
A Comparative Evaluation of Deep Learning Approaches to
Online Network Traffic Classification in Community Networks

Matthew Dicks (DCKMAT004)
University of Cape Town
Cape Town, South Africa
dckmat0041@myuct.ac.za

ABSTRACT
Community networks are networks that are run by the citizens for
the citizens. Communities build, operate and own open IP-based
networks, which promotes individual and collective participation.
These networks run with limited resources compared to traditional
Internet Service Providers. Understanding how resources are used is
necessary to ensure improved Quality of Service (QoS). The purpose
of this paper is to determine whether deep learning can be used for
traffic classification to help improve the QoS and traffic engineering
in community networks. To do this, the deep learning architectures
chosen were tested over a range of time and memory constraints,
and they have been compared to a traditional machine learning
model. After performing the experiments it was shown that deep
learning is the best way to perform traffic classification in a low
resource environment. The models provided prediction speeds fast
enough to be used for real time classification, and they had a higher
test set accuracy than the Support Vector Machine when measured
over all memory constraints. The paper also shows that the Long
Short-Term Memory architecture significantly outperformed the
Multi-Layer Perceptron because it was able to learn the sequential
aspects of the packet’s byte stream.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks; • Networks → Network monitor-
ing.

KEYWORDS
Network traffic classification, deep learning, community networks

1 INTRODUCTION
Traffic classification is the process of categorizing network traffic
into appropriate classes. In this project, the classes will represent
applications such as Gmail, YouTube and Facebook.
Traffic classification has become a vital tool used in advanced net-
work management, especially in the context of Quality of Service
(QoS) control, pricing, resource usage planning as well as malware
and intrusion detection. This project aims to utilize deep learning
to perform traffic classification for the purpose of improving QoS
and traffic engineering in community networks. QoS engineering
works by prioritizing the traffic of some applications over others
depending on the network’s requirements [2]. For a QoS system to
prioritize some traffic, it needs to first classify the traffic into the
appropriate classes. This is why good traffic classification is vital
for improving QoS systems.
Previous traffic classification methods used port numbers, Deep

Packet Inspection (DPI) or features hand crafted by an expert. There
are a number of issues with each of these approaches. Using port
numbers for traffic classification is the simplest and fastest way to
classify internet traffic. However, due to port obfuscation, random
port assignments, port forwarding, protocol embedding and net-
work address translation (NAT), the accuracy of port-basedmethods
has decreased [13]. The accuracy of DPI methods has decreased
due to the increase in the amount of encrypted traffic and user pri-
vacy agreements. DPI also has a large computational overhead [15],
which is not suited to real time classification. Features that have
been handcrafted by an expert can suffer a lack of generality be-
cause they focus on only a few key features. Aceto et. al. [1] notes
that these hand-crafted features rapidly become outdated due to the
evolution and mix of internet traffic. It is also an expensive method
because experts have to be hired and the hand picking procedure
is subject to human error [1].
Deep learning is a proposed solution to these issues. Deep learning
can learn a hierarchical set of features from high dimensional raw
packet data. It therefore removes the need for features to be hand
crafted by an expert, and promises to be able to classify encrypted
traffic. A system can leverage the power of this approach to build
an end-to-end deep learning tool. This will limit the need for fea-
ture selection and engineering, which would reduce the amount
of prepossessing and overhead. Deep learning includes powerful
architectures such as recurrent neural networks that can learn tem-
poral patterns in data. This will become useful because packet data
is inherently sequential.

1.1 Project Aims
This project aims to answer three key research questions. Firstly,
which of the deep learning architectures provides the highest clas-
sification accuracy subject to the resource constraints found in a
community network? Secondly, does the more complex Long Short-
Term Memory (LSTM) network sufficiently outperform the simpler
Multi-Layer Perceptron (MLP), assuming the same computational
constraints? Lastly, does the best deep learning network sufficiently
outperform a traditional machine learning model, the Support Vec-
tor Machine (SVM), assuming the resource constraints found in a
community network? The success of this project will be determined
by how well these research questions were answered.
To answer these research questions the project aims to build a data
pipeline that can take a set of pcap files, and from the pcap files
create a dataset that will be used to train and test machine and deep
learning models. There will be three model types implemented the
SVM, MLP and LSTM. The comparison of the models’ performances
aims to answer these research questions.



Matthew Dicks (DCKMAT004)

1.2 Structure of Report
The paper will start out by giving an explanation on what a com-
munity network is and why resource efficient traffic classification
techniques are vital in that context. It will then give a theoretical
background on the models chosen and will introduce some of the
state of the art research that has been conducted in the field of
traffic classification. The paper will then describe the design and
execution of the experiments as well as the results. The paper will
conclude with a summary of key findings and a discussion on limi-
tations of the paper and future work that would be of use to this
field.

2 COMMUNITY NETWORKS
A Community network is a network that is run by the citizens
for the citizens, where communities build, operate and own open
IP-based networks [3]. These networks promote individual and col-
lective digital participation in rich, poor, rural and urban areas [14].
They also have minimal barriers to entry because their governance,
knowledge and ownership is open [14]. These networks are usually
run by non-profit organizations who can interact with stakeholders
to provide services such as local networking, voice, data and inter-
net access [14]. Community networks are large-scale distributed
and decentralized systems with many nodes, links, services and traf-
fic. They are also characterized by their dynamic and heterogeneous
behavior [14].

2.1 The potential for traffic classification in
community networks

Community networks provide a wide range of application services
such as VoIP, content distribution, on-demand and live streaming
media, instant messaging as well as back-ups and software updates.
The challenge often is that they have to provide these services on
links and servers with limited capacity. They also have to manage
the diverse and volatile resources in the network [3]. Therefore,
to be able to provide a good QoS to the users, network managers
should be able to know how their resources are being used. This is
where traffic classification comes in, as it provides a way for the
citizens and non-profit organizations who are running the network
to view what applications are using different resources. This allows
them to take more informed actions to try and improve the QoS
delivered to their customers. Efficient, real time traffic classification
is also vital to ensure the correct traffic is prioritized.
The end goal of this project is to perform traffic classification with
deep learning models. These models have a large number of pa-
rameters, which makes training and running them computationally
expensive. Community networks try to provide their services at a
low cost and one of the ways they do this is to use cheaper hardware
and resources [3]. Since these models will need to be deployed in
low resource environments, they will need to be evaluated not just
based on their predictive performance, but also on their computa-
tional efficiency.

3 BACKGROUND ON THE MACHINE
LEARNING AND DEEP LEARNING MODELS

This section gives a theoretical explanation of each of the models.
It also motivate why each model was chosen.

3.1 Machine Learning Model
The Support Vector Machine (SVM) was chosen as the baseline
machine learning model. The SVM was developed by the computer
science community in the 1990s and has proven to work well in
a variety of settings [8]. It is often considered as one of the best
out-of-the box classifiers [8].
The Support Vector Classifier (SVC) was the first iteration of the
SVM model and it was used to perform two class classification. The
SVCmodels each training example as a point in p dimensional space,
where p is the number of predictor variables. Then the algorithm
tries to find a p-1 dimensional hyper-plane that linearly separates
the two classes, assuming that the classes are linearly separable [5].
Usually the observations in the two classes are not perfectly separa-
ble by a linear plane, some observations in one class might fall into
the other class’s side of the plane. The SVC solves this problem by
introducing a soft margin, which allows some observations to be
miss-classified [8]. The sensitivity of the model to miss-classified
observations is controlled by the hyperparameter C, which will be
searched over in the model building process [8]. This parameter
also controls the degree to which the model overfits to the data.
What if the data is not linearly separable? This is where an SVC
turns into an SVM. An SVM will first transform the feature space
using either quadratic, cubic or even higher-order functions of the
predictors [8]. These functions are called kernels. If a space is not
linearly separable, then a kernel is used to create a new enlarged
feature space where the observations are now linearly separable,
and an SVC can be fit to this new feature space [8].
Since this project is dealing with multi-class classification, the SVM
will have to be able to classify multiple classes. There are two ways
in which an SVM can be used to perform multi-class classifica-
tion and that is one-versus-one or one-versus-many. Due to the
emphasis that this project puts on efficiency the one-versus-many
approach will be used. For K class classification, K SVM models are
trained. To predict the class to which an observation belongs the
SVM with the highest value is taken [8].
The SVM model was chosen as a baseline machine learning model
for this project because it has the ability, unlike some of the other
machine learning models, to perform well on high dimensional
data. And since our feature space will have 1480 dimensions, this
performance was necessary. The SVM model is also able to use the
same type of data that will be used in the deep learning models,
which allows for a good comparison.

3.2 Deep Learning Models
3.2.1 Multi-layer Perceptron.
The Multi-Layer Perceptron is the quintessential deep learning
model and forms the basis for many commercial applications. For
example, recurrent neural networks, which will be described in
the next section, is formed by a sequence of MLPs [6]. An MLP is
a directed acyclic graph that consists of a set of nodes and edges,
see Figure 1. The nodes are either the input values, if they are at



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification in Community Networks

the input layer, or they are the activation functions. The edges are
the weights that form the parameters of the model to be learned.
Each node, besides the input nodes, takes a weighted sum of all the
nodes in the previous layer as input, and then passes this through a
non-linear activation function. In a classification task, the outputs
of the last layer are fitted with a softmax function and the neuron,
which represents a category, with the highest probability is taken.
It can be seen that these models have a large amount of parameters
and therefore training and deploying these models is very compu-
tationally intensive. Due to this complexity and their low accuracy,
these models have not been widely used in traffic classification [15].
Due to their prevalence in the deep learning domain and the fact
that it forms the basis for all other deep learning models, this model
type was chosen as the baseline deep learning model.

Figure 1: MLP

3.2.2 Long Short-Term Memory Network.
Recurrent Neural Networks (RNNs) are used for processing se-
quential data, where the current state may depend not only on
the current input, but also previous inputs, for example language
translation and time series predictions [6]. To be able to model
these sequences, the network contains loops, as shown in Figure 3.
These loops allow RNNs to scale to longer sequences than otherwise
would be possible if a different model architecture was used [6].
These networks also take advantage of parameter sharing because
they look for information that could occur in multiple locations.
Parameter sharing drastically reduces the memory requirements
because it reduces the number of parameters that need to be op-
timized. The problem with RNNs is that they cannot learn long
term dependencies due to the vanishing and exploding gradients
problem that comes from applying the same function over and
over again [6]. To solve this problem, Long Short-Term Memory
(LSTM) networks were created. These are gated RNNs where the
gates are used by the network to remember or forget states depend-
ing on the current time step. This is useful because it allows the
gradients to propagate further into the future without exploding or
vanishing [6]. In traffic classification approaches, LSTMs are used
instead of vanilla RNNs because they can learn these long term
dependencies [11, 18]. They are particularly useful when classifying
flows into categories because they can learn the temporal patterns
between individual packets. This model type has not been used to
classify individual packets, but because the bytes in a packet are
inherently sequential, this model type may be able to outperform

MLPs and other types of networks due to its ability to learn these
sequential patterns. The LSTM structure is inherently sequential,
which makes them very hard to train and run in parallel. Therefore,
they should have longer training and prediction times, compared
to other networks. This could use up vital resources in a resource
constrained community network.

Figure 2: RNN

4 RELATEDWORK
This section discusses how deep learning and machine learning
have been used in traffic classification. There are two ways to
perform traffic classification namely, flow classification and packet
classification. Therefore, this section is split into two sections that
will discuss the two different approaches.

4.1 Flow Classification
More often than not, the objects of classification are flows [1]. In
the literature, there are four prominent approaches for collecting
data from a flow [1, 4, 11, 18, 19]. The first approach is to take raw
data, in the form of bytes, from some of the packets in the flow [19].
Another approach is to extract raw data from a flow. This mean that
you only consider the first N bytes from the flow and you do not
care about individual packets [18]. The third approach uses time se-
ries data like packet sizes, packets directions and inter-arrival times
from individual packets [15]. Flow statistics is the fourth way that
data can be extracted from a flow. Examples of flow statistics are
means, standard deviations as well as minimums and maximums
for packet sizes and inter-arrival times. This approach needs to use
more packets from a flow so that estimates do not have too much
variance. Liu et. al. [15] notes that this may not be suitable for fast
real time classification.
Aceto et. al. [1] found that using raw data was better than using
hand picked time series features and flow statistics [1]. These find-
ings have shown that increasing the raw information available to
the deep learning models results in greater prediction accuracy.
Due to the structure of the data extracted from flows, new model ar-
chitectures become useful, such as the LSTM and one dimensional
Convolutional Neural Network (1D-CNN). These deep learning
architectures can find long and short term temporal relationships
in the data. The 2D-CNN also gets used to find spatial patterns.
A 1D-CNN and a 2D-CNN were used to classify flows using the



Matthew Dicks (DCKMAT004)

first 784 or 1000 bytes of the flow. These bytes are converted ei-
ther into a 1D vector for the 1D-CNN, or into a 2D image for the
2D-CNN. Wang et. al. [19] did not specify how they transformed
the inputs into those vectors. The 1D-CNN had an accuracy of
91.25% and the 2D-CNN had and accuracy of 90% [19]. This is not
a surprising result since 1D-CNNs are better suited to processing
sequential data [10].Wang et. al. [19] also compared the 1D-CNN
to the state of the art C4.5 decision tree. The CNN’s average recall
was 8.1% higher than the average recall of the decision tree [19].
This showed that end-to-end deep learning was better than state-of-
the-art machine learning. Aceto et. al. [1] also found that 1D-CNNs
outperform 2D-CNNs. As mentioned before LSTMs are used to find
long term dependencies between inputs and it is currently one of
the best models to use when processing sequential data. Aceto et.
al. [1] showed this to be true by observing that an LSTM model
outperformed a 2D-CNN. As expected, the MLP had worse results
than the other three deep learning models. A surprising result out
of this study was that the LSTM had the most efficient training
time [1]. This is a surprising result because the training and run-
ning of an LSTM cannot be done in parallel, but most of the other
architectures can be run in parallel.
In the studies presented by [1, 19], the 2D-CNN model was not
performing as hoped. Chen et. al. [4] took a different approach
and encoded the static as well as the dynamic aspects of the flow
into an image. They used the first nine packet sizes, inter-arrival
times and packet directions as input data. This data is encoded
as 𝐼1, 𝐼2, ..., 𝐼𝑁 , where 𝐼 𝑗 is either the jth packet size, direction or
inter-arrival time. To understand the static and dynamic properties
of the flow they estimated the marginal distributions, 𝑃 (𝐼 𝑗 ), and
the conditional distributions, 𝑃 (𝐼 𝑗+1 |𝐼 𝑗 ), of the flow statistics. To
estimate the distributions they used the Reproducing Kernel Hilbert
Space embedding. This is an efficient and non-parametric approach
to represent these distributions [4]. Since there are three statistics
per packet there are six distribution estimates related to each packet.
They transformed a list of packets into a six channel image. They
then used a 2D-CNN to classify the images into application types
and achieved an accuracy of 99.84%, which far outperformed the
Support Vector Machine (SVM), MLP, Naive Bayes (NB) and deci-
sion tree models. They also tested the 2D-CNN on real world data
and obtained an accuracy of 88.42%, which was a over 11% higher
than the next best model [4]. This approach saw the 2D-CNN work
really well since there was a well thought out and a well executed
way of transforming flow data into an image.
So far, studies have used 2D-CNN models to find spatial patterns
and have used LSTM models to find the temporal patterns. There
have been approaches that try to combine the two models to learn
both spatial and temporal patterns [11, 18]. Lopez-Martin et. al. [11]
used the first 20 packets and 6 features from each packet to make a
20x6 matrix, with the rows as the time dimension and the columns
as the feature dimension. They passed that matrix into a 2D-CNN-
LSTM network. The output of the CNN part is a 3D matrix, with
the extra dimension coming from the number of filters. Since the
LSTM accepts a 2D matrix, this matrix was squashed, along the
feature axis to preserve the time and the filter dimensions which
was past into the LSTM. The 2D-CNN-LSTM model obtained an
F1 score of 96%, which was an improvement over the standard
2D-CNN and LSTM models, which achieve F1 scores of 94.5% and

95.5% respectively. The plain LSTM model seemed to capture the
same information as the 2D-CNN-LSTM [11]. This may be due to
the CNN compromising the time dimension of the input matrix by
passing over it with 2D kernels. Therefore, the LSTM part of the
model did not have a meaningful sequence to learn.
Another approach that did preserve the time aspect of the data was
taken by Huang et. al. [18]. They took 100 bytes from each of the
first 6 packets. They converted the data from each packet into an
image until they ended up with 6 images. They used 6 CNN models,
one for each packet to extract the spacial features out of the images.
Each CNN model had a dense last layer, which created a feature
vector for each packet, thus preserving the time dimension. These
feature vectors were then run into the LSTM part of the model to
classify the flow. The CNN-LSTM model had an accuracy of 99.89%
and outperformed the vanilla CNN network [18]. By splitting up
the data into 6 images and processing them separately, they allowed
the output of the CNNs to be stacked in a manner that would pre-
serve the order of the packets and, therefore, the time. This is a
much more suitable input for the LSTM part of the model when
you compare it with the previous study.

4.2 Packet Classification
Amore fined grained approach would be to classify individual pack-
ets. A number of studies show that individual packet classification
is possible and can yield very good results [12, 17].
When doing individual packet classification times series features
are not useful since the focus is on individual packets. This means
that individual packet classification is difficult, but deep learning
offers a solution. Since, deep learning has the ability to learn high
dimensional data [15], it can therefore learn from the raw data of a
packet.
Lotfollahi et. al. [13] used the first 1480 bytes of the IP payload
as well as the IP header as input. They masked the IP addresses
because they only used a limited number of hosts and servers [13].
This did not allow the model to use the information provided by
the IP addresses which would have caused unreliable results. In a
similar study, Chen et. al. [17] used the same data as Lotfollahi et.
al. [13] but disregarded the IP header.
One of the most successful deep learning architectures is the Con-
volutional Neural Network (CNN). This model has lead to good
performance in image recognition and object detection. Normally,
CNNs are used on 2D images but they can be adapted to be used
on 1D vectors. These 1D-CNNs can learn sequential patterns in
these 1D vectors. Lotfollahi et. al. [13] used a 1D-CNN to classify
individual packets into classes and obtained an F1 score of 98%
in application classification, and an F1 score of 93% in traffic cate-
gorization. The study also used a Stacked Auto-encoder (SAE) to
classify internet traffic [13]. Auto-encoders are used as an unsu-
pervised learning algorithm to try an generate output that is as
close to the input as possible. This allows the model to learn a more
comprehensive feature set that can be used to train supervised
learning models [9]. The SAE was trained and then fitted with a
soft-max layer to classify the traffic. The model performed slightly
worse than the 1D-CNN and achieved F1 scores of 95% and 92%
for application classification and traffic characterization respec-
tively [13]. A similar done study by Chen et. al. [17] on application



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification in Community Networks

classification saw the CNN and SAE achieve F1 scores of 98.4% and
98.8% respectively. They also compared that with an MLP which
had an F1 score of 96.5%. The MLP was a smaller model with only
two hidden layers and six neurons each, which probably caused
the reduced performance. In both of these studies, the input to the
models was a 1D vector that corresponded to the first 1480 bytes of
the IP payload data, but in [13] they also added the IP header.
This project aims to determine whether deep learning can be used
to perform traffic classification for the purpose of improving the
QoS and traffic engineering. To improve the QoS, packets will have
to be classified in close to real time so that the QoS algorithm can
prioritize them effectively. This need for real time classification of
packets means that there is no time to wait for multiple packets to
pass though so that a flow can be classified. There is also no way to
tell apriori how many packets are going to be in a flow and there-
fore there is no way to tell how long to wait before the flow must
be classified. This is why this project is using packet classification
instead of flow classification. There is also far less research done
on packet classification, which means that this project will likely
yield novel results.

5 EXPERIMENT DESIGN AND EXECUTION
5.1 Obtaining Network Traffic Data
The first step for the project involves accessing the community
network traffic data to be used for training and testing the models.
We use a dataset that was collected from theOceanView community
network in Cape Town [7]. The data consists of numerous PCAP
files that were collected at the gateway of the network, capturing all
traffic flowing between the network and the Internet from February
2019. The PCAP files have been copied to a data repository at the
University of Cape Town, through which we access the data.

5.2 Preprocessing
This section describes the preprocessing phase. It explains how the
PCAP files are transformed into data that can be used to train and
test the models

5.2.1 Flow extraction.
In each of the PCAP files that were collected, there are numerous
flows. Flow extraction is the process of splitting up a PCAP file into
smaller PCAP files, where each file contains a single flow. Working
with these smaller files made the rest of the preprocessing far easier.
It was easier to label the packets in a file containing only a single
flow than it was to label packets in the file containing multiple
flows. It also helped in the data extraction phase. The library used
to perform this function was called pkt2flow1

5.2.2 Labeling the packets.
Classification is a supervised learning task. This means that each
example must have a label associated with it, which will allow
the neural networks and the SVM to learn from their errors and
adjust their parameters accordingly. The packets in the PCAP files
do not have labels associated with them already, so we have to
provide these labels. The labeling phase takes as input the PCAP

1pkt2flow is a simple utility that classifies packets into flows. It takes a single PCAP
file as input and returns a set of PCAP files where each file contains a single flow. It is
available at: https://github.com/caesar0301/pkt2flow.

files containing single flows and then uses an open-source deep
packet inspection library called nDPI to label each flow. Each packet
associated with a given flow will receive that flow’s label.

5.2.3 Feature extraction and transformation.
The features used as input into the models are the bytes extracted
from the IP payload for each packet. This method was chosen be-
cause it enables the use of both encrypted and unencrypted packets.
There is also evidence to suggest that using this data as input into
deep learning models in the context of traffic classification can yield
high prediction accuracy [12, 17].
Python has an open source library called scapy that was used to
process the packets and flows found in PCAP files. The library has
methods that can extract the IP payload from packets and convert it
into bytes. These methods were used to obtain the features needed
for each packet.
Once the raw data has been extracted from the packets, it has to
be transformed into an appropriate format so that a given model
can learn from it. The number of bytes in the IP payload is variable,
with the maximum number of bytes being 1480. The models to be
used need to have the same number features for each packet. It was
decided that each packet should have a feature vector of length
1480 and those packets that have less bytes should be padded with
zeros. The data was normalized to increase the learning algorithm’s
stability and decrease the training time, which could save valuable
resources in the community network. Due to the limited number
of hosts and servers, the first 20 bytes of this 1480 byte vector were
masked. This made sure that the models were not learning infor-
mation relating to the port numbers used in that network but they
were learning general patterns found in the IP payload.
For the SVM and the MLP models, the 1D normalized byte stream is
an appropriate feature vector. The LSTM requires this byte stream
to go through one more transformation. The LSTMmodel needs the
byte stream to be broken up into multiple time steps. This means
that the 1D vector has to be transformed into a 2D vector, with the
first dimension giving the number of time steps and the second
dimension giving the number of observations in a given time step.
The obvious way to break up the feature vector would be to consider
each of the bytes as an individual time step, but this would create
a sequence with length 1480. As discussed before, it is difficult for
LSTMmodels to learn such long sequences due to the vanishing and
exploding gradients problem [6]. To solve this problem the feature
vector was split up into 40 time steps with each time step consisting
of 37 bytes. This reduced the length of the sequence and allowed
the gradients to flow back through the network, which increased
the model’s learning capacity. The reduced sequence length also
reduced the number of sequential steps taken by the model, which
reduced the model’s training and prediction times.

5.3 The Datasets
Once the preprocessing stage was complete, the final dataset con-
sisted of ten classes, each with ten thousand observations. Table 1,
summarises the full dataset.
This dataset then gets further subdivided into a training set, a
validation set and a test set. The percentage of observations are as
follows; 64% is reserved for training the models; 16% is used for
validation and hyperparameter tuning; and the last 20% is used as



Matthew Dicks (DCKMAT004)

Table 1: The set of applications that will be used for classifi-
cation and the number of observations in each application
class.

Class Number of Observations
WhatsApp 10 000

GoogleServices 10 000
Instagram 10 000
PlayStore 10 000

TeamViewer 10 000
BitTorrent 10 000

WindowsUpdate 10 000
GMail 10 000

Facebook 10 000
YouTube 10 000

Total Observations 100 000

the test set. These datasets were created by randomly sampling
from the original dataset to ensure that the distributions in the
three datasets remain as similar as possible.

5.4 Evaluating the Performance of the Machine
Learning and Deep Learning Models

5.4.1 Metrics used for predictive performance.
The models will be evaluated based on two characteristics, namely
predictive performance and computational efficiency. The metric
used for predictive performance is accuracy, and the formula is as
follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100

5.4.2 Validation Set.
The validation dataset consists of 16% of the full dataset. K-fold
cross-validation was not used because it would be too computation-
ally expensive and there was enough data to perform validation
analysis on a single validation set. After the training process is com-
plete, this data is used to evaluate the model and give an estimate
for the accuracy expected on the test set. This estimate can also be
used to test for overfitting, because if there was a vast decrease in
the accuracy between the training error and the validation error
then this would be an indicator of overfitting. The validation dataset
was also used in the hyperparameter tuning process that will be
described in Section 5.5.

5.4.3 Test Set.
The validation error rate provides a good estimate for the model’s
predictive performance, but this set was used to pick the hyperpa-
rameters. Therefore, the models would have seen this data. To get a
more realistic measure of performance, a test set was created to give
an estimate for the accuracy expected on unseen data. Once a model
has been trained and the hyperparameters have been chosen, the
definitive measure of predictive performance will be the accuracy
computed on the test set. This will give us an indication of each
model’s ability to generalize to new examples and the accuracy

Table 2: This table gives a break down of the range of param-
eters used in the deep learning models.

15 000 30 000 50 000 100 000 200 000
300 000 350 000 400 000 500 000 600 000
700 000 800 000 900 000 950 000 1 000 000

computed on the test set will be used to compare each model’s
predictive performance.

5.4.4 Metrics used for computational efficiency.
The computational efficiency of the algorithms will be measured in
two ways – the time it takes to make a prediction, and the amount
of memory needed to make a prediction. Since the algorithms are
going to be deployed to produce real-time classifications, the speed
of the predictions is key. Therefore, we will be using the average
time it takes a model to make a prediction as a metric to analyze
computational efficiency. This will be computed by generating
sample packets and timing how long the model takes to classify
these individual samples. The average time over all these samples
will be used as the metric to compare the prediction speed between
models. The average time it takes to make a prediction is inversely
proportional to the number of packets classified per second, this
will also be used to compare the models’ prediction speeds.
The amount of memory needed by a model to make a prediction
is directly proportional to the number of parameters in the model.
So, as the number of parameters increase, the amount of memory
needed to make a prediction will increase because more memory
will be needed to store the model. The number of parameters in a
model will be used as the metric to compare the memory usage.

5.4.5 Overview of the Experiment.
The deep learning models need to be compared subject to memory
and time constraints. This means that the predictive performance of
these models will need to be evaluated at each of these constraints.
For each of the deep learning model architectures, MLP and LSTM,
the number of parameters in the architecture will be varied and the
test accuracy will be calculated. The number of parameters in the
architecture will range from 15 000 to 1 000 000, Table 2 shows the
break down of this range. This will allow the models to be compared
at the highest and lowest memory requirements. So if a community
network can only have a model with 100 000 parameters it will be
easy to see which architecture will perform the best. At each of
the different parameter levels, the average time it takes to make
a prediction and the number of packets classified per second will
be calculated. This will allow time constraints to be placed on the
models, which will make it easy to see which type has the best
accuracy under these constraints. It will also determine whether
the deep learning models can support real time classification.
The SVM model has a constant number of parameters so the test
accuracy and the average time it takes to classify a packet will be
reported for only the single best performing SVM.

5.5 Hyperparameter Tuning
Hyperparameters are values that are set before the training of the
networks and therefore are not learned during the training process.
Some examples of hyperparameters in neural networks include the



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification in Community Networks

network topology, the learning rate of the optimization algorithm,
as well as the training batch size and the number of training epochs.
Since these parameters have to be defined prior to training, the
best way to find the parameters will be to systematically try out
different combinations and then pick the best set. The best set will
be determined by the accuracy obtained on the validation set. Due
to the change of the network topology brought about by varying the
number of parameters, the topology will not be a hyperparameter
that will be searched. The batch size was selected to optimize the
training time, and the number of epochs was determined by the
time it took to reach convergence. Early stopping was used in the
MLP to limit overfitting when the number of epochs proved to
be too much. This means that for the deep learning models the
only other hyperparameter that needed to be searched for was the
learning rate. For the MLP, three learning rates were checked at
every parameter level, namely 0.001, 0.0005 and 0.0001. The LSTM
needed higher learning rates to achieve convergence and the three
rates searched over were 0.01, 0.005 and 0.001.

5.6 Implementation of Models
The deep learning networks were built in Python using Tensor-
flow’s implementation of the Keras API. Keras was chosen because
it provides easy ways of building networks without sacrificing flex-
ibility. It also supports use of input pipelines built in Tensorflow,
which will decrease the memory requirements when training the
models.
The Support Vector Machine (SVM) was built with Python’s scikit-
learn library. The decision to use this library was on the basis that
scikit-learn includes the ability to make multi-class classifications
with an SVM model. This is important because of the need to clas-
sify traffic into multiple application classes.
The LSTM and the MLP models were all run in Google’s Colab
because they allow free use of GPUs. This was needed because a
large number of models needed to be trained and GPUs offered
a great speed up over CPUs. Google Drive was used to store the
datasets and all the experimental results. This was chosen because
it integrated better with Colab when compared with local storage.

6 EXPERIMENTAL RESULTS
As stated in Section 5.4.5, the number of parameters for each archi-
tecture was varied and at each parameter level, the test accuracy as
well as the average time to make a prediction was calculated. This
section will present the results obtained by running these experi-
ments.
The first research question was to determine whether the LSTM
could attain a higher accuracy when compared with the MLP. The
second research question was to check that the increase in accu-
racy was significant enough to warrant using the added complexity.
Figures 3 and 4 present the results obtained trying to answer these
questions.

In both plots, the points represent the accuracy and the packets
classified per second for each parameter level that was described in
Table 2. In Figure 4 the prediction speed was measured in packets
per second which was calculated by the following formula:

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 =
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒

Figure 3: LSTM vs MLP

Figure 4: LSTM vs MLP (Speed comparison)

Figure 3 makes it clear that the LSTM out performs the MLP in
predictive power across all parameter levels. The LSTM’s accuracy
ranges form 86.5% to 91% and the MLP’s accuracy ranges from
66.8% to 70.5%. There is some noise in the accuracy levels because
the optimization process for neural networks is stochastic but the
difference between these two models is large enough to say that
the LSTM performs better for every memory constraint. This was
expected because the LSTM is far more suited to learning sequential
information, and the byte stream of a packet is inherently sequen-
tial. It is also good to note that there does seem to be a general
relationship between the number of parameters and the accuracy.
With the accuracy increasing at a decreasing rate as the number of
parameters increase. Initially, as the number of parameters increase,
the model’s accuracy drastically jumps up but, over time, the ac-
curacy starts to plateau. Increasing the number of parameters past
a certain point does not lead to a sufficient increase in accuracy
because the models have already extracted most of the variation
in the data. Increasing the parameters further will likely lead to
overfitting and a degrading of the performance on the test set.
Figure 4 shows the results from the speed tests done for the MLP
and the LSTM. The results are presented as the number of packets



Matthew Dicks (DCKMAT004)

that can be classified in a second. It can be seen that there is some
noise in the data, this comes from the stochastic nature of timing
how long it takes to run a section of code. For each parameter level,
the LSTM’s times were averaged over 7000 samples and the MLP’s
times were averaged over 10 000 samples, to reduce the noise as
much as possible. Even though there is noise in the data, it is clear
that the MLP can classify more packets a second than the LSTM.
The number of packets the MLP can classify per second ranges from
25.5 to 26.6 and for the LSTM the range is 19.7 to 24.3. This was
hypothesized in Section 3.2.2, because the structure of the LSTM
limits the amount of parallelization, which reduces the speed of its
forward pass. The plot also shows that as the number of parameters
increase, there is a decrease in the number of packets classified
per second. However, what is quite interesting is that the MLP’s
decrease is linear while the LSTM decreases at a much quicker rate.
This is probably due to the increase in the number of calculations
done per sequential step in the LSTM. It must also be noted that the
smallest number of packets classified per second was 19.7 which is
fast enough for real time classification. This means that even the
slowest model will be able to pass the speed constraints. Therefore,
the only constraint that needs to be looked at more carefully is the
memory constraint.
The third research question was trying to determine whether the
best deep learning model sufficiently outperforms a traditional ma-
chine learning model, the SVM. From Figure 3 we can see that the
best deep learning model is the LSTM. Figure 5 compares the SVM
with the LSTM.

Figure 5: LSTM vs SVM

The SVM has a constant number of parameters because there
are a constant number of features. This means that the number of
parameters in the SVM could not be varied. The number of parame-
ters in the SVM is 14800. There are 10 classes so 10 SVC lines needed
to be fit, each line has 1480 parameters. Therefore, there are 14800
parameters in the classifier. The test accuracy represented by the
dot was calculated for the single best performing SVM model. The
accuracy obtained on the test set by the SVM was 63% which is far
worse than the LSTM at any parameter level. Therefore, under any
memory constraint the LSTM will perform better than the SVM.

The prediction speed of the SVM is remarkable, it can classify ap-
proximately 3846 packets a second. Once again, a trade-off will need
to be made between accuracy and speed but the faster prediction
speed provided by the SVM may not be needed because the LSTM
is already classifying packets at a speed that is sufficient for real
time traffic classification.
Figure 6 incorporates all the information from Figure 3 and 5 to
show how all three models compare with each other. The figure
shows the MLP sufficiently outperforming the SVM on all param-
eter levels and it shows how dominant the LSTM is over all the
parameter levels.

Figure 6: LSTM vs MLP vs SVM

7 DISCUSSION
The results obtained by this project are consistent with the results
found in previouswork. The deep learningmodels achieved a higher
classification accuracy than the machine learning models, which
was also found by the following studies [1, 4]. Furthermore, the
LSTM architecture has proven to be the best model by achieving an
accuracy of above 90%. This model architecture has shown this type
of performance in previous traffic classification studies [1, 11, 18],
where the LSTMs in these papers all had an accuracy of greater
than 90%. Sequence models were shown to perform well on packet
data, which corroborates evidence found by [12, 17]. These two
papers gave evidence for the 1D-CNN while this paper has given
evidence for the use of the LSTM in packet classification.
Figures 7 and 8 summarize the results found for each of the deep
learning models. In both figures, the dotted blue line represents the
accuracy obtained over the different parameter levels and the dotted
orange line represents the average number of packets classified per
second. The dots on the plot represent the accuracy and number of
packets for a specific number of parameters.
There are a few similarities between the two deep learning architec-
tures. For both architectures, as the number of parameters increases,
the accuracy increases at a decreasing rate. This shows that after
a certain point adding more parameters to the model does not in-
crease the accuracy sufficiently to warrant the added complexity.
These larger models are also more susceptible to overfitting on
real world data. This is good news because it will be advantageous



A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification in Community Networks

to have smaller powerful models to run in a community network.
They will take up less storage space and they will be able to classify
more packets per second. Another similarity is that as the models
get larger, the number of packets classified per second drops. The
reason for this is that they will need to perform more calculations
to make a prediction. It was found that the depth of the models have
a larger effect on prediction speed. The deeper the models become,
there are more operations that need to be done in sequence, which
will drastically slow down the prediction speed.
Even though the accuracy of the LSTM model has a general trend,
within this trend there looks to be some noise. The stochastic nature
of the optimization algorithm that tries to find the parameter set
that minimizes the loss function causes this randomness. However,
the noise is not as pronounced as the plot may suggest. The in-
creases and decreases are normally below 1%, but due to the scale
of the left y-axis the noise gets exaggerated. The scale of the of
the y-axis was set for aesthetic reasons. The same can be said for
the noise exhibited in the packet per second line. An interesting
observation can be made about the packet per second line for the
LSTM model: unlike the MLP, the decrease in the packets classified
per second is not linear. Up to about 400 000 parameters, the decline
is quite steep but after 400 000, the decline becomes much more
gradual. The steep initial decline is probably due to the increased
depth found in the models, and after 400 000 the depth remained
relatively constant. So, if the network needs more packets to be
classified per second and the network managers need to still have
a high accuracy, one of the ways to finding a solution would be to
increase the width of the model. This will enable the model to have
more parameters and a greater chance of learning the sequential
information without sacrificing too much speed.

Figure 7: Accuracy vs Speed

The MLP also exhibits some noise as the models get larger, with
random decreases in performance at 350 000, 600 000 ad 950 000.
However, the general trend does still hold. Once again the decreases
in performance were only about 1%. It is interesting to note that
the MLP’s speed decreases at a linear rate. This could mean that
unlike the LSTM architecture, the relationship between the depth
and size of the model and the number of parameters is linear. A
possible reason for this phenomena is that the sequential nature of
the LSTM model exaggerates the decrease.

Figure 8: Accuracy vs Speed

The main aim of this project was to find out whether deep learn-
ing would be a viable solution to the traffic classification problem
in the context of a community network. As previously stated, com-
munity networks have to provide their services on less powerful
infrastructures. This means that there will be memory and time
constraints placed on the classifiers. The LSTM model has a high
test accuracy even when the models are really small, proving that
even under the strictest memory constraints this architecture can
be used to accurately classify traffic. Both of the deep learning mod-
els are able to classify traffic in real time, with the slowest model
being able to classify 19.7 packets a second. The LSTM architecture
will be the best model to deploy unless the network needs faster
classification than the LSTM can provide. If this is the case, it will
be best not to disregard the LSTM model but to try and make the
model shallower and wider, which would reduce the number of
operations performed in sequence, while still maintaining a high
accuracy by taking advantage of the sequential learning power of
the LSTM. Another way to increase the prediction speed would be
to take advantage of batch predictions. Batch predictions is where
you classify multiple packets at the same time. The time it takes to
make a prediction was calculated for only a single packet, but wait-
ing and classifying multiple packets at the same time can reduce the
time it takes to make a single prediction. Figures 9 and 10 show the
relationship between the batch size and the prediction per second.
The dots in the plots represent the the average number of packets
classified per second, for a given batch size. In Figure 9 the models
used to perform the experiment were the ones with the highest
accuracy. The MLP has 400 000 parameters and the LSTM has 700
000 parameters. In Figure 10, both models had 700 000 parameters.
These plots clearly show that increasing the batch size allows for
faster predictions. This is because the prediction function gets run
in parallel, which reduces the overhead found when predicting only
a single packet. This plot also shows that the LSTM is slower than
the MLP, but it also shows that this difference is not too large even
when the LSTM is almost twice the size of the MLP.
The high accuracy obtained by the LSTM architecture over all
the parameter levels gives further evidence to suggest that the the
data found in packets is sequential in nature and the best way to
process it would be to use architectures that take advantage of this



Matthew Dicks (DCKMAT004)

Figure 9: Number of packets classified per second by the best
MLP and LSTM models plotted as a function of batch size.

Figure 10: Number of packets classified per second by the
same size MLP and LSTM models plotted as a function of
batch size.

structure. Some interesting results could be obtained by classify-
ing packets based on neural networks like the 1D-CNN and the
Transformer. Transformers use attention and not recurrent connec-
tions to process sequential data and have proven to work well on
language modeling tasks [16]. Because the actual architecture is
not sequential, the Transformer is easily run in parallel. This could
help overcome the speed limitations found in the LSTM without
sacrificing accuracy.

8 CONCLUSIONS
This paper presented a preprocessing pipeline and three models
that could be used for traffic classification, and for the purpose of
answering the three research questions. The preprocessing pipeline
that was made is able to take a set of pcap files collected from
a community network and create a dataset that can be used to
train and test machine and deep learning models. Using the mod-
els trained on this dataset, the paper found that the deep learning
architectures, the MLP and LSTM, were able to perform real time
classification, which is vital for improving the QoS algorithm. The
LSTM architecture attained the highest classification accuracy of
91%, and significantly outperformed the MLP across all memory

constraints. These results answered research questions one and
two because it showed that the LSTM is the best deep learning
architecture, and it showed that it sufficiently outperformed the
MLP when resource constraints were applied. The MLP and the
LSTM were also able to obtain a sufficiently higher classification
accuracy than the SVM, even under the most strict memory con-
straints. This answered the final research question because the best
deep learning architecture outperformed the SVM even when it was
subject to resource constraints. The high accuracy obtained by the
LSTM gives evidence that the data found in packets is sequential,
and architectures that are built to process this information will do
better in the packet classification task.

9 LIMITATIONS AND FUTUREWORK
There were some limitations to this project. Firstly, the labels that
were used in the training and evaluation of the models were pro-
vided by a Deep Packet Inspection tool nDPI. This tool is subject to
error, which could have eroded the results obtained in this paper.
Secondly, due to limited computational power, multiple models
could not be fit at each parameter level, and because of the stochas-
tic optimization processes, there was some noise in the results.
In future studies collecting data that already has labels would lend
the results even more credibility. To reduce the noise, multiple mod-
els could be fit at each parameter level and the average accuracy
could be measured. Another way this study could be enhanced in
future research is to collect data from multiple networks so that
the models can become more general and robust.

10 DISCLAIMER
This work is based on the research supported wholly/in part by
the National Research Foundation of South Africa (Grant Number
MND190728459990)

REFERENCES
[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.

2018. Mobile encrypted traffic classification using deep learning. In 2018 Network
Traffic Measurement and Analysis Conference (TMA). IEEE, 1–8.

[2] A. O. Adedayo and B. Twala. 2017. QoS functionality in software defined network.
In 2017 International Conference on Information and Communication Technology
Convergence (ICTC). 693–699.

[3] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro
Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Viñas,
et al. 2013. A case for research with and on community networks.

[4] Zhitang Chen, Ke He, Jian Li, and Yanhui Geng. 2017. Seq2Img: A sequence-to-
image based approach towards IP traffic classification using convolutional neural
networks. In 2017 IEEE International Conference on Big Data (Big Data). IEEE,
1271–1276.

[5] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. 2017. I know what you saw
last minute—encrypted http adaptive video streaming title classification. IEEE
Transactions on Information Forensics and Security 12, 12 (2017), 3039–3049.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

http://www.deeplearningbook.org


A Comparative Evaluation of Deep Learning Approaches to Online Network Traffic Classification in Community Networks

[7] iNethi Technologies. 2020. https://www.inethi.org.za/deployments/ Accessed:
2020-04-29.

[8] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[9] Jonnalagadda. 2018. Sparse, Stacked and Variational Autoencoder.
https://medium.com/@venkatakrishna.jonnalagadda/sparse-stacked-and-
variational-autoencoder-efe5bfe73b64

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[11] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. 2017. Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things. IEEE Access 5 (2017), 18042–18050.

[12] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[13] Mohammad Lotfollahi, Ramin Shirali Hossein Zade, Mahdi Jafari Siavoshani, and
Mohammdsadegh Saberian. 2017. Deep Packet: A Novel Approach For Encrypted
Traffic Classification Using Deep Learning. arXiv:cs.LG/1709.02656

[14] Leandro Navarro, Pau Escrich, Roger Baig, and Axel Neumann. 2012. Community-
Lab: Overview and invitation to the research community. In 2012 IEEE 12th
International Conference on Peer-to-Peer Computing (P2P). IEEE, 71–72.

[15] Shahbaz Rezaei and Xin Liu. 2019. Deep learning for encrypted traffic classifica-
tion: An overview. IEEE communications magazine 57, 5 (2019), 76–81.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[17] Pan Wang, Feng Ye, Xuejiao Chen, and Yi Qian. 2018. Datanet: Deep learning
based encrypted network traffic classification in sdn home gateway. IEEE Access
6 (2018), 55380–55391.

[18] Wei Wang, Yiqiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong
Huang, and Ming Zhu. 2017. HAST-IDS: Learning hierarchical spatial-temporal
features using deep neural networks to improve intrusion detection. IEEE Access
6 (2017), 1792–1806.

[19] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017.
End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI). IEEE, 43–48.

https://www.inethi.org.za/deployments/
https://medium.com/@venkatakrishna.jonnalagadda/sparse-stacked-and-variational-autoencoder-efe5bfe73b64
https://medium.com/@venkatakrishna.jonnalagadda/sparse-stacked-and-variational-autoencoder-efe5bfe73b64
http://arxiv.org/abs/cs.LG/1709.02656

	Abstract
	1 Introduction
	1.1 Project Aims
	1.2 Structure of Report

	2 Community Networks
	2.1 The potential for traffic classification in community networks

	3 Background on the Machine Learning and Deep Learning Models
	3.1 Machine Learning Model
	3.2 Deep Learning Models

	4 Related Work
	4.1 Flow Classification
	4.2 Packet Classification

	5 Experiment Design and Execution
	5.1 Obtaining Network Traffic Data
	5.2 Preprocessing
	5.3 The Datasets
	5.4 Evaluating the Performance of the Machine Learning and Deep Learning Models
	5.5 Hyperparameter Tuning
	5.6 Implementation of Models

	6 Experimental Results
	7 Discussion
	8 Conclusions
	9 Limitations and Future Work
	10 Disclaimer
	References

