

CS/IT Honours

Final Paper 2020

Title: ACO for Orchard Row Finding in Aerial Images

Author: Timothy Simons

Project Abbreviation: ORCHARD

Supervisor(s): Patrick Marais

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 15

Experiment Design and Execution 0 20 10

System Development and Implementation 0 20 0

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80 80

DEPARTMENT OF COMPUTER

SCIENCE

ACO for Orchard Row Finding in Aerial Images

Timothy Simons
Department of Computer Science

University of Cape Town

September 2020

Abstract

The advent of unmanned aerial vehicles (UAVs) and accompanying

aerial imagery has brought a variety of data-driven techniques to the

domain of precision agriculture. Of interest is the identification of

rows of trees from aerial images of orchard fields. All existing

methods for solving this task utilise the Hough transform for straight

line detection. Consequently, they all share the same limitation. That

is, they perform poorly on curved rows. Furthermore, many of these

methods rely on image processing techniques that aren’t robust to

varying input images. In this paper, we show that an Ant Colony

Optimisation (ACO) algorithm, applied to detections of the

underlying shrubs or trees, accurately finds the rows of a given

orchard. Specifically, the proposed method achieves high precision

and recall scores on a variety orchard inputs, each with differing

detection density and row curvature. We show that the proposed

algorithm is not only novel but is also an effective and robust

approach to tackling the problem of orchard row identification.

1. Introduction

Agricultural management has become an increasingly difficult and

cost-intensive task given the increasing size of modern-day farms.

Presently, most of the orchard inspection is conducted on foot with

workers walking between rows to examine each tree or shrub in an

orchard. The manual inspection and constant supervision of trees is

proving infeasible for larger farms and at least cost-ineffective for

smaller ones. Recent advances in unmanned aerial vehicles (UAVs)

and an increased accessibility to near real-time satellite images has

enabled the automation of such processes.

Remote sensing of crops takes many different forms, each involving

different applications and different types of data. This paper is

concerned with the identification of orchard rows from aerial images

of orchard fields. The acquisition of orchard row data lends itself to

many applications, ranging from general crop planning to the

identification of missing trees in an orchard. This problem has seen

little work in previous years and the few methods that have been

developed all opt for the same approach. That is, the image of the

orchard first undergoes some form of image pre-processing followed

by the application of the Hough transform for row detection [7, 23,

26]. The problem with this approach is that it assumes orchard rows

follow straight lines. This is a brittle assumption that doesn’t hold in

the real world. Farmers must often plant rows to adhere to the

landforms in their region. A typical example would be landforms

containing varying elevation, which requires rows to be planted

along contour lines. Sometimes rows are simply planted on an ad

hoc basis, which also results in complex row patterns.

In this paper, we reframe orchard row identification as a

combinatorial optimisation problem. This is achieved by treating

every tree or shrub in an orchard as a distinct point. Now, instead of

detecting rows from pixel data, we are finding rows from a set of

points, with each point being the centre of a tree. This reduction in

the problem description opens new avenues of exploration,

particularly those related to graph structures and graph theory. We

propose an Ant Colony Optimisation (ACO) algorithm for finding

rows in an orchard. ACO is a well-known technique that is designed

for finding good paths through graphs and is thus a perfect candidate

for solving this problem.

Figure 1: Orchard input image (left), tree detections (centre) and detection

centroids (right).

First, we obtain detections of the underlying trees or shrubs using an

existing object detector. Each of these detections take the form of a

polygon whose centroid represents the centre of a tree. A feasible

solution to the problem can now be described as a series of rows

where each row represents a set of connected edges. This domain of

discrete solutions is complex, more so than many other NP-hard

problems. Indeed, we are not only trying to find a single optimal path

in a graph, we are trying to find a set of paths whose configuration

is optimum. This slight variation in the problem description adds

many layers of complexity to the problem. Additionally, this is a

multi-objective optimisation problem. The notion of an optimal row

configuration for an orchard encodes the many assumptions made

by the farmer who planted the orchard. Consequently, the objectives

of our multi-objective algorithm should encode these underlying

assumptions.

We have found that the best predictors of optimal rows are edge

distances and edge angles. The first objective is therefore to

maximise the difference between inter-row and intra-row distances;

the second objective is to minimise the angle between two

consecutive edges of a row. Different orchards will prefer different

objectives. For an example, an orchard may constitute straight rows

with irregular spaces between trees. This orchard will prefer the

angle objective. Another row might be heavily curved but have

consistent spaces between trees. This orchard will prefer the distance

objective. Other orchards may prefer some combination of the two.

We assume that a priori preference information of an orchard is

known and thus combine these two objectives into a single objective

using the weighted sum approach.

The algorithm proposed in this paper follows the ACO metaheuristic

and is thus an ACO algorithm. Specifically, it is an elitist variant that

uses random iterates and stochastic optimisation to ensure

convergence over time. Simple agents (ants) probabilistically

construct candidate rows whilst they adapt during algorithm

execution to reflect their acquired search experience. The result of

the ACO stage of the algorithm is a set of disjoint rows which are

then combined during post processing. Our method achieves high

precision and recall on a variety of orchard inputs. Moreover, our

studies suggest optimal ACO parameters for different classes of

orchard inputs.

We organise the paper as follows: Section 2 summarises previous

approaches to the problem of orchard row identification. It also

includes an overview and a few relevant applications of Ant Colony

Optimisation. The proposed ACO algorithm for orchard row finding

is then outlined in Section 3. The experimental setup follows in

Section 4 and results discussed in Section 5. We conclude the paper

and propose future work in Section 6 and Section 7 respectively.

2. Related Work

2.1 Hough Transform for Row Detection

The Hough transform is a simple mathematical technique originally

used in image analysis for detecting straight lines [15]. The

relevance of this technique comes from the fact that orchard rows

can be perceived as lines of trees or plants when viewed in an image.

The idea of using the Hough transform to detect rows has been

explored in several papers, in the context of both ground [1, 2, 19,

29] and aerial images [7, 23, 26].

Currently, to the best of our knowledge, the Hough transform has

been the only technique used to identify orchard rows from aerial

images. Despite the applicability of this approach, it is accompanied

by numerous limitations. First and foremost, it is limited to detecting

straight rows. Many of the papers using this technique neglect to

mention this limitation and only consider straight rows as inputs.

Additionally, all methods utilising the Hough transform require an

extensive amount of pre-processing. The backbone of this pre-

processing phase is a series of morphological operations that try to

separate and reduce rows into distinct contiguous lines. These

morphological operations are very much orchard dependent and rely

heavily upon the definitive separation of rows from background

pixels represented by soil, grass or other vegetation. The pre-

processing employed by these methods is also dependent on spatial

resolution and illumination changes of input images [23].

Of the aforementioned methods, only a single paper addresses the

presence of curved rows [26]. This approach takes advantage of the

fact that a curved line can be approximated through a series of

straight lines. Each aerial image is segmented into a series of tiles

such that the rows in each tile are approximately straight. This allows

the use of the Hough transform in each of the tiles to detect the rows

in that tile. The detected straight lines are then combined to form the

curved lines that represent the rows of the orchard. Experimental

results of this method aren’t too promising. Detections of crop rows

produced poor precision and recall scores on considered orchard

inputs. This approach also relies on the assumption that rows aren’t

too heavily curved. Rows that depict a high degree of curvature can’t

use image tiling as there would be too few trees in each tile to apply

the Hough transform.

2.2 Ant Colony Optimisation (ACO)

Ant Colony Optimisation is a probabilistic technique for solving

hard combinatorial optimisation problems that can be reduced to

finding optimal paths through graphs. ACO is loosely based on the

behaviour of ants and the mechanisms they employ when searching

for food. Ants secrete pheromones that serve as a signalling

mechanism that allow them to collectively navigate their

environment. Accumulated pheromones represent the ants’

preferences, typically based on quality of food, distance from the

nest and amount of food available. These pheromone trails change

dynamically over time to reflect the ants’ acquired search

experience.

ACO builds on this idea by incorporating heuristics specific to the

problem being solved. The artificial ants in ACO construct candidate

solutions by iteratively adding components to a partial solution.

These components are chosen probabilistically as a function of trail

pheromones and domain-specific heuristics. The stochastic

component of ACO ensures the ants construct a diverse range of

candidate solutions. This allows the algorithm to escape local optima

and eventually approach a global optimum. In addition, ACO

includes an optional local search algorithm, which takes a candidate

solution and tries to find a better solution given some appropriately

defined neighbourhood of the current solution. The algorithmic

skeleton of a generic ACO algorithm is shown in Figure 2.

Algorithm Ant Colony Optimisation

1: procedure ACO

2: Initialisation

3: while (termination condition not met) do

4: ConstructSolution

5: ApplyLocalSearch % optional

6: UpdatePheromones

7: end

8: end

Figure 2: Skeleton of a generic ACO algorithm.

During the main loop of the ACO algorithm, the ants construct

candidate solutions to the problem. A global best candidate solution

is updated every iteration. The termination criteria will typically

involve the convergence of this global best solution.

When constructing candidate solutions, the artificial ants will add

solution components probabilistically. If we assume a solution

component to be an edge connecting node 𝑖 and node 𝑗, the

probability that an ant ℎ will choose to traverse from node 𝑖 to node

𝑗 is calculated as

𝑝𝑖𝑗
ℎ =

(𝜏𝑖𝑗
𝛼)(𝜂𝑖𝑗

𝛽
)

 ∑ (𝜏𝑖𝑘
𝛼)(𝜂𝑖𝑘

𝛽
)𝑘𝜖𝑁𝑖

where 𝜏𝑖𝑗 and 𝜂𝑖𝑗 are the pheromone and heuristic values associated

with the edge connecting node 𝑖 and node 𝑗. α and β control the

relative importance of trail and heuristic information respectively.

𝑁𝑖 is some appropriately defined neighbourhood of node 𝑖.

Once the ants have constructed their solutions, and these solutions

improved upon through local search, edge pheromone information

is updated. This ensures that edges or solution components

belonging to good solutions are more desirable in following

iterations. The pheromone values are updated using the update rule

𝜏𝑖𝑗 ← (1 − 𝑝)𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
ℎ

ℎ

where 𝜏𝑖𝑗 is the pheromone value for edge 𝑖𝑗, 𝑝 is the evaporation

rate and ∆𝜏𝑖𝑗
ℎ is the pheromone deposited by the ℎ𝑡ℎ ant on edge 𝑖𝑗.

The evaporation rate 𝑝 is needed to prevent the rapid convergence

to a sub-optimal solution. The amount of pheromone deposited ∆𝜏𝑖𝑗
𝑘

depends on the quality of the solution found by the ℎ𝑡ℎ ant and is

defined differently depending on the problem domain.

The first example of an ACO algorithm was called Ant System (AS)

[12, 13], which was applied to the well-known travelling salesman

problem (TSP). Although the results were promising, AS could not

compete with state-of-the-art algorithms for TSP. Nevertheless, AS

inspired many subsequent works that would later go on to achieve

world class performance in their respective problem domains [14].

Examples of successful applications of the ACO algorithm include

applications to probabilistic TSP [3], scheduling [5], assembly-line

balancing [6], the quadratic assignment problem [27], and so on.

An application of the ACO algorithm that bears relevance to the

problem of orchard row finding is that of edge detection [18, 21].

The similarity between ACO for edge detection and ACO for

orchard row detection comes from the fact that neither algorithm is

trying to find a single optimal path in a graph. Instead, they are both

finding a set of paths whose configuration is optimum. ACO for

edge detection treats each pixel in an image as a node in a graph.

Artificial ants move from pixel to pixel, marking the traversed pixels

with pheromones. The transition rule is based on the changes in grey

level intensity of a 3 × 3 pixel region, where the centre pixel is the

ant’s position and the surrounding pixels are the ant’s traversable

neighbourhood. The resulting pheromone trails serve as a rough-cut

(1)

(2)

representation of the edges in an image. These pheromone trails then

undergo thresholding and morphological thinning to produce the

final edge pixels in the image. The ACO algorithm for edge

detection produced excellent results on a selection of benchmark

images [18].

3. Methods

The input data of the proposed method is a series of points with each

point representing the centre of a tree. These points are simply the

centroids of tree detections obtained from an existing object

detector. The detections themselves are simple polygon features

provided in GeoJSON format. These inputs only have a single non-

spatial attribute, which is the confidence score associated with each

detection.

3.1 Pre-processing

Unlike previously explored methods, pre-processing constitutes an

inconsequential component of the row finding pipeline. The first

step is the straight-forward thresholding of detections using the

associated confidence scores. Detections with a confidence score

below a certain threshold are removed from the search space. This

threshold value depends on the orchard type as the performance of

the object detector varies with different types of trees or shrubs.

Detection locations are provided in a geographic coordinate system

(GCS) and consequently require some conversion into a projected

coordinate system (PCS). The chosen PCS mapping depends on the

location of the orchards.

3.2 ACO for Row Finding

We have redefined the problem of orchard row identification as a

multi-objective combinatorial optimisation problem in which rows

represent optimal paths through graphs. The optimality of these rows

is encoded as some linear combination of distance and angle

information, where smaller distances and smaller changes in

direction are preferred.

Let’s consider a graph 𝐺 = (𝑃, 𝐸) with 𝑃 being a set of points and

𝐸 the set of edges fully connecting those points. The points ℎ ∈ 𝑃

and 𝑖 ∈ 𝑃 will represent tree-centers ℎ and 𝑖 respectively. We define

a partial row 𝑟𝑝 as the ordered set

𝑟𝑝 = {𝑐𝑖
𝑡 | 𝑖 ∈ 𝑃 𝑎𝑛𝑑 𝑐𝑖

𝑡 > 𝑐ℎ
𝑡−1}

where 𝑐𝑖
𝑡 refers to a solution component that adds point 𝑖 to the

partial row 𝑟𝑝 at construction step 𝑡. The component 𝑐𝑖
𝑡 can also be

thought of as the edge (ℎ, 𝑖) ∈ 𝐸 if the previously added component

was 𝑐ℎ
𝑡−1.

The heuristic value 𝜂ℎ𝑖 of the edge (ℎ, 𝑖) ∈ 𝐸 is simply a linear

combination of scaled distance and angle heuristics. We define the

heuristic value of a component 𝜂(𝑐𝑖
𝑡) = 𝜂ℎ𝑖 for 𝑡 > 0 and 𝑐ℎ

𝑡−1 ∈ 𝑟𝑝

where

𝜂ℎ𝑖 = 𝑤1𝑑′ℎ𝑖 + 𝑤2𝜃′𝑔ℎ𝑖

𝑑ℎ𝑖
′ = 1 −

𝑑ℎ𝑖

∑ 𝑑𝑖𝑘𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝(𝑐ℎ
𝑡−1)

𝜃𝑔ℎ𝑖
′ = {

𝜃𝑔ℎ𝑖

180°
 𝑖𝑓𝑐𝑔

𝑡−2 ∈ 𝑟𝑝

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑑ℎ𝑖 is the Euclidean distance of edge (ℎ, 𝑖) ∈ 𝐸 and

𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝
(𝑐ℎ

𝑡−1) is the 𝑛𝑝 nearest unexplored points to the

previously added point ℎ ∈ 𝑃. The value 𝜃𝑔ℎ𝑖 is the angle at vertex

h enclosed by rays (𝑔, ℎ) ∈ 𝐸 and (ℎ, 𝑖) ∈ 𝐸.

We now define the pheromone value of a component 𝜏(𝑐𝑖
𝑡) = 𝜏ℎ𝑖

for 𝑡 > 0 and 𝑐ℎ
𝑡−1 ∈ 𝑟𝑝 where 𝜏ℎ𝑖 is pheromone value associated

with the edge (ℎ, 𝑖) ∈ 𝐸. This pheromone value indicates the

desirability of the component 𝑐𝑖
𝑡 . So, to summarise, each ant

iteratively adds solution components 𝑐𝑖
𝑡 to a partial row 𝑟𝑝 based on

𝜂(𝑐𝑖
𝑡) and 𝜏(𝑐𝑖

𝑡) until it becomes a candidate row 𝑟.

Given this context, we can define a suitable ACO algorithm for

orchard row finding. The proposed algorithm differs slightly from

the generic ACO algorithm. The difference comes from the fact that

we are no longer finding candidate solutions but are instead finding

candidate rows which collectively define a candidate solution.

Algorithm Ant Colony Optimisation for Orchard Row Finding

1: procedure ACO

2: Initialisation
3: while termination condition not met do

4: for i := 1 to number of search iterations do

5: ConstructRows

6: UpdatePheromones

7: end

8: RemoveBestRows

9: end

10: end

Figure 4: Skeleton for the proposed ACO algorithm for orchard row finding.

The inner loop of the revised ACO algorithm serves the same

function as the main loop of the general ACO algorithm and

represents the search phase conducted by the artificial ants. Search

iterations differ in that, instead of keeping track of only a single

global best solution, we now consider the global best set of candidate

(3)

(4)

(5)

(6)

Figure 3: Orchard row finding pipeline with pre-processing (a), final rows of the ACO algorithm (b) and the final rows after stitching (c). Observe the differences between

the circles in (b) and the circles in (c). The crux of the pipeline is the ACO algorithm; pre-processing and stitching constitute a small part of the process.

(b) (c) (a)

rows. A candidate row 𝑟𝑖 is preferred over candidate row 𝑟𝑗 if

𝑣(𝑟𝑖) > 𝑣(𝑟𝑗) where 𝑣(𝑟) is the heuristic value total of row 𝑟. This

global set represents the elitist component of the algorithm and is

updated after each search iteration. The ants that find candidate rows

in the best set are referred to as elitist ants.

𝑣(𝑟) = ∑ 𝜂(𝑐𝑖
𝑡)

𝑐𝑖
𝑡∈𝑟

 𝑓𝑜𝑟 𝑡 > 0

The criterion defined by (7) ensures that the best set of candidate

rows comprise longer rows with higher heuristic values (i.e. longer,

straighter rows with smaller intra-row distances). It is hoped that this

criterion adequately reflects the implicit assumptions made by

farmers when planting orchard rows.

Once the search phase is complete, a subset of the global best is

selected for removal and is added to the set of final rows. This subset

comprises the best 𝑚𝑒 candidate rows based on (7) where 𝑚𝑒 is an

algorithm parameter. The outer loop terminates when there are no

longer any points left in the search space. The main steps of the

proposed ACO algorithm are explained further in the following.

1. Initialisation

At the start of the algorithm, all the parameters are set. 𝑚 ants

are chosen to search for candidate rows over 𝑛 search iterations.

All values in the pheromone matrix 𝜏 are set to zero. The

heuristic matrix is defined by (4).

2. Row Construction

In the row construction phase, the set of m ants each construct a

candidate row r. This is done iteratively by adding solution

components 𝑐𝑖
𝑡 to a partial row 𝑟𝑝 every construction step 𝑡. Each

ant starts at a random point 𝑖 ∈ 𝑃 such that 𝑟𝑝 = {𝑐𝑖
0} at 𝑡 = 0.

During each subsequent construction step 𝑡 > 0, an ant extends

𝑟𝑝 by adding the component 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) ⊆ 𝐶 where

𝑁(𝑟𝑝) = 𝑃𝑎𝑟𝑒𝑡𝑜(𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝
(𝑐ℎ

𝑡−1))

𝑃𝑎𝑟𝑒𝑡𝑜(𝑄) = {𝑐𝑖
𝑡 ∈ 𝑄| {𝑐𝑗

𝑡 ∈ 𝑄| 𝑐𝑗
𝑡 ≻ 𝑐𝑖

𝑡 , 𝑐𝑗
𝑡 ≠ 𝑐𝑖

𝑡} = ∅}

A component 𝑐𝑗
𝑡 strictly dominates (≻) component 𝑐𝑖

𝑡 if both

distance 𝑑ℎ𝑗
′ and angle 𝜃𝑔ℎ𝑗

′ heuristics of 𝑐𝑗
𝑡 are greater or equal

to that of 𝑐𝑖
𝑡 . The pareto optimal set of nearest unexplored points

𝑁(𝑟𝑝) of a partial row 𝑟𝑝 acts as a filter that removes substandard

components from the set of traversable components. In other

words, if a component results in an edge that is longer and less

straight than that of another component, it is no longer

considered in the neighbourhood of traversable components. In

addition, an implicit threshold is used to prevent ants from

constructing rows that reverse direction (𝜃 < 90°). This

threshold can be thought of as the minimum possible angle

between any two edges of any row in an orchard.

The component 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) is chosen probabilistically using the

following transition rule, which is simply equation (1) rewritten

for this problem description.

𝑝(𝑐𝑖
𝑡|𝑟𝑝) =

𝜏𝑖𝑗
𝛼 [𝜂(𝑐𝑖

𝑡)]𝛽

 ∑ 𝜏𝑖𝑘
𝛼 𝑐𝑗𝜖𝑁(𝑟𝑝) [η(𝑐𝑗

𝑡)]
𝛽

∀ 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝), 𝑡 > 0

The process of adding solution components 𝑐𝑖
𝑡 to the partial row

𝑟𝑝 continues until 𝑁(𝑟𝑝) = ∅ or all components in 𝑁(𝑟𝑝) result

in 𝜃 < 90°. Once an artificial ant has constructed a the candidate

row in one direction the row is reversed and the process

continued in the other direction 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑅𝑜𝑤𝑠(𝑟𝑝
∗) where 𝑟𝑝

∗

is a reversal of partial row 𝑟𝑝. This simply ensures the ants

construct the candidate row in both directions given some

random starting point. The result is a candidate row 𝑟.

3. Pheromone Update

The pheromone update rule is defined by (11) which is simply

(2) rewritten for this problem description. We define the update

rule 𝜏(𝑐𝑖
𝑡) = 𝜏ℎ𝑖 for 𝑡 > 0 and 𝑐ℎ

𝑡−1 ∈ 𝑟 where

𝜏ℎ𝑖 ← (1 − 𝑝)𝜏ℎ𝑖 + ∑ ∆τ(𝑐𝑖
𝑡)

𝑐𝑖
𝑡∈𝑟|𝑟∈𝑅

𝑝 is the evaporation rate and 𝑅 is the set of candidate rows found

during the current search iteration. The amount of pheromone

deposited on a component 𝑐𝑖
𝑡 ∈ 𝑟 is defined as ∆τ(𝑐𝑖

𝑡) = ∆τ[𝑡]

where

∆τ[𝑡] = (𝑓 ∗ 𝑔)[𝑡]

(𝑓 ∗ 𝑔)[𝑡] = ∑ 𝑓[𝑢] 𝑔

𝑞

𝑢=−𝑞

[𝑡 − 𝑢]

𝑔[𝑡] = 𝜂(𝑟[𝑡])

This is essentially a rolling window calculation (or moving

average) with a window function f and a window size q applied

to the heuristic values of row 𝑟 where 𝑟[𝑡] = 𝑐𝑖
𝑡 . The window

function used is a triangle window function that assigns the

largest weight to the heuristic value of current component and

smaller weights to the values of components further away and

on either side of the current component. This ensures that the

pheromone deposited by an ant on a component 𝑐𝑖
𝑡 is also a

function of other components in the same candidate row 𝑟.

Recall that the deposited pheromone on an edge indicates the

desirability of that edge. The importance of the rolling window

calculation comes from the fact that no component or edge can

be considered good or bad in isolation. Suppose we have a small,

straight edge (ℎ, 𝑖) ∈ 𝐸. This would give us a large heuristic

value 𝜂ℎ𝑖. Now suppose the components on either side of that

edge result in low heuristic values, i.e. they are characterised by

long edges and/or result in drastic changes in direction. If this is

the case, then surely the edge (ℎ, 𝑖) ∈ 𝐸 is not so desirable. The

opposite can be said if the edge (ℎ, 𝑖) ∈ 𝐸 has a small heuristic

value but connects edges with large heuristic values. This idea

extends to the entire row 𝑟 containing the edge (ℎ, 𝑖) ∈ 𝐸, albeit

with less importance being placed on edges further away from

the considered edge. Hence, the reason for the rolling window

calculation.

4. Row Removal

A subset of size 𝑚𝑒 of the best set of candidate rows are

considered final rows. The points that make up these rows are

removed from search space. This corresponds to the biological

idea of ants eating the food that they have found. The

evaporation rate ensures the artificial ants adapt to this removal

to find the next best candidate rows in further search iterations.

3.3 Stitching

Stitching is the process of joining disjoint final rows. If the ends of

two disjoint rows are roughly collinear and are sufficiently close to

one another, the rows are joined. More concretely, stitching is a

process that recursively joins rows to a current row. This is done in

opposite directions, starting with the endpoint on one side of the row

and then proceeding with the other side.

(12)

(13)

(14)

(8)

(9)

(10)

(7)

(11)

First, the nearest endpoints to the current endpoint are retrieved.

These nearest endpoints belong to disjoint final rows different from

the current row. The endpoints and penultimate points between these

rows and the current row are compared for collinearity. The row that

results in the least change in direction is added to the current row.

This process continues until all final row endpoints have been

considered. We employ the same implicit angle threshold as the one

in Section 3.2 to prevent the joining of rows that extend in opposite

directions.

4. Experimental Setup

The data used in this paper comprises a selection of varying orchard

input images. We consider four different orchard inputs with each

input portraying a unique set of row and detection characteristics.

The selected inputs are ordered by row curvature and detection

density.

Orchard Curved Dense

A (Fig. 5) No No

B (Fig. 6) Yes No

C (Fig. 7) No Yes

D (Fig. 8) Yes Yes

Table 1: Selected orchard inputs with varying row curvature and detection

density.

For the purposes of this paper, we define curved inputs as any

orchard containing curved rows. Dense inputs refer to orchards that

result in irregular clusters of closely grouped detections. Many

detections in dense inputs don’t visibly adhere to any row in the

orchard. These detections may be spurious or simply correctly

identified trees or shrubs that don’t belong to any row. Dense inputs

are also characterised by irregular intra-row spacing. A centroid

subset for each of the considered inputs can be seen in Figure 5.

 Figure 5: Subsets of detection centroids for each considered input.

We compare the performance of the proposed ACO algorithm on

each of these orchard inputs. The evaluation metrics used are

precision, recall and intersection over union (IoU) defined by

equations (15), (16) and (17) respectively. To compute these

metrics, we compare model-produced rows against hand-labelled

rows. Model and hand-labelled rows comprise a series of edges

which are compared for similarity. A true positive (TP) constitutes

a model edge that correctly identifies a true edge, a false positive

(FP) refers to a model edge that doesn’t correspond to a true edge

and a false negative (FN) refers to a true edge that hasn’t been

identified by a model edge.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The parameters for all experiments, unless otherwise stated, are the

default parameters in Table 2. Experiments were conducted on an

Asus laptop running Windows 10 x64. The machine has 16.0 GB of

RAM and a four core AMD Ryzen 7 CPU with clock speeds of 2.30

GHz.

Ant Colony Parameters

Ant colony size (𝑚) 15

Number of search iterations (𝑛) 15

Number of elites (𝑚𝑒) 5

Ant Parameters

Neighbourhood size (𝑛𝑝) 4

Distance weight (𝑤1) 0.5

Angle weight (𝑤2) 0.5

Alpha (α) 0.5

Beta (β) 0.5

Pheromone Parameters

Evaporation rate (𝑝) 0.1

Window size (𝑞) 5

Window function (𝑓) Triangle

Table 2: Default parameters of the proposed ACO algorithm for orchard row

finding.

5. Results and Discussion

First, we conduct an exploratory analysis of important ACO

parameters to identify their effect on performance for different

orchard inputs. Using this analysis, we construct models with

optimal parameters and visualise the results. Lastly, we consider the

time complexity of the proposed ACO algorithm.

5.1 Parameter Selection and Analysis

5.1.1 Key parameters

In this section, we analyse algorithm parameters listed in Table 2.

This is a difficult undertaking as the proposed ACO algorithm

exhibits many confounding (or lurking) variables. One such example

is that of deposited pheromones defined by (12). To illustrate the

effect of this confounding variable, we consider the complex

relationship between the number of search iterations (𝑛), the relative

importance assigned to pheromone trails (𝛼) and the evaporation

rate (𝑝).

Suppose we want to test the effect of the number of search iterations

𝑛 on algorithm performance. When increasing parameter 𝑛, we

increase the number of candidate rows constructed during the search

phase of the algorithm. This increases the number of candidate rows

considered for the global best set. This also has the effect of

increasing the pheromones deposited on all trails prior to row

removal. Now suppose, for a particular 𝛼 and 𝑝, increases in

deposited pheromones reduce exploration of the artificial ants.

Given this behaviour, we find that increasing parameter 𝑛 will result

in little to no change in algorithm performance. This is a direct result

of increases in deposited pheromones, which lead to sub-optimal

candidate rows in the global best set. Different values for 𝛼 and 𝑝

may result in the opposite confounding effect, i.e., guides the ants to

higher quality solutions resulting in an increase in performance. In

this example, we show that there exists a spurious correlation

between the parameter 𝑛 and algorithm performance. The

confounder is the deposited pheromones (coupled with the values of

𝛼 and 𝑝) which incorrectly imply causation between the parameter

𝑛 and algorithm performance.

(A)

(C) (D)

(B)

(15)

(16)

(17)

This is one among many other, albeit more subtle, examples of

confounding variables in the proposed ACO algorithm. Given the

presence of these lurking variables, the effects of parameters on

algorithm performance should not be considered in isolation, but

rather compared across the various orchard inputs. This comparison

is statistically sound because confounding variables remain constant

across inputs, meaning that any difference in algorithm performance

is a direct result of differences between orchards. Figure 8 in the

Appendix illustrates the effect of several key parameters on

algorithm performance. Considered parameters include the number

of search iterations 𝑛, the parameters α and β, and the relative

weights 𝑤1 and 𝑤2 of distance and angle heuristics respectively.

Average precision, recall and IoU scores are plotted as a function of

these parameters with each score being averaged over three

algorithm runs.

The first conclusive result of the findings presented in Figure 8

relates to the parameter 𝑛. These findings show that dense inputs (C

and D) require more search iterations (𝑛) to find optimal rows than

sparse inputs (A and B). This result is intuitive because the

neighbourhood 𝑁(𝑟𝑝) of any partial row 𝑟𝑝 is larger for dense inputs

than for sparse inputs. That is, the artificial ants have a wider range

of available solution components 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) to consider when

constructing a candidate row 𝑟. An increased number of options

mean more paths to explore, which can only be explored through an

increase in the number of search iterations (𝑛).

Upon viewing the graphs for different values of 𝑤1 and 𝑤2, we

notice an unexpected result. A distance weight (𝑤1) of 1.0 and an

angle weight (𝑤2) of 0.0 is preferred by all orchard inputs. Though

unexpected, there are several reasons for this result. The

predominant reason relates the structure of considered orchards and

how the ground-truth rows of these orchards are defined. Ground-

truth rows generally prefer rows with shorter edges than rows with

constant direction. This is because, across all inputs, intra-row

distances are smaller than inter-row distances most of the time.

Consequently, the artificial ants can best match the ground-truth if

they minimise distances rather than minimise changes in direction.

If the ground-truth were to instead prefer straighter rows, a higher

angle weight (𝑤2) would be preferred. Another reason for this

weight preference is the inclusion of the Pareto mechanism defined

in (9) and the minimum angle threshold described in Section 3.2.

These mechanisms remove obviously incorrect edges that would

result in rows with high angle variation or drastic changes in

direction. This significantly reduces the search space that the ants

must explore and allows the ants to rely less on the angle objective

encapsulated by the parameter 𝑤2.

5.1.2 Implicit angle threshold

The minimum angle threshold, applied to connected edges of

constructed rows, was treated as an implicit component of the

proposed ACO algorithm. This threshold simply prevented the

artificial ants from constructing rows that reverse direction. That is,

any edge pair (ℎ, 𝑖) ∈ 𝐸 and (𝑖, 𝑗) ∈ 𝐸 with 𝜃ℎ𝑖𝑗 < 90° was not

considered traversable. Through experimentation, it was found that

this threshold could in fact serve as a valuable tool for guiding ants

towards higher quality solutions.

The threshold values that resulted in significant increases in

performance were 145° for sparse inputs and 115° for dense inputs.

Threshold values beyond this point resulted in a decrease in recall

scores. This is caused by true edges being erroneously rejected for

exhibiting angles smaller than the specified thresholds.

5.2 Performance

The performance of the ACO algorithm is evaluated using the

accuracy metrics defined in Section 4, namely precision, recall and

IoU. These metrics are calculated by comparing model-produced

rows to hand-labelled (ground-truth) rows for each orchard input.

This is an important point to consider, as it is not these accuracy

metrics that the ACO algorithm optimises; the ACO algorithm

optimises the criterion defined by (7). That is, it optimises the total

heuristic values of all rows in an orchard. This fundamental

difference leads us to an important conclusion: the performance of

the proposed ACO algorithm is a direct function of, not only how

well it optimises (7), but also of how closely this criterion reflects

the implicit assumptions employed by the hand-labeller when

labelling the orchard inputs. This idea is a recurring theme in the

following analysis and presents itself differently across each of the

orchard inputs.

The best-found performance, and corresponding parameters, for

each orchard input are shown in Table 3, the results of which are

visualised in the Appendix.

1. Orchard A (not dense; not curved)

Although the proposed ACO algorithm performed the best on

this input, the visualised results hint at a possible shortfall of the

approach. We notice that the ACO algorithm has erroneously

connected rows on either side of well demarcated path. This is

an example of where a reduction in the problem description has

resulted in some lost information. Looking at just a set of points,

it is impossible to tell that these rows are in fact separate.

2. Orchard B (not dense; curved)

This orchard input illustrates an example of where the definition

of the ground truth affects algorithm performance. From looking

at the hand-labelled rows, we see that a missing tree (or a

significant gap between trees) has been taken to signify the end

of a row. This interpretation of what constitutes a row has

resulted in many false positive edges that, under a different

interpretation, would be correct. Furthermore, assumptions

about rows are not consistent across all hand-labelled rows. In

many cases these hand-labelled rows have traversed gaps

between trees. This has resulted in false negatives that should be

considered correct under the assumption that missing trees

separate rows.

3. Orchard C (dense; not curved)

This orchard is the most difficult of all considered inputs. Rows

have irregular intra-row spaces and connected edges exhibit

large angle variations. Trees are clustered together with many

trees not adhering to a row. Indeed, in certain localised regions,

no visible pattern or structure of trees can be determined. It is

only upon looking at the bigger picture can one ascertain the

Input

orchard

Detections Ants

(𝒎)

Elites

(𝒎𝒆)

Search

(𝒏)

Distance

(𝒘𝟏)

Angle

(𝒘𝟐)

Alpha

(α)

Beta

(β)

Precision Recall IoU Time

(𝒔)

A (Fig. 5) 2461 1 1 1 1.0 0.0 0.5 0.5 0.9921 0.9987 0.9909 1.57

B (Fig. 6) 1985 15 5 15 1.0 0.0 0.5 0.5 0.9637 0.9568 0.9235 65.53

C (Fig. 7) 3043 15 5 50 1.0 0.0 0.5 0.5 0.8910 0.8523 0.7718 361.64

D (Fig. 8) 3816 15 5 30 1.0 0.0 0.5 0.5 0.9816 0.9579 0.9410 229.11

Table 3: Parameters and performance statistics of the ACO algorithm on each orchard input.

direction of the row. The probabilistic nature of the ACO

algorithm enables the artificial ants to effectively traverse this

complex environment and identify the relevant rows in the

orchard.

A single obstacle was encountered that diminished algorithm

performance for dense inputs. Numerous false positives and

false negatives were produced by the stitching phase of the

algorithm. This can be seen in Figure 6, where the joining of

disjoint rows resulted in triangle/trapezium structures with the

bottom edge being a false positive and the side edges being false

negatives. In each case, it is arguable whether the missed points

do in fact belong to the relevant rows. If we were to assume the

stitching to be correct, far higher performance scores would be

achieved.

4. Orchard D (dense; curved)

This input orchard is slightly less dense than that of orchard C and,

consequently, results in better algorithm performance. As illustrated in

the results for orchard B, curved rows are accurately identified by the

ACO algorithm.

5.3 Complexity

The time complexity of the presented algorithm is a function of

orchard size and complexity, and the three ant colony parameters in

Table 2, namely ant colony size (𝑚), number of search iterations (𝑛)

and number of elites (𝑚𝑒). That is, the time complexity of the

algorithm is 𝑂(𝑚 𝑛
|𝑅|

𝑚𝑒
) where 𝑅 ⊆ 𝐸 is the set of edges that

constitute final rows at algorithm completion.

The execution times of the ACO algorithm for each orchard is

visualised in Figure 7 in the Appendix. The parameters 𝑚, 𝑛 and 𝑚𝑒

are held constant across inputs. The only varying factors are orchard

size and orchard complexity. We notice longer execution times for

larger orchards (C and D) than for smaller orchards (A and B). We

also observe that, despite orchard D being larger than orchard C, a

longer algorithm runtime for orchard C. This is because orchard C

is more complex and results in more final rows at algorithm

completion. A similar result is observed when comparing orchards,

A and B

6. Conclusions

In this paper, we explore a novel approach to the problem of orchard

row identification in aerial images. The crux of the proposed method

is a modified ACO algorithm in which artificial ants traverse graph-

representations of orchards to produce optimal paths that represent

the rows of trees in those orchards. ACO for orchard row-finding not

only modifies the generic ACO algorithm, but also includes newly

devised mechanisms specific to this problem domain. These

mechanisms include the nearest unexplored pareto set of a partial

row and the rolling window calculation of pheromone updates.

Additionally, heuristic values were defined to reflect the multi-

objective nature of finding rows of trees within orchards. These

objectives minimise intra-row distances and changes in row

direction.

Unlike Hough-based methods, the proposed approach constitutes

minimal pre-processing and can reliably identify curved rows of

trees or shrubs. Furthermore, experimental results illustrate the

robustness of the method to orchards with varying tree density.

7. Future Work

The current study of algorithm parameters is limited in scope.

Further analysis could be conducted to isolate the effect of each of

the parameters on algorithm performance. Additionally, a reduction

in the effect of confounding factors can be achieved by increasing

the number and variety of comparative experiments in the analysis.

A select group of inputs were considered in this paper. Additional,

more varied inputs could be considered in subsequent analyses as

well the inclusion of possible failure cases.

8. Acknowledgements

We would like to thank A/Prof. Patrick Marais for all his guidance

and supervision throughout the research project. We would also like

to thank Aerobotics for providing of the orchard data used in the

project.

References

[1] Åstrand, B. & Baerveldt, A.J.J.M. A vision-based row-following system for

agricultural field machinery, 15, 2 (2005), 251-269.

[2] Bah, M. D., Hafiane, A. and Canals, R. Weeds detection in UAV imagery

using SLIC and the hough transform. IEEE, City, 2017.

[3] Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z. and Dorigo, M. J. S. I.

Estimation-based ant colony optimization and local search for the

probabilistic traveling salesman problem, 3, 3 (2009), 223-242.

[4] Ballard, D. H. J. P. r. Generalizing the Hough transform to detect arbitrary

shapes, 13, 2 (1981), 111-122.

[5] Blum, C. J. C. and Research, O. Beam-ACO—Hybridizing ant colony

optimization with beam search: An application to open shop scheduling, 32,

6 (2005), 1565-1591.

[6] Blum, C. J. I. J. o. C. Beam-ACO for simple assembly line balancing, 20, 4

(2008), 618-627.

[7] Comba, L., Gay, P., Primicerio, J., Aimonino, D. R. J. C. and Agriculture,

E. i. Vineyard detection from unmanned aerial systems images, 114 (2015),

78-87.

[8] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization:

NSGA-II. Springer, City, 2000.

[9] Doerner, K., Hartl, R. F. and Reimann, M. Are COMPETants more

competent for problem solving? The case of a multiple objective

transportation problem (2001).

[10] Doerner, K., Gutjahr, W. J., Hartl, R. F., Strauss, C. and Stummer, C. J. A.

o. o. r. Pareto ant colony optimization: A metaheuristic approach to

multiobjective portfolio selection, 131, 1-4 (2004), 79-99.

[11] Dorigo, M. and Di Caro, G. Ant colony optimization: a new meta-heuristic.

IEEE, City, 1999.

[12] Dorigo, M., Maniezzo, V., Colorni, A. J. I. T. o. S., Man, and Cybernetics,

P. B. Ant system: optimization by a colony of cooperating agents, 26, 1

(1996), 29-41.

[13] Dorigo, M., Maniezzo, V. and Colorni, A. The ant system: An autocatalytic

optimizing process (1991).

[14] Dorigo, M. and Stützle, T. Ant colony optimization: overview and recent

advances. Springer, City, 2019.

[15] Duda, R. O. and Hart, P. E. J. C. o. t. A. Use of the Hough transformation to

detect lines and curves in pictures, 15, 1 (1972), 11-15.

[16] García-Martínez, C., Cordón, O. & Herrera, F.J.E.J.o.O.R. A taxonomy and

an empirical analysis of multiple objective ant colony optimization

algorithms for the bi-criteria TSP, 180, 1 (2007), 116-148.

[17] Iredi, S., Merkle, D. and Middendorf, M. Bi-criterion optimization with

multi colony ant algorithms. Springer, City, 2001.

[18] Jevtić, A., Quintanilla-Dominguez, J., Cortina-Januchs, M. G. and Andina,

D. Edge detection using ant colony search algorithm and multiscale contrast

enhancement. IEEE, City, 2009.

[19] Jiang, G.-Q., Zhao, C.-J. and Si, Y.-S. A machine vision based crop rows

detection for agricultural robots. IEEE, City, 2010.

Figure 6: Model produced rows under the assumption that stitching is

incorrect (left) and under the assumption that stitching is correct (right).

[20] Mariano, C. E. and Morales, E. J. I. M. d. T. d. A., Technical Report HC- A

multiple objective ant-Q algorithm for the design of water distribution

irrigation networks (1999).

[21] Nezamabadi-Pour, H., Saryazdi, S. & Rashedi, E.J.S.C. Edge detection

using ant algorithms, 10, 7 (2006), 623-628.

[22] Nolan, A., Park, S., Fuentes, S., Ryu, D. and Chung, H. Automated detection

and segmentation of vine rows using high resolution UAS imagery in a

commercial vineyard. City, 2015.

[23] Ramesh, K., Chandrika, N., Omkar, S., Meenavathi, M., Rekha, V. J. I. J. o.

I., Graphics and Processing, S. Detection of rows in agricultural crop images

acquired by remote sensing from a uav, 8, 11 (2016), 25.

[24] Rovira-Más, F., Zhang, Q., Reid, J. and Will, J. J. P. o. t. I. o. M. E., Part D:

Journal of Automobile Engineering Hough-transform-based vision

algorithm for crop row detection of an automated agricultural vehicle, 219,

8 (2005), 999-1010.

[25] Sklansky, J.J.I.T.o.c. 1978. On the Hough technique for curve detection.

(10):923-926.

[26] Soares, G.A., Abdala, D.D. & Escarpinati, M. Eds. 2018. Plantation Rows

Identification by Means of Image Tiling and Hough Transform. 453-459.

[27] Stützle, T. and Dorigo, M. J. N. i. i. o. ACO algorithms for the quadratic

assignment problem, C50 (1999), 33.

[28] Tian, J., Yu, W. and Xie, S. An ant colony optimization algorithm for image

edge detection. IEEE, City, 2008.

[29] Vidović, I., Scitovski, R. J. C. and agriculture, e. i. Center-based clustering

for line detection and application to crop rows detection, 109 (2014), 212-

220.

[30] Yang, Q. and Yoo, S.-J. J. I. A. Optimal UAV path planning: Sensing data

acquisition over IoT sensor networks using multi-objective bio-inspired

algorithms, 6 (2018), 13671-13684.

Appendix

(A

)

(C

)

(D

)

(B

)

𝑛 𝛼 ≡ (1 − 𝛽) 𝑤1 ≡ (1 − 𝑤2)

Figure 8: ACO performance scores for a selection of varying algorithm parameters. Red = precision, blue = recall and green = IoU.

Figure 7: Boxplot of execution times from 10

algorithm runs on each input with the default

parameters in Table 2.

A B

 (B)

C D

Orchard Input

T
im

e
(s

)

Figure 9: Performance results of proposed ACO algorithm on orchard input A.

Green edge = true positive, red edge = false positive, blue edge = false negative.

The precision recall and IoU scores for this result are given in Table 3.

Figure 10: Performance results of proposed ACO algorithm on orchard input B.

Green edge = true positive, red edge = false positive, blue edge = false negative.

The precision recall and IoU scores for this result are given in Table 3.

Figure 11: Performance results of proposed ACO algorithm on orchard input C.
Green edge = true positive, red edge = false positive, blue edge = false negative.

The precision recall and IoU scores for this result are given in Table 3

Figure 12: Performance results of proposed ACO algorithm on orchard input B.
Green edge = true positive, red edge = false positive, blue edge = false negative.

The precision recall and IoU scores for this result are given in Table 3

