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Abstract 

The advent of unmanned aerial vehicles (UAVs) and accompanying 

aerial imagery has brought a variety of data-driven techniques to the 

domain of precision agriculture. Of interest is the identification of 

rows of trees from aerial images of orchard fields. All existing 

methods for solving this task utilise the Hough transform for straight 

line detection. Consequently, they all share the same limitation. That 

is, they perform poorly on curved rows. Furthermore, many of these 

methods rely on image processing techniques that aren’t robust to 

varying input images. In this paper, we show that an Ant Colony 

Optimisation (ACO) algorithm, applied to detections of the 

underlying shrubs or trees, accurately finds the rows of a given 

orchard. Specifically, the proposed method achieves high precision 

and recall scores on a variety orchard inputs, each with differing 

detection density and row curvature. We show that the proposed 

algorithm is not only novel but is also an effective and robust 

approach to tackling the problem of orchard row identification. 

1. Introduction 

Agricultural management has become an increasingly difficult and 

cost-intensive task given the increasing size of modern-day farms. 

Presently, most of the orchard inspection is conducted on foot with 

workers walking between rows to examine each tree or shrub in an 

orchard. The manual inspection and constant supervision of trees is 

proving infeasible for larger farms and at least cost-ineffective for 

smaller ones. Recent advances in unmanned aerial vehicles (UAVs) 

and an increased accessibility to near real-time satellite images has 

enabled the automation of such processes.  

Remote sensing of crops takes many different forms, each involving 

different applications and different types of data. This paper is 

concerned with the identification of orchard rows from aerial images 

of orchard fields. The acquisition of orchard row data lends itself to 

many applications, ranging from general crop planning to the 

identification of missing trees in an orchard. This problem has seen 

little work in previous years and the few methods that have been 

developed all opt for the same approach. That is, the image of the 

orchard first undergoes some form of image pre-processing followed 

by the application of the Hough transform for row detection [7, 23, 

26]. The problem with this approach is that it assumes orchard rows 

follow straight lines. This is a brittle assumption that doesn’t hold in 

the real world. Farmers must often plant rows to adhere to the 

landforms in their region. A typical example would be landforms 

containing varying elevation, which requires rows to be planted 

along contour lines. Sometimes rows are simply planted on an ad 

hoc basis, which also results in complex row patterns.  

In this paper, we reframe orchard row identification as a 

combinatorial optimisation problem. This is achieved by treating 

every tree or shrub in an orchard as a distinct point. Now, instead of 

detecting rows from pixel data, we are finding rows from a set of 

points, with each point being the centre of a tree. This reduction in 

the problem description opens new avenues of exploration, 

particularly those related to graph structures and graph theory. We 

propose an Ant Colony Optimisation (ACO) algorithm for finding 

rows in an orchard. ACO is a well-known technique that is designed  

 

 

for finding good paths through graphs and is thus a perfect candidate 

for solving this problem.  

Figure 1: Orchard input image (left), tree detections (centre) and detection 

centroids (right). 

First, we obtain detections of the underlying trees or shrubs using an 

existing object detector. Each of these detections take the form of a 

polygon whose centroid represents the centre of a tree. A feasible 

solution to the problem can now be described as a series of rows 

where each row represents a set of connected edges. This domain of 

discrete solutions is complex, more so than many other NP-hard 

problems. Indeed, we are not only trying to find a single optimal path 

in a graph, we are trying to find a set of paths whose configuration 

is optimum. This slight variation in the problem description adds 

many layers of complexity to the problem. Additionally, this is a 

multi-objective optimisation problem. The notion of an optimal row 

configuration for an orchard encodes the many assumptions made 

by the farmer who planted the orchard. Consequently, the objectives 

of our multi-objective algorithm should encode these underlying 

assumptions. 

We have found that the best predictors of optimal rows are edge 

distances and edge angles. The first objective is therefore to 

maximise the difference between inter-row and intra-row distances; 

the second objective is to minimise the angle between two 

consecutive edges of a row.  Different orchards will prefer different 

objectives. For an example, an orchard may constitute straight rows 

with irregular spaces between trees. This orchard will prefer the 

angle objective. Another row might be heavily curved but have 

consistent spaces between trees. This orchard will prefer the distance 

objective. Other orchards may prefer some combination of the two. 

We assume that a priori preference information of an orchard is 

known and thus combine these two objectives into a single objective 

using the weighted sum approach. 

The algorithm proposed in this paper follows the ACO metaheuristic 

and is thus an ACO algorithm. Specifically, it is an elitist variant that 

uses random iterates and stochastic optimisation to ensure 

convergence over time. Simple agents (ants) probabilistically 

construct candidate rows whilst they adapt during algorithm 

execution to reflect their acquired search experience. The result of 

the ACO stage of the algorithm is a set of disjoint rows which are 

then combined during post processing. Our method achieves high 

precision and recall on a variety of orchard inputs. Moreover, our 

studies suggest optimal ACO parameters for different classes of 

orchard inputs. 

We organise the paper as follows: Section 2 summarises previous 

approaches to the problem of orchard row identification. It also 

includes an overview and a few relevant applications of Ant Colony 

Optimisation. The proposed ACO algorithm for orchard row finding 



is then outlined in Section 3. The experimental setup follows in  

Section 4 and results discussed in Section 5. We conclude the paper 

and propose future work in Section 6 and Section 7 respectively. 

2. Related Work 

2.1 Hough Transform for Row Detection 

The Hough transform is a simple mathematical technique originally 

used in image analysis for detecting straight lines [15]. The 

relevance of this technique comes from the fact that orchard rows 

can be perceived as lines of trees or plants when viewed in an image. 

The idea of using the Hough transform to detect rows has been 

explored in several papers, in the context of both ground [1, 2, 19, 

29] and aerial images [7, 23, 26].  

Currently, to the best of our knowledge, the Hough transform has 

been the only technique used to identify orchard rows from aerial 

images. Despite the applicability of this approach, it is accompanied 

by numerous limitations. First and foremost, it is limited to detecting 

straight rows. Many of the papers using this technique neglect to 

mention this limitation and only consider straight rows as inputs. 

Additionally, all methods utilising the Hough transform require an 

extensive amount of pre-processing. The backbone of this pre-

processing phase is a series of morphological operations that try to 

separate and reduce rows into distinct contiguous lines. These 

morphological operations are very much orchard dependent and rely 

heavily upon the definitive separation of rows from background 

pixels represented by soil, grass or other vegetation. The pre-

processing employed by these methods is also dependent on spatial 

resolution and illumination changes of input images [23]. 

Of the aforementioned methods, only a single paper addresses the 

presence of curved rows [26]. This approach takes advantage of the 

fact that a curved line can be approximated through a series of 

straight lines. Each aerial image is segmented into a series of tiles 

such that the rows in each tile are approximately straight. This allows 

the use of the Hough transform in each of the tiles to detect the rows 

in that tile. The detected straight lines are then combined to form the 

curved lines that represent the rows of the orchard. Experimental 

results of this method aren’t too promising. Detections of crop rows 

produced poor precision and recall scores on considered orchard 

inputs. This approach also relies on the assumption that rows aren’t 

too heavily curved. Rows that depict a high degree of curvature can’t 

use image tiling as there would be too few trees in each tile to apply 

the Hough transform. 

2.2 Ant Colony Optimisation (ACO) 

Ant Colony Optimisation is a probabilistic technique for solving 

hard combinatorial optimisation problems that can be reduced to 

finding optimal paths through graphs. ACO is loosely based on the 

behaviour of ants and the mechanisms they employ when searching 

for food. Ants secrete pheromones that serve as a signalling 

mechanism that allow them to collectively navigate their 

environment. Accumulated pheromones represent the ants’ 

preferences, typically based on quality of food, distance from the 

nest and amount of food available. These pheromone trails change 

dynamically over time to reflect the ants’ acquired search 

experience.  

ACO builds on this idea by incorporating heuristics specific to the 

problem being solved. The artificial ants in ACO construct candidate 

solutions by iteratively adding components to a partial solution. 

These components are chosen probabilistically as a function of trail 

pheromones and domain-specific heuristics. The stochastic 

component of ACO ensures the ants construct a diverse range of 

candidate solutions. This allows the algorithm to escape local optima 

and eventually approach a global optimum. In addition, ACO 

includes an optional local search algorithm, which takes a candidate 

solution and tries to find a better solution given some appropriately 

defined neighbourhood of the current solution. The algorithmic 

skeleton of a generic ACO algorithm is shown in Figure 2. 

Algorithm Ant Colony Optimisation 

1: procedure ACO 

2:     Initialisation 

3:     while (termination condition not met) do 

4:         ConstructSolution 

5:         ApplyLocalSearch   % optional 

6:         UpdatePheromones 

7:     end 

8: end 

Figure 2: Skeleton of a generic ACO algorithm. 

During the main loop of the ACO algorithm, the ants construct 

candidate solutions to the problem. A global best candidate solution 

is updated every iteration. The termination criteria will typically 

involve the convergence of this global best solution. 

When constructing candidate solutions, the artificial ants will add 

solution components probabilistically. If we assume a solution 

component to be an edge connecting node 𝑖 and node 𝑗, the 

probability that an ant ℎ will choose to traverse from node 𝑖 to node 

𝑗 is calculated as 

𝑝𝑖𝑗
ℎ =

(𝜏𝑖𝑗
𝛼 )(𝜂𝑖𝑗

𝛽
)

 ∑ (𝜏𝑖𝑘
𝛼 )(𝜂𝑖𝑘

𝛽
)𝑘𝜖𝑁𝑖

 

where 𝜏𝑖𝑗  and 𝜂𝑖𝑗  are the pheromone and heuristic values associated 

with the edge connecting node 𝑖 and node 𝑗. α and β control the 

relative importance of trail and heuristic information respectively. 

𝑁𝑖 is some appropriately defined neighbourhood of node 𝑖.  

Once the ants have constructed their solutions, and these solutions 

improved upon through local search, edge pheromone information 

is updated. This ensures that edges or solution components 

belonging to good solutions are more desirable in following 

iterations. The pheromone values are updated using the update rule 

𝜏𝑖𝑗 ← (1 − 𝑝)𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
ℎ

ℎ

 

where 𝜏𝑖𝑗  is the pheromone value for edge 𝑖𝑗, 𝑝  is the evaporation 

rate and ∆𝜏𝑖𝑗
ℎ  is the pheromone deposited by the ℎ𝑡ℎ ant on edge 𝑖𝑗. 

The  evaporation rate 𝑝 is needed to prevent the rapid convergence 

to a sub-optimal solution. The amount of pheromone deposited ∆𝜏𝑖𝑗
𝑘  

depends on the quality of the solution found by the ℎ𝑡ℎ ant and is 

defined differently depending on the problem domain. 

The first example of an ACO algorithm was called Ant System (AS) 

[12, 13], which was applied to the well-known travelling salesman 

problem (TSP). Although the results were promising, AS could not 

compete with state-of-the-art algorithms for TSP. Nevertheless, AS 

inspired many subsequent works that would later go on to achieve 

world class performance in their respective problem domains [14]. 

Examples of successful applications of the ACO algorithm include 

applications to probabilistic TSP [3], scheduling [5], assembly-line 

balancing [6], the quadratic assignment problem [27], and so on.  

An application of the ACO algorithm that bears relevance to the 

problem of orchard row finding is that of edge detection [18, 21]. 

The similarity between ACO for edge detection and ACO for 

orchard row detection comes from the fact that neither algorithm is 

trying to find a single optimal path in a graph. Instead, they are both 

finding a set of paths whose configuration is optimum. ACO for 

edge detection treats each pixel in an image as a node in a graph. 

Artificial ants move from pixel to pixel, marking the traversed pixels 

with pheromones. The transition rule is based on the changes in grey 

level intensity of a 3 × 3 pixel region, where the centre pixel is the 

ant’s position and the surrounding pixels are the ant’s traversable 

neighbourhood. The resulting pheromone trails serve as a rough-cut  

(1) 

(2) 



 

representation of the edges in an image. These pheromone trails then 

undergo thresholding and morphological thinning to produce the 

final edge pixels in the image. The ACO algorithm for edge 

detection produced excellent results on a selection of benchmark 

images [18].  

3. Methods 

The input data of the proposed method is a series of points with each 

point representing the centre of a tree. These points are simply the 

centroids of tree detections obtained from an existing object 

detector. The detections themselves are simple polygon features 

provided in GeoJSON format. These inputs only have a single non-

spatial attribute, which is the confidence score associated with each 

detection. 

3.1 Pre-processing 

Unlike previously explored methods, pre-processing constitutes an 

inconsequential component of the row finding pipeline. The first 

step is the straight-forward thresholding of detections using the 

associated confidence scores. Detections with a confidence score 

below a certain threshold are removed from the search space. This 

threshold value depends on the orchard type as the performance of 

the object detector varies with different types of trees or shrubs. 

Detection locations are provided in a geographic coordinate system 

(GCS) and consequently require some conversion into a projected 

coordinate system (PCS). The chosen PCS mapping depends on the 

location of the orchards. 

3.2 ACO for Row Finding 

We have redefined the problem of orchard row identification as a 

multi-objective combinatorial optimisation problem in which rows 

represent optimal paths through graphs. The optimality of these rows 

is encoded as some linear combination of distance and angle 

information, where smaller distances and smaller changes in 

direction are preferred.  

 

Let’s consider a graph 𝐺 = (𝑃, 𝐸) with 𝑃 being a set of points and 

𝐸 the set of edges fully connecting those points. The points ℎ ∈ 𝑃 

and 𝑖 ∈ 𝑃 will represent tree-centers ℎ and 𝑖 respectively. We define 

a partial row 𝑟𝑝 as the ordered set   

 

𝑟𝑝 = {𝑐𝑖
𝑡  | 𝑖 ∈ 𝑃 𝑎𝑛𝑑 𝑐𝑖

𝑡 > 𝑐ℎ
𝑡−1}  

 

where 𝑐𝑖
𝑡  refers to a solution component that adds point 𝑖 to the 

partial row 𝑟𝑝 at construction step 𝑡. The component 𝑐𝑖
𝑡  can also be 

thought of as the edge (ℎ, 𝑖) ∈ 𝐸 if the previously added component 

was 𝑐ℎ
𝑡−1.  

 

 

The heuristic value 𝜂ℎ𝑖 of the edge (ℎ, 𝑖) ∈ 𝐸 is simply a linear 

combination of scaled distance and angle heuristics. We define the 

heuristic value of a component 𝜂(𝑐𝑖
𝑡) = 𝜂ℎ𝑖 for 𝑡 > 0 and 𝑐ℎ

𝑡−1 ∈ 𝑟𝑝 

where 

 

𝜂ℎ𝑖 =  𝑤1𝑑′ℎ𝑖  + 𝑤2𝜃′𝑔ℎ𝑖 

𝑑ℎ𝑖
′ = 1 −

𝑑ℎ𝑖

∑ 𝑑𝑖𝑘𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝(𝑐ℎ
𝑡−1)

 

𝜃𝑔ℎ𝑖
′ = { 

𝜃𝑔ℎ𝑖

180°
     𝑖𝑓𝑐𝑔

𝑡−2 ∈ 𝑟𝑝 

1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

 

where 𝑑ℎ𝑖 is the Euclidean distance of edge (ℎ, 𝑖) ∈ 𝐸 and 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝
(𝑐ℎ

𝑡−1) is the 𝑛𝑝 nearest unexplored points to the 

previously added point ℎ ∈ 𝑃. The value 𝜃𝑔ℎ𝑖 is the angle at vertex 

h enclosed by rays (𝑔, ℎ) ∈ 𝐸 and (ℎ, 𝑖) ∈ 𝐸.  

We now define the pheromone value of a component 𝜏(𝑐𝑖
𝑡) = 𝜏ℎ𝑖  

for 𝑡 > 0 and 𝑐ℎ
𝑡−1 ∈ 𝑟𝑝 where 𝜏ℎ𝑖 is pheromone value associated 

with the edge (ℎ, 𝑖) ∈ 𝐸. This pheromone value indicates the 

desirability of the component 𝑐𝑖
𝑡 . So, to summarise, each ant 

iteratively adds solution components 𝑐𝑖
𝑡  to a partial row 𝑟𝑝 based on 

𝜂(𝑐𝑖
𝑡) and 𝜏(𝑐𝑖

𝑡) until it becomes a candidate row 𝑟. 

Given this context, we can define a suitable ACO algorithm for 

orchard row finding. The proposed algorithm differs slightly from 

the generic ACO algorithm. The difference comes from the fact that 

we are no longer finding candidate solutions but are instead finding 

candidate rows which collectively define a candidate solution.  

Algorithm Ant Colony Optimisation for Orchard Row Finding 

1: procedure ACO 

2:     Initialisation 
3:     while termination condition not met do 

4:         for i := 1 to number of search iterations do 

5:             ConstructRows 

6:             UpdatePheromones 

7:         end 

8:         RemoveBestRows 

9:     end 

10: end 

Figure 4: Skeleton for the proposed ACO algorithm for orchard row finding. 

The inner loop of the revised ACO algorithm serves the same 

function as the main loop of the general ACO algorithm and 

represents the search phase conducted by the artificial ants. Search 

iterations differ in that, instead of keeping track of only a single 

global best solution, we now consider the global best set of candidate 

(3) 

(4) 

(5) 

(6) 

Figure 3: Orchard row finding pipeline with pre-processing (a), final rows of the ACO algorithm (b) and the final rows after stitching (c). Observe the differences between 

the circles in (b) and the circles in (c). The crux of the pipeline is the ACO algorithm; pre-processing and stitching constitute a small part of the process. 

(b) (c) (a) 



rows. A candidate row 𝑟𝑖 is preferred over candidate row 𝑟𝑗 if 

𝑣(𝑟𝑖) > 𝑣(𝑟𝑗) where 𝑣(𝑟) is the heuristic value total of row 𝑟. This 

global set represents the elitist component of the algorithm and is 

updated after each search iteration. The ants that find candidate rows 

in the best set are referred to as elitist ants. 

 

𝑣(𝑟) =  ∑ 𝜂(𝑐𝑖
𝑡)

𝑐𝑖
𝑡∈𝑟

 𝑓𝑜𝑟 𝑡 > 0 

The criterion defined by (7) ensures that the best set of candidate 

rows comprise longer rows with higher heuristic values (i.e. longer, 

straighter rows with smaller intra-row distances). It is hoped that this 

criterion adequately reflects the implicit assumptions made by 

farmers when planting orchard rows. 

Once the search phase is complete, a subset of the global best is 

selected for removal and is added to the set of final rows. This subset 

comprises the best 𝑚𝑒 candidate rows based on (7) where 𝑚𝑒 is an 

algorithm parameter. The outer loop terminates when there are no 

longer any points left in the search space. The main steps of the 

proposed ACO algorithm are explained further in the following.  

1. Initialisation 

At the start of the algorithm, all the parameters are set. 𝑚 ants 

are chosen to search for candidate rows over 𝑛  search iterations. 

All values in the pheromone matrix 𝜏 are set to zero. The 

heuristic matrix is defined by (4). 

 

2. Row Construction 

In the row construction phase, the set of m ants each construct a 

candidate row r. This is done iteratively by adding solution 

components 𝑐𝑖
𝑡  to a partial row 𝑟𝑝 every construction step 𝑡. Each 

ant starts at a random point 𝑖 ∈ 𝑃 such that 𝑟𝑝 = {𝑐𝑖
0} at 𝑡 = 0. 

During each subsequent construction step 𝑡 > 0, an ant extends 

𝑟𝑝 by adding the component 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) ⊆ 𝐶 where   

 

𝑁(𝑟𝑝) = 𝑃𝑎𝑟𝑒𝑡𝑜( 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑛𝑝
(𝑐ℎ

𝑡−1) ) 

 

𝑃𝑎𝑟𝑒𝑡𝑜(𝑄) = {𝑐𝑖
𝑡 ∈ 𝑄| {𝑐𝑗

𝑡 ∈ 𝑄| 𝑐𝑗
𝑡 ≻ 𝑐𝑖

𝑡 , 𝑐𝑗
𝑡 ≠ 𝑐𝑖

𝑡} = ∅} 

 

A component 𝑐𝑗
𝑡  strictly dominates (≻) component 𝑐𝑖

𝑡  if both 

distance 𝑑ℎ𝑗
′  and angle 𝜃𝑔ℎ𝑗

′  heuristics of 𝑐𝑗
𝑡  are greater or equal 

to that of 𝑐𝑖
𝑡 . The pareto optimal set of nearest unexplored points 

𝑁(𝑟𝑝) of a partial row 𝑟𝑝 acts as a filter that removes substandard 

components from the set of traversable components. In other 

words, if a component results in an edge that is longer and less 

straight than that of another component, it is no longer 

considered in the neighbourhood of traversable components. In 

addition, an implicit threshold is used to prevent ants from 

constructing rows that reverse direction (𝜃 < 90°). This 

threshold can be thought of as the minimum possible angle 

between any two edges of any row in an orchard. 

 

The component 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) is chosen probabilistically using the 

following transition rule, which is simply equation (1) rewritten 

for this problem description.  

𝑝(𝑐𝑖
𝑡|𝑟𝑝) =

𝜏𝑖𝑗
𝛼  [𝜂(𝑐𝑖

𝑡)]𝛽

 ∑ 𝜏𝑖𝑘
𝛼  𝑐𝑗𝜖𝑁(𝑟𝑝) [η(𝑐𝑗

𝑡)]
𝛽

      

∀ 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝), 𝑡 > 0 

The process of adding solution components 𝑐𝑖
𝑡  to the partial row 

𝑟𝑝 continues until 𝑁(𝑟𝑝) = ∅ or all components in 𝑁(𝑟𝑝) result 

in 𝜃 < 90°. Once an artificial ant has constructed a the candidate 

row in one direction the row is reversed and the process 

continued in the other direction 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑅𝑜𝑤𝑠(𝑟𝑝
∗) where 𝑟𝑝

∗ 

is a reversal of partial row 𝑟𝑝. This simply ensures the ants 

construct the candidate row in both directions given some 

random starting point. The result is a candidate row 𝑟. 

3. Pheromone Update 

The pheromone update rule is defined by (11) which is simply 

(2) rewritten for this problem description. We define the update 

rule 𝜏(𝑐𝑖
𝑡) = 𝜏ℎ𝑖  for 𝑡 > 0 and 𝑐ℎ

𝑡−1 ∈ 𝑟 where  

𝜏ℎ𝑖 ← (1 − 𝑝)𝜏ℎ𝑖 + ∑ ∆τ(𝑐𝑖
𝑡)

𝑐𝑖
𝑡∈𝑟|𝑟∈𝑅

 

𝑝 is the evaporation rate and 𝑅 is the set of candidate rows found 

during the current search iteration. The amount of pheromone 

deposited on a component 𝑐𝑖
𝑡 ∈ 𝑟 is defined as ∆τ(𝑐𝑖

𝑡) = ∆τ[𝑡] 

where 

 

∆τ[𝑡] = (𝑓 ∗ 𝑔)[𝑡] 

 

(𝑓 ∗ 𝑔)[𝑡] =  ∑ 𝑓[𝑢] 𝑔

𝑞

𝑢=−𝑞

[𝑡 − 𝑢] 

 

𝑔[𝑡] = 𝜂(𝑟[𝑡]) 

 

This is essentially a rolling window calculation (or moving 

average) with a window function f and a window size q applied 

to the heuristic values of row 𝑟 where 𝑟[𝑡] = 𝑐𝑖
𝑡 . The window 

function used is a triangle window function that assigns the 

largest weight to the heuristic value of current component and 

smaller weights to the values of components further away and 

on either side of the current component. This ensures that the 

pheromone deposited by an ant on a component 𝑐𝑖
𝑡  is also a 

function of other components in the same candidate row 𝑟.  

 

Recall that the deposited pheromone on an edge indicates the 

desirability of that edge. The importance of the rolling window 

calculation comes from the fact that no component or edge can 

be considered good or bad in isolation. Suppose we have a small, 

straight edge (ℎ, 𝑖) ∈ 𝐸. This would give us a large heuristic 

value 𝜂ℎ𝑖. Now suppose the components on either side of that 

edge result in low heuristic values, i.e. they are characterised by 

long edges and/or result in drastic changes in direction. If this is 

the case, then surely the edge (ℎ, 𝑖) ∈ 𝐸 is not so desirable. The 

opposite can be said if the edge (ℎ, 𝑖) ∈ 𝐸 has a small heuristic 

value but connects edges with large heuristic values. This idea 

extends to the entire row 𝑟 containing the edge (ℎ, 𝑖) ∈ 𝐸, albeit 

with less importance being placed on edges further away from 

the considered edge. Hence, the reason for the rolling window 

calculation. 

 

4. Row Removal 

A subset of size 𝑚𝑒 of the best set of candidate rows are 

considered final rows. The points that make up these rows are 

removed from search space. This corresponds to the biological 

idea of ants eating the food that they have found. The 

evaporation rate ensures the artificial ants adapt to this removal 

to find the next best candidate rows in further search iterations. 

3.3 Stitching 

Stitching is the process of joining disjoint final rows. If the ends of 

two disjoint rows are roughly collinear and are sufficiently close to 

one another, the rows are joined. More concretely, stitching is a 

process that recursively joins rows to a current row. This is done in 

opposite directions, starting with the endpoint on one side of the row 

and then proceeding with the other side.  

(12) 

(13) 

(14) 

(8) 

(9) 

(10) 

(7) 

(11) 



First, the nearest endpoints to the current endpoint are retrieved. 

These nearest endpoints belong to disjoint final rows different from 

the current row. The endpoints and penultimate points between these 

rows and the current row are compared for collinearity. The row that 

results in the least change in direction is added to the current row. 

This process continues until all final row endpoints have been 

considered. We employ the same implicit angle threshold as the one 

in Section 3.2 to prevent the joining of rows that extend in opposite 

directions. 

4. Experimental Setup 

The data used in this paper comprises a selection of varying orchard 

input images. We consider four different orchard inputs with each 

input portraying a unique set of row and detection characteristics. 

The selected inputs are ordered by row curvature and detection 

density. 

 
Orchard Curved Dense 

A (Fig. 5) No No 

B (Fig. 6) Yes No 

C (Fig. 7) No Yes 

D (Fig. 8) Yes Yes 

Table 1: Selected orchard inputs with varying row curvature and detection 

density. 

 

For the purposes of this paper, we define curved inputs as any 

orchard containing curved rows. Dense inputs refer to orchards that 

result in irregular clusters of closely grouped detections. Many 

detections in dense inputs don’t visibly adhere to any row in the 

orchard. These detections may be spurious or simply correctly 

identified trees or shrubs that don’t belong to any row. Dense inputs 

are also characterised by irregular intra-row spacing. A centroid 

subset for each of the considered inputs can be seen in Figure 5. 

 

 
  Figure 5: Subsets of detection centroids for each considered input. 

We compare the performance of the proposed ACO algorithm on 

each of these orchard inputs. The evaluation metrics used are 

precision, recall and intersection over union (IoU) defined by 

equations (15), (16) and (17) respectively. To compute these 

metrics, we compare model-produced rows against hand-labelled 

rows. Model and hand-labelled rows comprise a series of edges 

which are compared for similarity. A true positive (TP) constitutes 

a model edge that correctly identifies a true edge, a false positive 

(FP) refers to a model edge that doesn’t correspond to a true edge 

and a false negative (FN) refers to a true edge that hasn’t been 

identified by a model edge. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

The parameters for all experiments, unless otherwise stated, are the 

default parameters in Table 2. Experiments were conducted on an 

Asus laptop running Windows 10 x64. The machine has 16.0 GB of 

RAM and a four core AMD Ryzen 7 CPU with clock speeds of 2.30 

GHz. 

 

Ant Colony Parameters 

Ant colony size (𝑚) 15 

Number of search iterations (𝑛) 15 

Number of elites (𝑚𝑒) 5 

Ant Parameters 

Neighbourhood size (𝑛𝑝) 4 

Distance weight (𝑤1) 0.5 

Angle weight (𝑤2) 0.5 

Alpha (α) 0.5 

Beta (β) 0.5 

Pheromone Parameters 

Evaporation rate (𝑝) 0.1 

Window size (𝑞) 5 

Window function (𝑓) Triangle  

Table 2: Default parameters of the proposed ACO algorithm for orchard row 

finding. 

 

5. Results and Discussion 

First, we conduct an exploratory analysis of important ACO 

parameters to identify their effect on performance for different 

orchard inputs. Using this analysis, we construct models with 

optimal parameters and visualise the results. Lastly, we consider the 

time complexity of the proposed ACO algorithm.  

 

5.1 Parameter Selection and Analysis 

5.1.1 Key parameters  

In this section, we analyse algorithm parameters listed in Table 2. 

This is a difficult undertaking as the proposed ACO algorithm 

exhibits many confounding (or lurking) variables. One such example 

is that of deposited pheromones defined by (12). To illustrate the 

effect of this confounding variable, we consider the complex 

relationship between the number of search iterations (𝑛), the relative 

importance assigned to pheromone trails (𝛼) and the evaporation 

rate (𝑝).  

 

Suppose we want to test the effect of the number of search iterations 

𝑛 on algorithm performance. When increasing parameter 𝑛, we 

increase the number of candidate rows constructed during the search 

phase of the algorithm. This increases the number of candidate rows 

considered for the global best set. This also has the effect of 

increasing the pheromones deposited on all trails prior to row 

removal. Now suppose, for a particular 𝛼 and 𝑝, increases in 

deposited pheromones reduce exploration of the artificial ants. 

Given this behaviour, we find that increasing parameter 𝑛 will result 

in little to no change in algorithm performance. This is a direct result 

of increases in deposited pheromones, which lead to sub-optimal 

candidate rows in the global best set. Different values for 𝛼 and 𝑝 

may result in the opposite confounding effect, i.e., guides the ants to 

higher quality solutions resulting in an increase in performance.  In 

this example, we show that there exists a spurious correlation 

between the parameter 𝑛 and algorithm performance. The 

confounder is the deposited pheromones (coupled with the values of 

𝛼 and 𝑝) which incorrectly imply causation between the parameter 

𝑛 and algorithm performance.  

(A) 

(C) (D) 

(B) 

(15) 

(16) 

(17) 



This is one among many other, albeit more subtle, examples of 

confounding variables in the proposed ACO algorithm. Given the 

presence of these lurking variables, the effects of parameters on 

algorithm performance should not be considered in isolation, but 

rather compared across the various orchard inputs. This comparison 

is statistically sound because confounding variables remain constant 

across inputs, meaning that any difference in algorithm performance 

is a direct result of differences between orchards. Figure 8 in the 

Appendix illustrates the effect of several key parameters on 

algorithm performance. Considered parameters include the number 

of search iterations 𝑛, the parameters α and β, and the relative 

weights 𝑤1 and 𝑤2 of distance and angle heuristics respectively.  

Average precision, recall and IoU scores are plotted as a function of 

these parameters with each score being averaged over three 

algorithm runs. 

The first conclusive result of the findings presented in Figure 8 

relates to the parameter 𝑛. These findings show that dense inputs (C 

and D) require more search iterations (𝑛) to find optimal rows than 

sparse inputs (A and B). This result is intuitive because the 

neighbourhood 𝑁(𝑟𝑝) of any partial row 𝑟𝑝 is larger for dense inputs 

than for sparse inputs. That is, the artificial ants have a wider range 

of available solution components 𝑐𝑖
𝑡 ∈ 𝑁(𝑟𝑝) to consider when 

constructing a candidate row 𝑟. An increased number of options 

mean more paths to explore, which can only be explored through an 

increase in the number of search iterations (𝑛). 

Upon viewing the graphs for different values of 𝑤1 and 𝑤2, we 

notice an unexpected result. A distance weight (𝑤1) of 1.0 and an 

angle weight (𝑤2) of 0.0 is preferred by all orchard inputs. Though 

unexpected, there are several reasons for this result. The 

predominant reason relates the structure of considered orchards and 

how the ground-truth rows of these orchards are defined. Ground-

truth rows generally prefer rows with shorter edges than rows with 

constant direction. This is because, across all inputs, intra-row 

distances are smaller than inter-row distances most of the time. 

Consequently, the artificial ants can best match the ground-truth if 

they minimise distances rather than minimise changes in direction. 

If the ground-truth were to instead prefer straighter rows, a higher 

angle weight (𝑤2) would be preferred. Another reason for this 

weight preference is the inclusion of the Pareto mechanism defined 

in (9) and the minimum angle threshold described in Section 3.2. 

These mechanisms remove obviously incorrect edges that would 

result in rows with high angle variation or drastic changes in 

direction. This significantly reduces the search space that the ants 

must explore and allows the ants to rely less on the angle objective 

encapsulated by the parameter 𝑤2. 

5.1.2 Implicit angle threshold 

The minimum angle threshold, applied to connected edges of 

constructed rows, was treated as an implicit component of the 

proposed ACO algorithm. This threshold simply prevented the 

artificial ants from constructing rows that reverse direction. That is, 

any edge pair (ℎ, 𝑖) ∈ 𝐸 and (𝑖, 𝑗) ∈ 𝐸 with 𝜃ℎ𝑖𝑗 < 90° was not 

considered traversable. Through experimentation, it was found that 

this threshold could in fact serve as a valuable tool for guiding ants 

towards higher quality solutions.   

The threshold values that resulted in significant increases in 

performance were 145° for sparse inputs and 115° for dense inputs. 

Threshold values beyond this point resulted in a decrease in recall 

scores. This is caused by true edges being erroneously rejected for 

exhibiting angles smaller than the specified thresholds. 

5.2 Performance 

The performance of the ACO algorithm is evaluated using the 

accuracy metrics defined in Section 4, namely precision, recall and 

IoU. These metrics are calculated by comparing model-produced 

rows to hand-labelled (ground-truth) rows for each orchard input. 

This is an important point to consider, as it is not these accuracy 

metrics that the ACO algorithm optimises; the ACO algorithm 

optimises the criterion defined by (7). That is, it optimises the total 

heuristic values of all rows in an orchard. This fundamental 

difference leads us to an important conclusion: the performance of 

the proposed ACO algorithm is a direct function of, not only how 

well it optimises (7), but also of how closely this criterion reflects 

the implicit assumptions employed by the hand-labeller when 

labelling the orchard inputs. This idea is a recurring theme in the 

following analysis and presents itself differently across each of the 

orchard inputs.  

The best-found performance, and corresponding parameters, for 

each orchard input are shown in Table 3, the results of which are 

visualised in the Appendix.  

1. Orchard A (not dense; not curved) 

Although the proposed ACO algorithm performed the best on 

this input, the visualised results hint at a possible shortfall of the 

approach. We notice that the ACO algorithm has erroneously 

connected rows on either side of well demarcated path. This is 

an example of where a reduction in the problem description has 

resulted in some lost information. Looking at just a set of points, 

it is impossible to tell that these rows are in fact separate. 

 

2. Orchard B (not dense; curved) 

This orchard input illustrates an example of where the definition 

of the ground truth affects algorithm performance. From looking 

at the hand-labelled rows, we see that a missing tree (or a 

significant gap between trees) has been taken to signify the end 

of a row. This interpretation of what constitutes a row has 

resulted in many false positive edges that, under a different 

interpretation, would be correct. Furthermore, assumptions 

about rows are not consistent across all hand-labelled rows. In 

many cases these hand-labelled rows have traversed gaps 

between trees. This has resulted in false negatives that should be 

considered correct under the assumption that missing trees 

separate rows. 

 

3. Orchard C (dense; not curved) 

This orchard is the most difficult of all considered inputs. Rows 

have irregular intra-row spaces and connected edges exhibit 

large angle variations. Trees are clustered together with many 

trees not adhering to a row. Indeed, in certain localised regions,  

no visible pattern or structure of trees can be determined. It is 

only upon looking at the bigger picture can one ascertain the  

 

Input 

orchard 

Detections Ants  

(𝒎) 

Elites 

(𝒎𝒆) 

Search 

( 𝒏) 

Distance 

(𝒘𝟏) 

Angle 

(𝒘𝟐) 

Alpha  

(α) 

Beta  

(β) 

Precision  Recall IoU Time  

(𝒔) 

A (Fig. 5) 2461 1 1 1 1.0 0.0 0.5 0.5 0.9921 0.9987 0.9909 1.57 

B (Fig. 6) 1985 15 5 15 1.0 0.0 0.5 0.5 0.9637 0.9568 0.9235 65.53 

C (Fig. 7) 3043 15 5 50 1.0 0.0 0.5 0.5 0.8910 0.8523 0.7718 361.64 

D (Fig. 8) 3816 15 5 30 1.0 0.0 0.5 0.5 0.9816 0.9579 0.9410 229.11 

Table 3: Parameters and performance statistics of the ACO algorithm on each orchard input.  



direction of the row. The probabilistic nature of the ACO 

algorithm enables the artificial ants to effectively traverse this 

complex environment and identify the relevant rows in the 

orchard. 

 

A single obstacle was encountered that diminished algorithm 

performance for dense inputs. Numerous false positives and 

false negatives were produced by the stitching phase of the 

algorithm. This can be seen in Figure 6, where the joining of 

disjoint rows resulted in triangle/trapezium structures with the 

bottom edge being a false positive and the side edges being false 

negatives. In each case, it is arguable whether the missed points 

do in fact belong to the relevant rows. If we were to assume the 

stitching to be correct, far higher performance scores would be 

achieved. 

4. Orchard D (dense; curved) 

This input orchard is slightly less dense than that of orchard C and, 

consequently, results in better algorithm performance. As illustrated in 

the results for orchard B, curved rows are accurately identified by the 

ACO algorithm.  

5.3 Complexity 

The time complexity of the presented algorithm is a function of 

orchard size and complexity, and the three ant colony parameters in 

Table 2, namely ant colony size (𝑚), number of search iterations (𝑛) 

and number of elites (𝑚𝑒).  That is, the time complexity of the 

algorithm is 𝑂(𝑚 𝑛 
|𝑅|

𝑚𝑒
 ) where 𝑅 ⊆ 𝐸 is the set of edges that 

constitute final rows at algorithm completion.  

The execution times of the ACO algorithm for each orchard is 

visualised in Figure 7 in the Appendix. The parameters 𝑚, 𝑛 and 𝑚𝑒 

are held constant across inputs. The only varying factors are orchard 

size and orchard complexity. We notice longer execution times for 

larger orchards (C and D) than for smaller orchards (A and B). We 

also observe that, despite orchard D being larger than orchard C, a 

longer algorithm runtime for orchard C. This is because orchard C 

is more complex and results in more final rows at algorithm 

completion. A similar result is observed when comparing orchards, 

A and B 

6. Conclusions 

In this paper, we explore a novel approach to the problem of orchard 

row identification in aerial images. The crux of the proposed method 

is a modified ACO algorithm in which artificial ants traverse graph-

representations of orchards to produce optimal paths that represent 

the rows of trees in those orchards. ACO for orchard row-finding not 

only modifies the generic ACO algorithm, but also includes newly 

devised mechanisms specific to this problem domain. These 

mechanisms include the nearest unexplored pareto set of a partial 

row and the rolling window calculation of pheromone updates. 

Additionally, heuristic values were defined to reflect the multi-

objective nature of finding rows of trees within orchards. These 

objectives minimise intra-row distances and changes in row 

direction. 

Unlike Hough-based methods, the proposed approach constitutes 

minimal pre-processing and can reliably identify curved rows of 

trees or shrubs. Furthermore, experimental results illustrate the 

robustness of the method to orchards with varying tree density. 

7. Future Work 

The current study of algorithm parameters is limited in scope. 

Further analysis could be conducted to isolate the effect of each of 

the parameters on algorithm performance. Additionally, a reduction 

in the effect of confounding factors can be achieved by increasing 

the number and variety of comparative experiments in the analysis. 

A select group of inputs were considered in this paper. Additional, 

more varied inputs could be considered in subsequent analyses as 

well the inclusion of possible failure cases.  
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𝑛 𝛼 ≡ (1 − 𝛽) 𝑤1 ≡ (1 − 𝑤2) 

Figure 8: ACO performance scores for a selection of varying algorithm parameters. Red = precision, blue = recall and green = IoU. 

Figure 7: Boxplot of execution times from 10 

algorithm runs on each input with the default 

parameters in Table 2. 
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Figure 9: Performance results of proposed ACO algorithm on orchard input A. 

Green edge = true positive, red edge = false positive, blue edge = false negative.  

The precision recall and IoU scores for this result are given in Table 3.  



  

Figure 10: Performance results of proposed ACO algorithm on orchard input B. 

Green edge = true positive, red edge = false positive, blue edge = false negative. 

The precision recall and IoU scores for this result are given in Table 3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Performance results of proposed ACO algorithm on orchard input C. 
Green edge = true positive, red edge = false positive, blue edge = false negative. 

The precision recall and IoU scores for this result are given in Table 3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Performance results of proposed ACO algorithm on orchard input B. 
Green edge = true positive, red edge = false positive, blue edge = false negative. 

The precision recall and IoU scores for this result are given in Table 3 


