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Abstract 

This paper presents a review of the existing literature relevant to the 

classification of trees or shrubs in an orchard into distinct rows. The 

problem of orchard row-detection can be reduced to finding a 

configuration of nodes or points that accurately depict a discrete 

number of rows or lines. For this reason, there is a focus on the class 

of algorithms that solve combinatorial optimisation problems. These 

algorithms, and the applications of which, are evaluated for their 

applicability to the orchard row finding problem. Of the compared 

algorithms, PSO, ACO and their multi-objective variants prove to 

be the most eligible candidates.  

1. Introduction 

Agricultural management has become an increasingly difficult and 

cost-intensive task given the increasing size of modern-day farms. 

Presently, most of the orchard inspection is conducted on foot with 

workers walking between rows to examine each tree or shrub in an 

orchard. The manual inspection and constant supervision of trees is 

proving infeasible for larger farms and at least cost-ineffective for 

smaller ones. Recent advances in unmanned aerial vehicles (UAVs) 

and an increased accessibility to near real-time satellite images has 

enabled the automation of such processes. 

Prior to orchard analysis or management, relevant data regarding the 

orchard must be acquired and processed. The part of the data 

acquisition process relevant to our project is that of row-detection. 

Once detected, this information could be used for different analyses, 

ranging from yield-estimation to the identification of missing trees. 

Our project will exclusively focus on the detection of rows, omitting 

the detection of the trees themselves. Object detection is a well-

researched field and as such we are using an existing object detector 

to detect the trees or shrubs. The resulting detections can be seen 

below. 

  

Figure 1 and Figure 2 represent a simple case and a difficult case 

respectively. This shows how the fidelity of detections can vary 

drastically from input to input. Our solution needs to accommodate 

for the worst case. One of the difficulties not illustrated in these two 

figures, is that of curved rows which also needs to be handled by our 

solution. 

The detection of trees or shrubs produced by the object detector 

allows for a reduction of the problem description. Instead of finding 

rows from pixel data, we are now finding rows from a set of points, 

with each point being the center of a tree. This opens a new avenue 

of possible solutions, particularly those related to graph theory. 

When viewed in this way, we see that this is a combinatorial 

optimisation problem. That is to say there exists a set of discrete 

feasible solutions who’s optimal cannot be found through exhaustive 

search. Furthermore, this problem can be posed as a multi-objective 

(MO) optimisation problem. Objectives can be chosen to encode any 

assumptions we make about how farmers plant their trees. For 

instance, if we assume spacing between trees to be smaller than 

spacing between rows, we can choose an objective to be the 

maximisation of the difference between inter-row and intra-row 

distances. Another possible objective might be the minimisation of 

the rate at which the angle of a given row changes. This is if we 

assume rows follow a constant curvature.  

There exists a priori and a posteriori methods that solve MO 

problems. A priori methods require the knowledge of preference 

information before the solution process. When this preference is 

known, we can simply order objectives by level of importance or 

combine the objectives into a single objective using the weighted-

sum approach. In the orchard-row detection problem, it can be 

argued that we do not know a priori preference.  

Figure 1: An example of an orchard aerial image (left) accompanied by the corresponding tree detections (middle) and tree centers (right). This example depicts distinct 

rows which are neatly arranged into straight lines.  



We cannot know the combination of preferences that defines the 

optimal solution for a specific orchard prior to solving the problem. 

Different orchards may prefer one objective over another. For an 

example, one orchard may portray rows with a constant curvature 

and missing trees whilst another may have distinct rows with erratic 

curvature. In this case the first orchard will prefer the curvature 

objective whereas the second prefers the distance objective. Other 

orchards may prefer some combination of the two. We therefore 

require a set of possible solutions to choose from. That is, we require 

what is known as a Pareto optimal set where each combination of 

preferences isn’t dominated by another. There is a large body of 

research into evolutionary algorithms that solve MO problems to 

produce this Pareto set. These algorithms will comprise most of the 

methods covered in this review along with a few others applicable 

to the orchard row finding problem.  

2. Hough Transform 

The Hough transform is a simple mathematical technique for finding 

groups of collinear points. This method was later extended and 

popularised by Duda and Hart (1972) who used the technique for 

edge-detection in image analysis [10]. The relevance of this 

technique comes from the fact that tree detections can be represented 

by a set of points. If we can find the points that are collinear with 

one another we have effectively found the trees that belong to the 

same row. The use of the Hough transform to detect crop rows has 

been explored in several papers in the context of both ground [1, 14, 

20] and aerial images [2, 18, 23]. The application of the Hough 

transform is limited in that it can only detect straight crop rows. This 

drawback of the Hough transform was addressed by Ballard (1987) 

who described a method of using the Hough transform to detect 

arbitrary non-analytical shapes [3]. 

The method devised by Ballard uses the predefined boundary of a 

shape to detect instances of that shape in an image or picture. It is 

illustrated that these shape-detections are robust to rotations, scale 

changes and figure-ground reversals [3]. This method opens the 

possibility of detecting rows that depict some degree of curvature. 

Despite this generalisation, there is still a hindrance to the 

application of this method to the problem of orchard row-detection. 

That is, it is impossible to deduce the shape or curvature of a row 

prior to identifying the rows, and thus the requirement of a 

predefined boundary cannot be fulfilled.  A possible workaround is 

to define a set of component curves that can be used to construct or 

identify more complex curves. This idea has been explored with 

specific application to the identification of plantation rows in aerial 

images of coffee crop fields [23]. 

The problem of identifying curved rows is a complex problem that 

is difficult to solve. Soares et al. (2018) takes advantage of the fact 

that a curved line can be approximated through a series of straight 

lines [23]. Each aerial image of a coffee crop field is segmented into 

a series of tiles such that the rows in each tile are approximately 

straight. This allows the use of the Hough transform in each of the 

tiles to detect the rows in that tile. The detected lines are then 

combined to form the series of curved lines that represent the rows 

of the orchard. Experimental results of this method aren’t too 

promising. Detections of crop rows contain a high degree of both 

false positives and false negatives. This approach also relies on the 

assumption that rows aren’t too heavily curved. Rows that depict a 

high degree of curvature can’t use image tiling as there would be too 

few trees in each tile to apply the Hough transform. 

3. Evolutionary Algorithms (EAs) 

An evolutionary algorithm is a generic population-based 

metaheuristic optimisation algorithm. Generally, this class of 

algorithm employs some mechanism inspired by biological 

evolution. Candidate solutions act as the individuals of the 

population which are iteratively improved upon over subsequent 

generations. The quality of these solutions/individuals is determined 

by a fitness function. 

3.1 Particle Swarm Optimisation (PSO) 

Particle swarm optimisation optimises combinatorial problems 

through iteratively improving candidate solutions. Each candidate 

solution, called a particle, searches the solution space according to 

its position and velocity.  Its movements are guided by the 

movement of other particles in the swarm where each particle aims 

to maintain an optimal distance between itself and its neighbours. 

Furthermore, the position and velocity of each particle seeks to 

match the best-known position and velocity of the swarm. In this 

way, particles remain diverse as they search the solution space whilst 

simultaneously converging on the best-known solution.  

 

This simple idea has a promising correspondence when thought of 

in terms of orchard row-detection. Each particle’s traversal can 

represent a row. These traversals can be guided by distance and 

angle metrics. This will help each particle remain on their respective 

row. Each particle will try remain equidistant from other particles 

close to it. This will also help ensure that each particle doesn’t ‘hop’ 

onto another particle’s row. The only modification of the PSO 

algorithm required is the removal of the particle’s movement 

towards the best-known position. This behaviour assumes a single 

optimum position in the search space which isn’t the case in the 

orchard row-detection problem. A promising characteristic of PSO 

is that each particle has its own momentum. This allows particles to 

ignore deviations/noise in each row as each particle would more 

readily travel along the points characterised by constant curvature. 

PSO is also considered an efficient method of combinatorial 

optimisation as the algorithm is composed of primitive mathematical 

operators with inexpensive computation and memory requirements 

[15]. 

 

 

Figure 2: An example of a difficult case that contains erroneous and spurious detections with rows that aren’t distinct or neatly arranged into straight lines. 



3.2 Ant Colony Optimisation (ACO) 

Ant Colony Optimisation is a probabilistic technique for solving 

hard combinatorial optimisation problems which can be reduced to 

finding optimal paths through graphs. ACO is loosely based on the 

behaviour of ants when they search for food. Ants secrete 

pheromones that serve as a signalling mechanism that allow them to 

collectively navigate their environment. Accumulated pheromones 

represent the ants’ preference, typically based on quality of food, 

distance from the nest and amount of food available. The path with 

the highest level of trail pheromone is considered the optimal path. 

ACO builds on this idea by incorporating heuristics specific to the 

problem being solved. In this way, ACO is a metaheuristic that 

makes probabilistic decisions as a function of trail pheromones and 

domain-specific heuristics [9]. There exists some algorithmic 

variants and many applications thereof that bear relevance to the 

problem of orchard row classification. The first of which being edge 

detection [13, 17, 24]. 

 

Tian et al. (2008) applies an ACO algorithm to the problem of image 

edge detection [24]. Images typically contain pixel discontinuities or 

local changes in image brightness. These discontinuities can be 

organised into a set of curved line segments called edges. This 

approach aims to construct a pheromone matrix that represents the 

edge information of an image. This is similar to orchard row-

detection in that we want to construct a pheromone matrix that -

represents the rows of a given orchard. Once they’ve constructed the 

pheromone matrix for a given image, they use a thresholding method 

to determine which pixels represent an edge. If the deposited 

pheromone on a pixel is above a certain threshold, then it is an edge 

otherwise it is not. A similar approach could be applied to row-

detection where tree centers with a pheromone value above a certain 

threshold are part of a row. An alternative to the thresholding method 

would be a local search that tries to extract the optimal paths from 

the pheromone matrix. 

4. Evolutionary Multi-objective Optimisation 

(EMO) 

As illustrated in the introduction, the row-detection problem requires 

a set of non-dominated solutions (Pareto front) from which to choose 

from. Evolutionary algorithms are a popular approach when dealing 

with a posteriori multi-objective optimisation. In this section, we’ll 

focus on the applicability of a few well-known MO evolutionary 

algorithms. 

4.1 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

Non-dominated Sorting Genetic Algorithm is a multi-objective 

genetic algorithm proposed by Deb (2002) [5]. NSGA-II contains 

the genetic operators present in most genetic algorithms (mutation, 

crossover and selection) apart from two important mechanisms, 

namely non-dominated sorting and crowd distancing. Non-

dominated sorting sorts a population of solutions into a set of non-

dominated fronts (𝐹1, 𝐹2, . . . , 𝐹𝑛) where 𝐹1 is the Pareto front and 

𝐹𝑖+1 is the subsequent non-dominated front. The best non-

dominated fronts are chosen for crowd-distancing, followed by 

selection, crossover and mutation. Crowd distancing uses density 

estimation and a crowded-comparison operator to ensure a diverse 

spread of solutions [5]. Elitism is incorporated by comparing the 

current population to the previously found best non-dominated 

solutions. 

Applicability of NSGA-II to the orchard row-detection problem 

depends on the ability to formulate a population that can undergo 

mutation, crossover and selection. An individual of a population 

could be represented as a configuration of rows that define an 

orchard. Unfortunately, there are many possible row configurations 

for a given orchard, thus resulting in a vast solution space. Typically, 

genetic algorithms, including NSGA-II, have a slow convergence 

time when faced with large or complex solution spaces. This does 

not rule out the applicability of NSGA-II altogether. A possible 

antidote would be to use NSGA-II to optimise a partial solution that 

has already been constructed using domain-specific heuristics. 

4.2 Multi-Objective Particle Swarm Optimization (MOPSO) 

As discussed earlier, PSO is a promising candidate for solving the 

orchard row-detection problem but needs a multi-objective 

counterpart. The first MO extension was proposed by Coello and 

Lechuga (2002) [4]. To tackle the problem of obtaining a set of non-

dominated solutions, MOPSO uses a global repository in which 

particle trajectories are stored and updated every generation. As non-

dominated trajectories are found, the global repository is updated by 

adding these non-dominated trajectories and discarding any 

trajectories that are dominated. This global set of trajectories is used 

to guide particles in subsequent generations. MOPSO was found to 

be highly competitive with state-of-the-art evolutionary MO 

techniques, namely NSGA-II and PAES [4]. It is also a highly 

efficient algorithm for the same reasons that were discussed for PSO. 

4.3 Multi-objective Ant Colony Optimization (MOACO) 

There are many MO variants of the well-known ACO algorithm, of 

which a few will be elaborated upon and compared. The first 

MOACO we’ll look at is the multiple objective Ant-Q (MOAQ) 

algorithm proposed by Mariano and Morales (1999) which was 

applied to the design of water distribution networks [16]. MOAQ 

incorporates Q-learning into the standard ACO algorithm such that 

each ant represents an agent that learns some optimal policy. The 

environment through which the ants explore was modified from a 

set of edges to a set of state-action pairs. The value of each state-

action pair is updated as per the Q-learning algorithm. In this 

algorithm, there exists a family of agents for each objective. Each 

family tries to optimise their objective with all families operating in 

the same environment (i.e. the same pheromone and heuristic 

matrices). MOAQ achieves a Pareto front by keeping record of all 

non-dominated solutions achieved over each iteration of the 

algorithm. MOAQ optimises each objective according to some pre-

specified level of importance, similar to lexicographic ordering. This 

is a significant drawback of MOAQ, as it biases agents towards 

certain actions.  

Another ACO variant called COMPETants was devised by Doerner 

et al. (2001) and was initially used to solve bi-objective 

transportation problems [6]. COMPETants use two ant colonies, 

each with their own pheromone and heuristic matrices. The ant 

colonies traverse their respective environment as in the normal ACO 

algorithm, with the exception of a few ants known as spies. These 

ants combine information from both environments to decide which 

edges to traverse. Another interesting characteristic of 

COMPETants is that the number of ants in each colony do not 

remain fixed but vary from generation to generation. The colony that 

constructs better solutions in the previous generation gets more ants 

in subsequent generations. 

The last MOACO we’ll look at is the Pareto ant colony optimisation 

(P-ACO) algorithm which was applied to the multi-objective 

portfolio selection problem [7]. P-ACO, just like COMPETants, 

uses several pheromone matrices, one for each objective. It is 

different in that ant colonies aren’t confined to information from 

their own pheromone matrix. Each ant computes a set of weighted 

values for each of the matrices, which they then combine to 

determine which edge to traverse next. To construct the Pareto front, 

all non-dominated solutions are recorded in an external set, as in the 

previous MOACO algorithms. 

A comparative study [11] established a taxonomy of the existing 

MOACO algorithms using the bi-criteria Travelling Salesman 

Problem (TSP). They found that MOAQ and COMPETants had the 

highest extent of non-dominated fronts but a bad covering over the 

central part of the Pareto fonts [11]. It was found that the non-

dominated solutions of these algorithms converged towards one of 

either objectives. P-ACO, had the opposite behaviour, in that the 



solutions had a good covering over the entire Pareto front but 

performed poorly. It is worth noting that, in P-ACO, ants combine 

information of pheromone matrices in such a way that gives 

automatic bias towards compromise solutions. 

5. Discussion 

In this paper we have covered a variety of methods that could be 

used to solve the orchard row finding problem. Each of these 

approaches vary drastically from one another and as such have 

differing advantages and disadvantages. To compare these methods, 

we have collated information with regards to several key metrics. 

The data is visualised below. 

The first method under consideration is the Hough transform. 

Unfortunately, the Hough transform requires a predefined boundary 

of a shape or line to detect that shape or line in an image. Since 

orchard rows can take on arbitrarily shaped curves, this method is 

inapplicable. The approximation of arbitrary curves using 

component curves has been explored but with little success [23]. 

This inherent difficulty in the parameter space has led us to declare 

this method as having poor parameterised complexity.  

PSO and ACO were both promising candidate solutions except for 

one common deficiency: they don’t produce a non-dominated set of 

optimal solutions. That is, they don’t solve multi-objective 

problems. The absence of this criterion means that neither of these 

algorithms can simultaneously find the optimal solution for two 

varying orchard inputs. This is because differing orchards may 

prefer different objectives.  

The next class of algorithms is the class of multi-objective 

evolutionary algorithms. NSGA-II is generally the evolutionary 

algorithm against which all others are compared. As can be seen in 

Table 1, this is for good reason. NSGA-II outperforms all other 

MOACO algorithms in both Pareto extent and Pareto spread when 

applied to the benchmark task of bi-criteria TSP [11]. The greatest 

difficulty in applying NSGA-II is defining individuals or candidate 

solutions that can undergo all the genetic operators defined by 

NSGA-II. This algorithm is also notoriously slow, especially when 

individuals are ill-defined. This brings us to our two most promising 

approaches: MOPSO and MOACO. These two types of algorithms 

can be easily defined in terms of graph traversals, which greatly 

improves the ease of implementation. MOPSO may be favoured 

over the MOACO algorithms because of its small time and space 

complexity. MOAQ and COMPETants had a time complexity 

comparable to that of NSGA-II.  When considering the main 

criterion of performance, both algorithms produce reliable results. It 

is worth noting that MOAQ and COMPETants outperformed other 

MOACO algorithms when applied to the bi-criterion TSP [11]. 

6. Conclusion 

This review investigates the potential of a variety of algorithms for 

applicability to the orchard row finding problem. Previous works in 

this domain typically utilise common techniques in image 

processing and image analysis. Given the recent rise in the fidelity 

of object detection, we plan to use an existing object detector as the 

basis for row-detection rather than common image processing 

techniques. These object detections result in a reduction of the 

problem description to the traversal of edges and nodes in a graph. 

This opens the avenue of possible techniques to all methods relating 

to combinatorial optimisation and graph theory. There is, as far as 

we’re aware, no other methods that employ this approach to the 

problem of finding rows. We have looked at a range of applicable 

algorithm with a focus on evolutionary MO. We have narrowed 

these methods down to the two most promising candidates: MOPSO 

and MOACO. This conclusion is made according to our prioritised 

criteria of Pareto extent and ease of implementation. 
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