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1. Project Description 

An increase in crop yield of up to 70% is needed to meet the 

projected demand from an increasing human population by 2050 [1]. 

This increased crop yield will have to come from agricultural land 

as other land will be unavailable or occupied. Other hindrances to 

increasing the crop yield include diseases and pests which can result 

in losses of up to 40% of global crop yields [2]. The modern-day 

solution to this problem is the application of Precision Agriculture 

(PA) to existing farming techniques. PA is defined as applying 

geospatial information to site-specific farming with the intention of 

both increasing and monitoring crop yield while minimising 

resource expenditure. Good Sustainable farming practices such as 

biomass monitoring, pesticide allocation and resource allocation can 

be effortlessly achieved with the help of Information Technology 

(IT). Currently, Low Altitude Remote Sensing (LARS) systems, 

which includes Unmanned Aerial Vehicles (UAVs), are deployed to 

collect high-resolution images of agricultural plots for processing.  

The main problem presented in this project is the identification of 

the underlying tree row structure in an orchard given the orchard 

data obtained from an Unmanned Aerial Vehicle (UAV) which 

contains the tree detections. A subproblem is identifying missing 

trees within the tree rows when traversing the rows. When 

identifying the rows, two issues arise which increase the complexity 

of the problem: (1) tree detections are poor, resulting in different 

sized trees and oddly positioned trees and (2) the orchard rows 

follow a combination of both straight and curved lines. Curved rows 

are particularly difficult with little research done in the area.  

 

There are several challenges presented by the orchard aerial inputs. 

These challenges vary across the different orchard inputs. In some 

cases, there is dense tree growth with overlapping trees. This results 

in erroneous detections that detect multiple trees as a single tree. In 

other cases, tree growth is sparse. When there are too few trees in a 

row, it violates the assumption that inter-row distances are smaller 

than intra-row distances, thus making the detection of rows very 

difficult.  

2. Problem Statement 

The principle aim of the project is to evaluate the applicability of 

three separate algorithms to the orchard row finding problem. Each 

algorithm seeks to robustly identify coherent row structures of an 

orchard given the initial tree detections. Height data is often 

unavailable or ineffectual and thus each of these algorithms should 

achieve said goal without relying on height data.  

 

2.1 Aims 

Since each of our approaches is novel to this domain, the primary 

aim is to produce an accurate, in-depth analysis of how applicable 

each of these approaches are to orchard row detection. Auxiliary 

aims of each approach include the following:  

• To produce accurate tree detections in accordance with the 

accuracy metric defined later on. 

• To be robust to erroneous tree detections. 

• To be able to identify both curved and straight rows. 

 

2.2 Research Questions 

The principle research question will be described below for each 

member of the project. Followed by how these research questions 

will be evaluated and tested. 

 

Augmented polynomial fitting principle research question: 

The primary research question is to identify the robustness of a 

combined algorithm of the Hough Transform and a modified least 

squares algorithm through its ability to map out the underlying row 

structure of an orchard given that the orchard data contains poor 

object detection and could include a curved row structure. 

 

Multi-objective Depth-First Search principle research question 

The main objective is to validate whether using a multi-objective 

Depth-First search algorithm is sufficient for detecting a 

combination of straight and curved rows whilst simultaneously 

being robust to poor tree detections.  

 

Modified Ant Colony Optimization principle research question 

The main research question is to determine the relevance and 

applicability of the Ant Colony Optimisation (ACO) algorithm in 

solving the orchard row detection problem. Secondly, it is to 
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Figure 1: Example input data that shows the aerial image of the orchard and the trees identified from the image. The trees are recorded as points on a plane and no 

height data is available. 



determine the success of a modified ACO implementation on a 

series of orchard inputs.  

3. Related Work 

3.1 Image Tiling and the Hough Transform 

There is a large body of work that explores the application of the 

Hough Transform to orchard row detection. Unfortunately, most of 

this work focuses on ground images. Furthermore, the techniques 

explored are only able to detect straight lines. This is problematic as 

most orchard rows depict some degree of curvature. Soares et al. 

(2018) tries to solve this problem whilst exploring the application of 

the Hough Transform to images of coffee crop fields [3]. This 

approach takes advantage of the fact that a curved line can be 

approximated through a series of straight lines. Each aerial image of 

a coffee crop field is segmented into a series of tiles such that the 

rows in each tile are approximately straight. This allows the use of 

the Hough transform in each of those tiles. The detected lines are 

then combined to form the series of curved lines that represent the 

rows of the orchard. Experimental results of this method are not too 

promising. Detections of crop rows contain a high degree of both 

false positives and false negatives. This approach also relies on the 

assumption that rows are not too heavily curved. Rows that depict a 

high degree of curvature cannot use image tiling as there would be 

too few trees in each tile to apply the Hough transform. 

3.2 Straight Line Algorithms (Particle Swarm Optimization)  

The particle swarm optimization (PSO) algorithm is a stochastic 

optimization method based on simulating the movement of groups 

of biological organisms such as schools of fish and flocks of birds. 

It is a meta-heuristic search algorithm that searches the solution 

domain independently of problem-specific details. 

Xu and Tie (2013) proposed a method for straight line detection 

based on the particle swarm optimization algorithm. Each particle in 

the swarm represents a straight line initialized between two edges 

points. The fitness function of the PSO algorithm is the number of 

edge points (node centroids) that lie on the line for any instance of a 

particle. This method has a quick execution time and is robust to 

noisy data[4]. 

3.3 Multi-objective algorithms 

The goal of any multi-objective algorithm is to identify the 

collection of non-dominated solutions on the Pareto Front (refer to 

Figure 2). These solutions represent the optimal trade-offs between 

the different objectives where one solution cannot be improved 

without worsening another solution. As seen in Figure 2, X1 and X2 

are non-dominated solutions which cannot be changed without 

degrading one of the objective functions. 

 

 

Coego and co-workers presented an improvement of the IDMOA* 

algorithm which searches for non-dominated solutions and 

simultaneously accounts for all objectives, called PIDMOA (Pareto 

Front Iterative Deepening Multi-Objective A*).  

Each iteration uses a new set of threshold non-dominated vectors for 

the search. While searching using iterative deepening, the search 

will be stopped when at any node, its vector value is dominated by a 

vector in the threshold. This algorithm input is a directed graph, a 

start node and a set of possible end nodes. The algorithm finds 

the set of all non-dominated paths that transverse from the start node 

to one of the goal nodes. The algorithm stores all the sets of solutions 

it finds. The sets of solutions are made up of a pair, (γ, f(γ)) where γ 

is a solution node and f(γ) ∈ F(γ) is the value of a solution path to γ 

[5]. 

3.4 Levenberg-Marquardt algorithm for curve fitting 

Least-squares regression is a well-known statistical method that can 

approximate curves from a set of points. The method approximates 

a line or curve of best fit through a set of points. One such algorithm 

is the Levenberg-Marquardt algorithm which is also known as the 

Damped least-squares algorithm. Smit et al. (2010) used this method 

to identify curved grapevine rows in the field of Viticulture[6]. 

Another, more robust, least-squares algorithm is the moving least-

squares algorithm which is used in surface reconstruction. The 

moving least-squares algorithm can detect sharp curves and cusps 

whereas the Damped least-squares algorithm can only determine 

smoothed curves. 

 

The problem with a least-squares approach is that the line of best fit 

is susceptible to noise and outliers. This is a problem with orchard 

data because the trees must grow in a mapped-out boundary and thus 

can become very dense. Although the moving least-squares 

algorithm applies a weighted moving least-squares, it can still be 

affected by noise when there are dense areas or the entire area is 

filled with points - this is the case with orchard data.  

 

A solution going forward is to couple a least-squares approach with 

some sort of directionality approach so that the data can extract and 

work with a subset of data points - the KNN (K nearest neighbours) 

algorithm provides a closest point which when coupled with a 

gradient threshold can be used as a directionality guide. Another 

possible approach is combining a straight-line method such as the 

Hough Transform with a curved approach such as a least-squares 

f1 represents the Euclidean 

distance between nodes. 

f2 represents the change in 

angle. 

X3 is a dominated solution 

 

Figure 2: Pareto Optimality 

Figure 3: A least-squares regression fitting a curve through a set of points 

that are sparsely populated. 

Figure 4: Example input data that contains dense tree growth which prevents 
an unmodified least-squares method from being applied to the data. 



algorithm. The straight-line method can map out the straight parts 

of the orchard leaving a subset of points for the least-squares 

algorithm to work with. This reduces the noise which would 

otherwise reduce the applicability of a least-squares algorithm. 

4. Procedures and Methods 

The architectural design of the project can be described as a shared 

component coupled with a set of modular components. The shared 

component of this project refers to the data acquisition and orchard 

detection processing, which is elaborated upon below. The orchard 

processing comprises functionality common to all three approaches. 

From there, each team member will go on to implement their 

respective components, with each component being a method for 

solving the orchard row detection problem. Method evaluation is 

also divided according to each of these approaches. See the 

Appendix for architecture diagram. 

4.1 Data acquisition 

The data for this project is provided by Aerobotics, which is a 

company that uses aerial imagery and artificial intelligence to 

provide farmers with farm management solutions. Each data input 

represents the aerial information of an orchard. This information 

comprises three files, namely two GeoJSON files and a single 

GeoTIFF file. The first file contains the tree or shrub detections of 

an orchard with each detection being a polygon that has some 

associated confidence value. The second file represents the 

boundary of the orchard to be analysed and the third is just a 

georeferenced image of the actual orchard. The orchard image and 

their detections are visualised in Figure 1. 

4.2 Orchard detection processing 

A certain amount of detection processing needs to be undertaken 

prior to the application of our respective methods. The locations of 

the orchard detections are provided in a geographic coordinate 

system (GCS), which poses a serious challenge to many arithmetic 

calculations needed for orchard analysis. For instance, calculations 

such as determining the distance between two points or the area of a 

polygon become exceedingly complex and possibly more 

computationally expensive than the two-dimensional alternative. To 

solve this problem, we need to convert the geographic coordinates 

of our orchard detections into projected coordinates.  

 

4.3 Row estimation using augmented polynomial fitting 

4.3.1 Problem Reduction 

The problem can be reduced to fitting a low-level polynomial of 

either degree one (straight line) or degree two (quadratic curve) 

through a set of points. The problem can then be further broken 

down into straight rows or curved rows. The straight rows can be 

accurately identified with the Hough Transform. The crux of the 

algorithm will be to determine whether the row is straight or curved. 

 

4.3.2 The algorithm 

The algorithm will apply the K-Nearest-Neighbours algorithm with 

K set to 1 from a specified source node (depicted as a red node in 

Figure 5) that has been identified as a starting node. The algorithm 

then determines the nearest neighbour - the node with the smallest 

Euclidean distance from the source node - and two threshold 

comparisons are made: (1) The first threshold is the intra-row 

distance(the distance between the trees) so that the algorithm can 

identify if the nearest neighbour is from the same row(distance is 

between the two nodes is less than the threshold) or from another 

row(distance between the two nodes is greater than the threshold). 

This threshold works under the assumption that the intra-row 

distance is likely to be less than the inter-row distance when good 

practices are followed. (2) The second threshold is a specified 

change in gradient so that the algorithm can compare the change in 

gradient of the two nodes to the threshold. If the change in gradient 

is less than the threshold then the angle of change will be small 

enough to limit the neighbour to exist in the same row, otherwise the 

neighbour could be an outlier in the inter-row space and affect the 

directionality of the row by joining two different rows. If the nearest 

neighbour satisfies these threshold conditions i.e. the distance and 

change in gradient between the two nodes are less than the 

thresholds, then the neighbour becomes the source node and the 

original source node is added to an array of nodes that is considered 

to be from the same row. If the distance between the two nodes is 

greater than the threshold or the only node is in the inter-row space, 

the row is considered to come to an end - either a missing tree or the 

end of the row. The nodes in the array are then extracted and a least-

squares (Levenberg-Marquardt) method is applied to fit a 

polynomial through the points. While there are still nodes that have 

not been visited, the algorithm will repeat until all nodes have been 

classified into a row.  

 

4.4 Orchard Row Detection using Multi-objective Depth-First 

Search 

The row finding problem can be simplified to searching a directed 

graph where the nodes are tree objects, and the edges are the 

Euclidean distances between the nodes. Row detection, on this 

directed graph, can be completed by finding disjoint subgraph 

structures that represent tree rows. The challenging disjoint 

subgraphs are found by elongating confident rows (overlapping 

rows that are in a straight line) to capture the curved and uncertain 

straight rows. My approach uses a straight row detection algorithm 

to identify the “confident rows” and then uses a Multi-objective 

algorithm to extend these confident rows to identify the difficult 

curved row segments.4.4.1 Initial Straight Row Detection Algorithm 

The reason for implementing an initial algorithm is to reduce the 

workload on the main algorithm. Rather than letting the main 

algorithm try to identify straight and curved rows simultaneously, 

the dedicated straight-line algorithm will create a better platform for 

the main algorithm to start from. The initial algorithm would reduce 

the number of nodes the main algorithm needs to process drastically 

and will essentially reduce the total time of execution.  

The initial algorithm is a Particle Swarm Optimization algorithm to 

identify straight lines that run parallel to a few object centroids. This 

PSO’s fitness function will capture the number of nodes on a given 

line in the search space (with some leeway so that nodes can be near 

the line). The encoding of the particles will be the parameters that 

make up the line. A point will be deemed part of the line if it is near 

the candidate line, this means it is smaller than the threshold 

distance, 𝑫𝑳, from the line. This result comes from various 

mathematical operations that calculate the distance between a point 

and a line in the domain space. This algorithm will be a direct 

implementation of the PSO straight-line detection method covered 

in the related work section. 

This PSO is a great algorithm for the initial straight-line algorithm 

because of the quick execution time, suitable results and algorithm 

implementation ease. Due to this algorithm only being a pre-cursor 

to the main algorithm, it needs to be easy to implement and run 

quickly. Additionally, this algorithm produces multiple lines in a 

single execution while still being extremely robust to outliers.   

Figure 5: Shows the algorithm from a starting node expanding into a whole 

row. The circle indicates a trouble area where the threshold comparisons 

must be made to find the correct curve. 



There are various Python libraries for using multi-objective 

optimization with metaheuristics. The best frameworks currently 

are PyGMO, Platypus and DEAP. The PSO algorithm could be 

easily implemented via one of these frameworks. 

 

4.4.2 MO-DFS main detection algorithm 

The depth-first search algorithm is an intuitive method for 

discovering the best elongated rows. The initial search will use a 

greedy like search to identify the all potential nodes which to DFS 

into. While searching into these nodes, at each sub-node, there is a 

decision of which node to further search into. The DFS can 

determine which will be the best objects to add to a row.  

The main algorithm to capture straight and curved difficult lines is a 

multi-objective depth-first search (distance, angle, and height if 

available). In the case of height data being available, implementation 

of 3D objective functions will integrate this additional data into the 

algorithm. The algorithm will be discussed as if there is no 

additional height data available.  

In the orchard row detection problem, it can be argued that we do 

not know whether a smaller distance or smoother curvature between 

trees will be preferred during detection. Each orchard will differ by 

the objective functions that govern the coherent rows of trees. This 

means using a single-objective algorithm or a weighted combination 

of objectives may not produce a suitable output for every input. For 

example, one orchard may portray rows with constant curvature and 

missing trees whilst another may have distinct rows with erratic 

curvature. In this case, the first orchard will prefer the curvature 

objective whereas the second prefers the distance objective. Other 

orchards may prefer some combination of the two. For this reason, 

we would need to identify the Pareto optimal set. 

4.4.3 Objectives 

The two objectives are Euclidean distance and the average change 

in angle between all the adjacent nodes in a row. Both of these 

objectives will be minimized. Penalty terms will be added to account 

for uncertain classifications. 

4.4.4 Algorithm Explained: 

The initial straight row detection creates easily identifiable straight 

rows. Each row is a collection of various (blue) assigned tree objects 

where the row is represented as the red dotted line (see Figure 6). 

This algorithm is initiated from the two endpoints (black points in 

Figure 6) of the previously created straight rows and will propagate 

outwards to the potential candidates. These candidates will be 

selected using the K-Nearest Neighbours algorithm, using Euclidean 

distance. Each candidate node and sub-node are chosen if they are 

within the maximum distance threshold and maximum angle change 

threshold from the associated straight row (refer to the yellow lines 

to potential extension objects in Figure 6). When the node 

propagates, it will search from the source into each of the candidate 

nodes and it will recursively “dive into” each potential sub-node 

until a specified depth. While traversing the different sub-nodes, the 

algorithm will analyse the potential objective values of that entire 

candidate row (fixed row and all candidate sub-nodes). The 

algorithm will accept the extension if it is the best solution in the set 

of solutions produced (seen in Figure 7). The row will then identify 

the new endpoints and rerun the algorithm from these endpoints until 

some stopping criteria are met. The direct implementation will be 

modelled from the framework of the PIDMOA* using the specified 

objectives.  

PIDMOA* has been selected due to it being an excellent depth-first 

search algorithm which can take multiple objectives into account 

when searching for a solution. It makes use of iterative deepening, 

which utilizes the completeness of a breadth-first search algorithm  

There are currently no python libraries for easily implementing the 

PIDMOA* algorithm. Nevertheless, pseudocode is provided for the 

algorithm and there is an abundance of depth-first search academic 

literature. 

 

4.4 Modified ACO approach  

Ant Colony Optimisation (ACO) is a metaheuristic for solving hard 

combinatorial problems, especially those which can be reduced to 

finding optimal paths through graphs. This is ideal for orchard row 

detection as an orchard row is an optimal path in a graph, where the 

graph is the set of tree detections. ACO is loosely based on the 

biological behaviour of ants as they search for food in an 

environment. 

The modified ACO algorithm aims to improve on this idea by 

incorporating domain-specific heuristics into the general ACO 

algorithm. The fundamental difference between the proposed 

modified ACO and the general ACO algorithm is that a traversal of 

an ant in the construction phase gives a path that represents a 

candidate solution to the problem. In the modified ACO, an ant’s 

path represents a candidate row in the corresponding orchard. Stated 

differently, ACO algorithms produce many candidate solutions with 

every iteration of the algorithm but the modified version only 

obtains a single solution once the algorithm has completed. This is 

an important difference that motivates many of the design decisions 

of the modified ACO. 

The ants in the modified ACO will traverse the tree detections 

according to distance and angle metrics. These two metrics form the 

heuristics of the modified ACO algorithm. The idea behind this is 

that trees that are closer together and trees that follow the same line 

or curve, will generally be in the same row. 

The strength of the modified ACO algorithm comes from the phase 

known as local search, which takes the ants’ constructed solution 

and tries to find a better solution. In this phase, the algorithm 

employs domain-specific heuristics to improve on the candidate 

rows. These heuristics utilise the knowledge specific to how farmers 

plant orchard rows. This knowledge includes the fact that no two 

rows will intersect, rows will never have sharp angles or the 

assumption that intra-row distances will always be smaller than in 

inter-row distances. It cannot be overstated that this is the coup de 

grâce of the modified ACO algorithm. No prior works were able to 

Figure 6: MODPS algorithm 

Figure 7: MODPS algorithm assigning new nodes to a row 



utilise these heuristics as none of them have their basis in graph 

theory. 

A further aspect of local search worth mentioning is the mechanism 

of removing candidate rows. When the pheromone trail of a 

candidate row surpasses some threshold, this row will be removed 

from the search space and placed in a global set (which undergoes 

postprocessing at a later stage). This has a great biological 

correspondence when thought of in terms of how actual ants search 

their environment. The tree detections disappearing from the search 

space is equivalent to food being finished in the ants’ environment. 

The pheromone trails associated with the removed candidate row 

will disappear allowing the next best candidate row to be identified. 

There is a Python framework for ACO, known as ACO-Pants, but it 

is geared towards problems that can be reduced to an instance of the 

Travelling Salesman Problem (TSP). Given the modified nature of 

the proposed ACO algorithm, ACO-Pants is inapplicable and thus 

implementation for the modified ACO will have to be from the 

ground up.  

4.5 Evaluation 

Row detection analysis and evaluation will be a challenging part of 

the project. This is partly due to the lack of labelled data and partly 

due to the small amount of data. The row detections of our respective 

algorithms will be compared to hand-detected rows of the orchard 

inputs. The accuracy metric will be derived from the comparison 

between edge detections and true edges where each row comprises 

a series of edges. In the case of the MO approach, metrics associated 

with Pareto extent and Pareto spread will also be considered. Pareto 

spread or Pareto diversity shows solutions that uniformly cover the 

pareto optimal front.  

5. Ethical, Professional and Legal Issues 

This project and data do not involve any sensitive or private data that 

belongs or can represent humans in any way possible. Therefore, 

there are no ethical ramifications with regards to people. However, 

there may be with regards to the farming industry as this data is a 

real-life image of an orchard that is owned by a farmer. The data was 

given to us unconditionally for the sole purpose of research. This 

indicates there are no commercial/legal issues. 

6. Anticipated Outcomes 

Since all three proposed methods are novel approaches to detect 

orchard rows, our primary anticipated outcome will be a review of 

how applicable these methods are to this problem domain. Our 

methods take advantage of existing tree detections, using each 

detection as a node in a graph. Graph theory is an unexplored area 

when trying to detect orchard rows from aerial images and therefore 

our project will not contain comparative results with previous works.  

6.1 Expected Impact 

We aim to introduce a new paradigm in the area of aerial farm 

management. Previous works utilise image processing as the basis 

of their row detector. We use tree detections, in the form of 

polygons, as the basis of our methods. This new approach may yield 

accuracy levels that exceed anything that was done before. The 

recent rise in the fidelity of object detection allows us to explore this 

space.  

6.2 Key success factors 

• Successful understanding and implementation of our novel 

approaches to this problem domain. 

• In the case of computationally expensive methods, finishing 

enough experiments in time to draw reliable conclusions. 

• Extensive testing and analysis to show the feasibility of the 

relevant approaches in successfully achieving accurate 

orchard row detection. 

7. Project Plan 

This section will cover a detailed plan on how we will execute the 

project. 

7.1 Risks 

The potential risks associated with this proposed project have been 

highlighted in the risk matrix. Each risk has been ranked on its 

probability of occurring and the impact should the risk occur. 

Additionally, each risk has been considered in terms of its associated 

consequence and mitigation. 

See appendix for Risk Matrix. 

7.2 Timeline 

The project starts on the 30th of March and concludes on the 19th of 

October. Due to the COVID-19 pandemic, dates are subject to 

change. 

7.3 Resources required 

The following resources are needed for the completion of this 

project: 

• Python 3 - high-level interpreted language for developing 

the row finding application 

• QGIS - an open-source desktop application for viewing of 

the geospatial data 

Python Libraries: 

o Fiona - for reading and writing georeferenced geometry 

o Rasterio - for manipulating georeferenced imagery 

o GDAL - for manipulating geospatial raster data 

o Shapely - for manipulating geometry 

o Numpy - for handling multi-dimensional data 

7.4 Deliverables 

The major deliverables for the project include: 

• Literature survey due 

• Project proposal due, including project plan 

• Initial software feasibility demonstration 

• Project paper final submission 

• Project code final submission 

• Final project demonstration 

• Poster due 

• Web page 

 

7.5 Milestones 

The major milestones for the project include: 

• Project allocation 

• Literature survey draft due 

• Project Proposal draft due 

• Review of staff feedback on proposals 

• Revised proposal finalized and uploaded to Vula 

• Develop software evaluation scripts 

• Final code refactoring 

• Final complete draft of paper 

 

7.6 Work allocation 

The project work will be split among the team members in the 

following ways: 

• Ryan and Tim will develop the pre-processing framework.  

• All members will assist with the various written artefacts 

that are developed throughout the project lifecycle.  

• All members will produce a row finding algorithm for 

straight and curved rows which will concurrently identify 

missing patches trees. 



• Leonard will implement the augmented polynomial fitting 

method. 

• Ryan will implement the multi-objective depth-first 

search method.  

• Tim will implement the modified Ant Colony 

Optimisation method.  

• Leonard will hand-labelled the unlabelled dataset 

provided by Aerobotics 
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Appendix 

Architecture Diagram 

 

 

 

 

 

 

 

Risk Matrix 

Risk Condition   Probability Impact Consequence Mitigation 

Team members dropping out of the 

project 

Low Low The project workload has been well 

distributed; therefore, no major pitfalls 

will occur. 

The remaining workload will 

be distributed among the 

remaining team members. 

Selected algorithm implementation 

too complex 

Med Med We would not be able to identify if the 

algorithm would solve the problem. 

Termination or Delay of the project may 

follow. 

We would implement our 

backup algorithms or try to 

simplify the complex 

algorithm. 

Aerobotics retracting their 

unlabelled data 

Low Med The true accuracy of our algorithms 

cannot be tested. We may have 

insufficient testing data. 

Synthetic datasets can be 

produced to replicate what was 

previously seen in the orchard 

data. 

Infeasible execution time of 

algorithms 

Med High The project timeline will have to be 

adjusted. 

Use GPU enabled systems to 

speed up the execution time. 

Failure to meet the final project 

deadline 

Low High This will result in failure in this module. Try to reschedule dates with 

our supervisor to allow for the 

completion of the project. 

Selected algorithms are unable to 

capture underlying patterns 

Med High The algorithms will receive bad 

accuracy scores. 

Implement our alternative 

back-up algorithms. 

Trees in orchard data are not planted 

in any structured manner and do not 

fulfil underlying assumptions 

Low High The algorithms will not be able to 

capture any underlying patterns and will 

receive an unfavourable accuracy 

Request for more structured 

data from Aerobotics or try to 

implement new algorithms. 

 

 

 

 

 

 

 

 

 

 



 

 

Gantt chart 

 

 


