accuracy Distribution by Model and Input Length

80
£
= +
g
5
o
-+
i H
+
0 ‘ +
20 [[} Maodel Type
. CNN
10 [] [] [} § B ML
365 T30 1095 1460

Input Lengths (Bytes)

Table 4: Maximum Model Accuracy Comparisons

1IDCNN MLP SVM
Accuracy (%) 88.64% 82.48% 64.59%
Input Length (n) 1460 1460 1460
Prediction Rate (packets/s) 1115 34880 193205

outperforms the SVM. However, the prediction rate is about 30
times slower for the CNN as compared to the MLP, which is 6 times
slower than the SVM. The hyperparameters used for these models
can be found in the appendix.

5.3 Model Prediction Rate Comparison

Figure 4: Prediction Rate Distribution by Model and Input

Length
Model Type
50000 [l
= MLP
w 40000
g
£
=
2
= 30000
o
o]
&
c
2
20000
2
@
£
10000
0
1095 1460

Input Length (Bytes)

Figure 4 provides insight into the differences between the pre-
diction rates of the MLP and the 1D CNN, as well as the differences
between the prediction rates of models trained with the different

Online Network Traffic Classification in Community Networks

input lengths. It is clear from the diagram that the CNN is con-
siderably slower than the MLP across input lengths of all sizes.
Additionally, a trend of models performing faster with a smaller
input length can be seen for both the MLP and CNN.

5.4 Maximum Accuracy Attainable by Input
Length

Figure 5: Best Accuracy Attainable by Each Model for each

Input Size

100 o 10 NN
. s MLP
F gp W SVM
el
[}
e
g 60
3
=
=]
=40
m
=
T
a
@ 20
]

0

365 730 1095 1460

Input Length

Figure 5 shows the maximum accuracy that each model class can
attain for each input length. The highest accuracy attained by every
model class was done with the full payload, indicating that the full
payload should be used if accuracy is the only concern. However,
section 5.3 showed that considering less features can result in a
faster prediction rate, so it is possible that using a smaller payload
could be beneficial for some hardware-model combinations. There
does not seem to be a significant difference between the highest
accuracy attainable for models with between 365 and 1095 bytes
as input, suggesting that bytes 365 to 1095 do not add significant
information.

5.5 Relationship Between Accuracy and
Prediction Rate

Figure 6 shows the relationship between the test accuracy attainable
and the prediction rate for the MLP models. There appears to be an
inverse relationship, with the models attaining a higher accuracy at
the cost of a slower prediction rate. The number of bytes considered
by each model is also shown by adjusting the hue of the dots. A
trend of the dots getting darker as the accuracy improves and then
prediction rate declines can also be observed, indicating that the
smaller input sizes demonstrate faster classification at the expense
of accuracy for the MLP models.

Figure 7 shows the relationship between the test accuracy at-
tainable and the prediction rate for the 1D CNN models. A similar
inverse relationship exists between test accuracy and prediction
rate, but it is worth noting that the models are considerably slower

Figure 6: MLP Accuracy vs Prediction Rate for Models with
Accuracy above 65%

20
No. bytes
365
85 4 e 730
e 1095
— - -
E . e 1460
= B0 4
=
e
=1
5
< 75 |
n
ot
70 4

&5
5000 10000 15000 20000 25000 30000 35000 40000
Prediction Rate (packets/s)

Figure 7: 1D CNN Accuracy vs Prediction Rate for Models
with Accuracy above 65%

MNo. bytes
af 365
-
85 'l:. ® 730
'-’.-“' e 1095
g . e 1460
= 80 4
=
s
=
4
< 75 |
I
i
?0_
S

0 000 4000 6000 G000 10000 12000
Prediction Rate (packets/s)

than those presented in Figure 6. As with Figure 6, a trend of the
dots getting darker as the accuracy improves can be seen indicating
that the smaller input sizes demonstrate faster classification at the
expense of accuracy for the 1D CNN models.

5.6 Model Allocations by Hardware
Constraints

The following model allocations are made for the resource con-
straints outlined in the methodology section. Note that the CPU
speed in the table is taken after taking the clock speed and reducing
it to the 25% available for classification. Furthermore, the prediction
rate is adjusted to be representative of what might be expected on
each of the CPUs under consideration, and this adjusted rate is used
to allocate the model with the highest accuracy that can meet the
required throughput rate of 1289 packets/s for each of the CPUs.

The model name is a unique identifier which follows the format
[Model class]_[Number of bytes used as input]_[id] where id is a
number between 0 and 299.

Table 5: Model Allocations by CPU speed

CPU Available (GHz) Model Name Accuracy Rate (pk/s)
0.075 SVM_1480 64.59% 2317
0.15 MLP_365_136 72.16% 1343
0.3 MLP_1460_127 82.48% 2274
0.6 MLP_1460_127 82.48% 4549
1.2 MLP_1460_127 82.48% 9099
24 CNN_1460_197 84.29% 1438

Table 5 shows which model was chosen for each hardware sys-
tem, where the model with the highest classification accuracy is
chosen subject to it meeting the required prediction speed on the
given hardware system. Firstly, it is only the weakest processor
that resorts to using an SVM with an accuracy of 64.59% and only
the most powerful processor that selects a CNN with an accuracy
of 84.29%. The others all use the same MLP model with an accu-
racy of 82.48%, aside from the second weakest processor which
uses an MLP with 365 bytes as input and produces an accuracy of
72.16%. The highest accuracy CNN reported in section 5.4 is too
slow even for the fastest CPU considered. The hyperparameters for
these models can be found in the appendix.

6 CONCLUSIONS

A number of key conclusions can be drawn from the results of the
experiment and they are outlined below.

6.1 Highest Accuracy Model Performances

Similar to related literature, the 1D CNN has performed better
than the MLP on accuracy. However, it is significantly slower than
the MLP, with the highest accuracy 1D CNN predicting 30 times
slower than the highest accuracy MLP. The highest accuracy 1D
CNN achieved an accuracy of 88.64% and the highest accuracy
MLP achieved an accuracy of 82.48%. The best SVM model uses
the full payload as features and achieves an accuracy of 64.59%,
significantly worse than the CNN and MLP, but performs 6 times
faster than the best MLP and 180 times faster than the best 1D CNN.
The highest accuracy 1D CNN is too slow for even the fastest of
the resource constraints considered.

6.2 Inverse Relationship between Prediction
Rate and Test Accuracy

It has been shown that there is a general inverse relationship be-
tween the prediction rate and the attainable accuracy, both within
model classes and between model classes. This means that low-
resource environments may have to select a faster model with a
lower accuracy to meet the throughput requirements of an online
traffic classifier.

Jonathan Tooke

6.3 Full Payloads Achieve Higher Accuracy at
the Cost of Performance

The analysis on considering payload lengths of less than the full
1460 bytes revealed that this does come at a significant accuracy cost,
but with a faster prediction rate. Despite performing worse than
full-payload models, the models with 365, 730, and 1095 bytes as fea-
tures performed similarly to each other, suggesting that there is not
meaningful information captured from bytes 365 to 1095. Despite
the lower accuracy, considering smaller input lengths can be worth-
while lower resource environments as is shown by MLP_365_136
in Table 5 which only uses the first 365 bytes as input and was
selected for the second slowest resource environment.

6.4 Community Network Recommendation

The recommended model for a given community network depends
on their required throughput, available processor resources, and
available RAM. Only the first two have been considered here, but it
is reasonable to infer that models with a faster prediction rate will
generally require less RAM as less calculations are performed and
thus less values need to be stored.

For most community networks, it appears that the MLP is a good
option for network classification as it seems to perform sufficiently
fast to meet the processor constraints of most community networks
while achieving a reasonable accuracy. The SVM should only be
used in community networks that have exceptionally slow pro-
cessors. The CNN should be used in community networks with
high-end CPUs or access to a GPU.

The process of selecting a model can be easily replicated for a
network with arbitrary resource constraints as a function has been
written that will take the constraints specified and return the model
that can attain the highest accuracy subject to the constraints.

For actual implementation in a community network with known
resource constraints, this paper can serve as a guide as to what sort
of models could be supported by the network and a model could be
fine-tuned to achieve an accuracy marginally higher than the ones
generated by the random search in this paper.

7 LIMITATIONS

Although interesting and suggestive, the results in this paper should
not be considered conclusive. A number of key limitations must be
kept in mind when interpreting the results, particularly since the
deep learning field of work is a highly experimental one.

7.1 Limited Search Space

The search space for the architectures and hyperparameters of
the 1D CNN and MLP models considered is infinitely large. Hy-
perparameters and architectures were selected based on what is
commonly done in machine learning, but it by no means implies
that there were not better hyperparameter and architecture combi-
nations that may have attained a higher accuracy without perfor-
mance degradation. As such, the results should only be considered
as significant within the search space considered. Furthermore, a
limit on access to computational resources meant that it took a lot
of time to train and test models, which prevented the expansion of
the search space.

Online Network Traffic Classification in Community Networks

7.2 Class Selection

The performance of the models may depend on the classes selected.
If a community network were to implement a deep learning classi-
fier they may wish to include additional or different applications
for classification to the ones considered by the study. The effect of
changing the number of classes considered on accuracy and pre-
diction rate has not been investigated and neither has the effect of
using different classes with a different distribution.

7.3 Handling Data from Unknown Classes

The accuracy of the models trained is not representative of what
would be encountered in a live network, as the models assume that
the 10 classes considered are the only classes in the network and
would incorrectly classify traffic from an arbitrary class as traffic
from one of the 10 classes. To test how the models handle such
traffic, data representative of standard network traffic should be fed
into the models and only situations where the model is sufficiently
confident in its prediction, should it produce a label. Alternatively,
the models could be trained with an ’other’ class where it attempts
to classify traffic as belonging to a different class as the ones under
consideration.

7.4 Data Labelling

The labels used in the dataset were generated by nDPI, a deep
packet inspection tool, as mentioned in the preprocessing stage.
One of the issues with this approach is that the accuracy of the
models on the underlying data is limited to the accuracy of the data
labelled by nDPI, as the test set used also uses labels from nDPL

8 FUTURE WORK

This study has provded valuable insights into the potential of using
deep learning models for the purposes of online traffic classification
in low resource environments. However, there are a number of ways
in which the work could be extended upon.

8.1 Comparison with other ML Techniques

This study only considered the effectiveness of the 1D CNN, MLP
and SVM on for the online traffic classification task. It is possible
that there are other models that would provide a better combination
between performance and accuracy than those considered. Other
deep learning models used in related literature with good perfor-
mance include the LSTM, 2D CNN and Stacked Autoencoder. The
performance of other traditional machine learning models could
also be investigated and compared to the SVM.

8.2 Varying the Number of Classes to Predict

It may be useful to investigate the effect of considering a different
number of classes for classification on accuracy and performance.
If a negative relationship is shown between the number of classes
considered, and accuracy and performance, this would suggest that
the number of classes considered should be kept to a bare minimum.
Alternatively, if a negative relationship is not found, then this would
allow network engineers to classify more types of traffic without a
loss in performance or accuracy.

9 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES

The project faces few ethical, professional, and legal issues. This is
largely due to the fact that the team is not interacting with individ-
ual people, or sensitive data that can be traced to individuals. The
most important ethical issue to consider is the confidentiality of
the aggregated network data that has been provided by the Ocean
View community network in South Africa for the purposes of train-
ing and testing our models. The network has granted permission
for the team to use the data for research purposes. However, it is
still important that the privacy of the network is protected, so the
team will ensure that the data is only accessed by the team and not
distributed publicly. There are no legal issues faced by the project.

Upon completion of the project, the source code will be made
public for future researchers to use and build upon. If the research
paper is published, it will be published under the creative commons
license as per the University of Cape Town’s policy.

10 ACKNOWLEDGEMENTS

Thanks to my supervisor, Josiah Chavula who has always been
available to assist by offering guidance and answering questions
despite the online nature of the year. A big thank you to my team
members, Matthew Dicks and Shane Weisz for the group effort on
the preprocessing and for being available to discuss ideas for the
project at large. Lastly, thank you to the UCT Computer Science
Department staff for their substantial role in my computer science
education.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265—
283.

[2] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé. 2019. Mobile Encrypted Traffic
Classification Using Deep Learning: Experimental Evaluation, Lessons Learned,
and Challenges. IEEE Transactions on Network and Service Management 16, 2
(2019), 445-458.

[3] A.O.Adedayo and B. Twala. 2017. QoS functionality in software defined network.
In 2017 International Conference on Information and Communication Technology
Convergence (ICTC). 693-699.

[4] BartBraem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro
Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Vifas,
Aaron L. Kaplan, Axel Neumann, Ivan Vilata i Balaguer, Blaine Tatum, and
Malcolm Matson. 2013. A Case for Research with and on Community Networks.
43,3 (2013).

[5] Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras

[6] iNethi. 2020. Community Network Deployments. Retrieved 2020-09-19 from
https://www.inethi.org.za/deployments/

[7] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[8] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and

Mohammadsadegh Saberian. 2019. Deep packet: a novel approach for encrypted

traffic classification using deep learning. Soft Computing 24, 3 (2019), 1999-2012.

https://doi.org/10.1007/s00500-019-04030-2

P. Micholia, M. Karaliopoulos, I. Koutsopoulos, L. Navarro, R. Baig Vias, D. Boucas,

M. Michalis, and P. Antoniadis. 2018. Community Networks and Sustainability: A

Survey of Perceptions, Practices, and Proposed Solutions. IEEE Communications

Surveys Tutorials 20, 4 (2018), 3581-3606.

William S Noble. 2006. What is a support vector machine? Nature biotechnology

24, 12 (2006), 1565-1567.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

[

[10

[11

https://github.com/fchollet/keras
https://www.inethi.org.za/deployments/
https://doi.org/10.1007/s00500-019-04030-2

[12]

[13]

[14]

[15]

Hassan Ramchoun, Mohammed Amine, Janati Idrissi, Youssef Ghanou, and Mo-
hamed Ettaouil. 2016. Multilayer Perceptron: Architecture Optimization and
Training. International Journal of Interactive Multimedia and Artificial Intelligence
4,1(2016), 26. https://doi.org/10.9781/ijimai.2016.415

S. Rezaei and X. Liu. 2019. Deep Learning for Encrypted Traffic Classification:
An Overview. IEEE Communications Magazine 57, 5 (2019), 76-81.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.

W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. 2017. End-to-end encrypted
traffic classification with one-dimensional convolution neural networks. In 2017
IEEE International Conference on Intelligence and Security Informatics (ISI). 43-48.

Jonathan Tooke

https://doi.org/10.9781/ijimai.2016.415

Online Network Traffic Classification in Community Networks

A CLASSES SELECTED
The 10 application classes used in the study include the following:

BitTorrent
GoogleDocs
Instagram
GMail
YouTube
Cloudflare
WhatsApp
GoogleServices
Facebook
TeamViewer

B HARDWARE CONSTRAINTS
B.1 Calculation Example

In this section, an example is included to show how the prediction
rate is scaled for the various hardware systems under consideration.
Note, this calculation relies on a number of simplifying assumptions
that are outlined and justified in the methodology section.

A model is trained on a system with 2 cores each operating at
2.3GHz. This is converted to an effective CPU speed of 4.6GHz
by adding the speed of the two cores together. The model records
a prediction rate of 10000 packets per second on this system (i.e.
it classifies the full test set of 20000 packets in 2 seconds). The
required throughput calculated in the methodology section is 1289
packets/s for a 10Mbps line.

The system under consideration is a community network with
an effective CPU speed of 2.3GHz. To convert the classification
rate to be representative of what could be done on this system, the
ratio of the clock speeds is calculated (2.3/4.6 = 0.5) and the original
prediction rate is multiplied by this number resulting in a prediction
rate of 5000 packets/s (1000070.5). This number is then reduced by
75% to account for the fact that only 25% of system resources should
be used for classification, resulting in a throughput of 1250 packets/s.
This is too slow for the community network under consideration
and the model is rejected.

B.2 Constraints Considered

e 300 MHz single core ARM processor as found on very low-
range home routers.

e 600 MHz single core ARM processor as found on low-range
home routers.

o 1.2 GHz single core ARM processor as found on middle-range
home routers.

e Intel Pentium 4 Processor. 1 core @ 2.80 GHz. 2GB RAM. As
found in entry level servers.

o Intel Core i3-5010U process. 2 cores @ 2.10 GHz/core. As
found in some community network servers.

o Intel Core i5-8259U processor. 4 cores @ 2.3Ghz per core. As
found in some community network servers.

C ARCHITECTURES AND
HYPERPARAMETERS CONSIDERED

For each model constructed an item is selected randomly from the
parameters provided in the lists below.

C.1 MLP

e Number of layers: [1,2,3]

e Number of nodes per layer: [8, 16, 32, 64, 128, 256, 512, 1024],
but does not select a number of nodes for each layer that is
greater than the input length

e Activation function: [relu, selu, sigmoid, swish]

e Dropout from input layer: [0, 0, 0.05, 0.1, 0.15, 0.2]

e Dropout between hidden layers: [0, 0, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, 0.5]

e Dropout to the output layer: [0, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5]

e Learning rate: [0.002, 0.0015, 0.001, 0.001, 0.0009, 0.0008]

C.2 1D CNN

Number of convolutional layers: [1,2]

Number of filters: [20, 50, 75, 100, 125, 200]

Kernel size: [2, 3, 4, 5, 6]

Stride length: [1,2,3]

Padding: [valid, same]

Max pooling size: [2, 4, 6, 8]

Activation function: [relu, selu, sigmoid, swish]

Learning rate: [0.002, 0.0015, 0.001, 0.001, 0.0009, 0.0008]
Number of hidden layers: [1,2]

Number of hidden nodes: [30, 50, 80, 100, 120, 200, 300]
Dropout to hidden nodes: [0, 0, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5]

e Dropout to output layer: [0, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5]

C.3 Other
e Batch size: [64, 128, 256, 512, 1024]

D NOTABLE MODEL PARAMETERS

D.1 MLPs
MLP_1460_127 (highest accuracy MLP)

e Number of layers: 3

e Number of nodes per layer: [32, 32, 256]

e Activation function: relu

e Dropout from input layer: 0

e Dropout between hidden layers: 0

e Dropout to the output layer: 0.35

e Learning rate: 0.002

e Batch size: 128

o Number of bytes as input: 1460
MLP_365_136

e Number of layers: 3

e Number of nodes per layer: [16, 64, 32]

e Activation function: selu

e Dropout from input layer: 0.05

e Dropout between hidden layers: 0

e Dropout to the output layer: 0.1

e Learning rate: 0.0015

o Batch size: 64

e Number of bytes as input: 365

D.2
D.2.1

1D CNNs

CNN_1460_177 (highest accuracy CNN).

Number of convolutional layers: 2
Number of filters: [100, 20]
Kernel size: [5, 6]

Stride length: 2

Padding: same

Max pooling size: 6

Activation function: relu
Learning rate: 0.001

Number of hidden layers: 1
Number of hidden nodes: 50
Dropout to hidden nodes: 0.3
Dropout to output layer: 0.5
Batch size: 64

Number of bytes as input: 1460

D.2.2

CNN_1460_197.

Number of convolutional layers: 2
Number of filters: [20, 20]
Kernel size: [5, 4]

Stride length: 1

Padding: same

Max pooling size: 2

Activation function: relu
Learning rate: 0.002

Number of hidden layers: 1
Number of hidden nodes: 100
Dropout to hidden nodes: 0.45
Dropout to output layer: 0.1
Batch size: 256

Number of bytes as input: 1460

Jonathan Tooke

