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ABSTRACT 

The ever-growing human population is rapidly increasing the 

demand for food, placing the agricultural industry under immense 

pressure. In order to meet the projected demands of 2050, 

agricultural production will need to rise by 70%. This can be 

obtained through better crop management and increased 

production yields which may be provided by precision agriculture. 

The important role of precision agriculture in modern-day farming 

is explored further in the introduction. Automatically detecting 

rows of trees or crops allows the farmer to quickly establish where 

there are issues with the yield and fertility. The problem is to 

associate detected trees to individual rows in an orchard which 

contains an internal structure of trees planted in coherent rows. 

Secondly, the problem is to identify patches in the orchard that 

may contain missing trees. This will be aided by the assumption 

that the spacing between trees is smaller than the spacing between 

rows. The problem is remarkably similar to crop row detection 

with no a priori assumptions, but without using the source image 

as an input to the solution mechanism. This can be simplified to a 

graph problem where the nodes are tree objects, and the edges are 

the distances between them. Thereafter, optimization techniques 

are used to identify disjoint graphs that represent tree rows. We 

start by researching the fields which could provide a conceptual 

framework to this optimization problem. The industry standard 

pathfinding algorithms, for two and three dimensions, were 

analysed to try to identify any candidate solutions to the tree row 

detection problem. Next, the state-of-the-art multi-objective 

genetic algorithms were studied, in order to constrain the meta-

heuristic search to this problem domain. Lastly, we examine 

swarm algorithms with good convergent capabilities to the global 

optimum for multi-objective problems. The two competing 

algorithms for the initial straight row detections are the geometric 

model-fitting algorithm and the particle swarm optimization 

algorithm as they both have extremely fast execution times with 

great accuracy. Because of the flexibility of objective functions 

and the speed of execution, the best performing algorithms for 

straight and curved crop row detection are the multi-objective 

genetic algorithms.  
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1 Introduction 

The demand for the agricultural industry to provide crops is 

exponentially increasing due to the rapid increase in the human 

population. The agricultural production will need to grow by 70% 

to meet the projected demands in 2050. Unfortunately, there is 

limited space for agriculture expansion as the majority of land 

available is currently occupied or unavailable. Consequently, the 

increase in production needed to fulfil the demand must come 

from a higher crop yield on the currently occupied land.[1] 

Annually, the loss of crops due to diseases and pests can reach 

40% of the global crop yields and this is expected to increase in 

the years ahead.[2] The agricultural industry must deploy methods 

that maximize farm profitability, minimize crop loss and reduce 

their environmental impact in order to meet demands[3]. A 

solution to these challenges is precision agriculture. Precision 

agriculture (PA) is a modern-day concept that has recently surged 

in the farming industry due to the labour shortage coupled with 

the economic pressures on farmers. Precision agriculture describes 

an agricultural system that benefits from a low input and high-

efficiency sustainable system. It is an accumulation of the best 

practices for cost reduction, increasing crop yield, and the 

optimization of system input through information technology. The 

system uses cheaper emerging technologies, including geographic 

information system(GIS), Global Positioning System(GPS), cheap 

and high-resolution optical equipment, automated remote sensing 

equipment, and advanced data processing algorithms.[4] Precision 

agriculture has a general practice method deployed to guarantee 

better crop yield results. Unmanned Aerial Vehicles (UAV) are 

low altitude remote sensing systems that provide high-resolution 

multidimensional images with GPS coordinates for ground 

analysis. Unmanned Aerial Vehicles are the new standard for 

surveying a large landmass and are essential in the precision 

agriculture workspace. With the mass scale of modern farming, it 

is not uncommon to have many patches where trees are unable to 

grow or have died out. To ensure the farmers have the best 

possible understanding of their orchards, this project provides a 

new cost-effective method to fix these agricultural issues 

promptly. Through the mass surveillance of orchards, the 

identification of areas where trees need to be replaced becomes 
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easier. Automatically detecting rows of trees or crops allow the 

farmer to quickly establish where there are issues with the yield 

and fertility. 

 

The images provided for the problem are taken from UAV (refer 

to Figure 1a). This problem can be simplified to a directed graph 

where the nodes are tree objects, and the edges are the Euclidean 

distances between the nodes. The nodes cannot be put into a 

classic 2D grid as they are asymmetrically scattered in the domain 

space. There is no assumption of regular inter-row distances, a 

predefined number of rows or the general orientation of the trees 

in the orchard. There is a mix of straight and curved crop rows 

present that adds another layer of complexity (refer to Figure 1a). 

The UAV image can be used to generate a Digital Elevation Map 

(DEM), from which contour lines and other height information for 

both the ground and trees or crops can be extracted. 

Unfortunately, the DEM may not be present for each orchard 

image and height may thus not be available as an additional input 

channel. An object detector is provided to identify trees with 

confidence estimations. These trees are represented as polygon 

objects (refer to Figure 1b) with a confidence value, between zero 

and one, which may be used in the solution mechanism. The 

individual trees are to be linked to each other to form well-

structured rows which are referred to as disjoint graphs. The 

disjoint graphs are created using optimization techniques, namely, 

pathfinding, combinatorial optimization and/or graph methods. 

Once the disjoint graphs have been formed, a second algorithm 

needs to identify potential missing trees that would fill numerous 

spaces to form potentially longer rows. The second algorithm is 

strongly related to the row finding algorithm so the literature 

review is centred around the row finding algorithm. The two 

outputs of this project are the disjoint graphs which represent the 

rows of trees and where the potentially missing trees are. 

 

  

 
Figure 1a: source image from UAV 

 

 
Figure 1b: classified tree objects (pink) 

 

2 Background 

In the context of this work, optimization seeks to maximize or 

minimize some kind of objective function which encodes 

information about the problem. The two optimization techniques 

used in the review are pathfinding and evolutionary computing. 

Finding the shortest path between a source and a destination node 

is called pathfinding. There are various algorithms to ensure that 

the minimal trajectory between two nodes is obtained while doing 

so in an efficient and fast manner.[5] The two classic pathfinding 

algorithms are Dijkstra[6] and A*[7]. These algorithms work with 

graphs that have either weighted edges or weighted nodes. After 

extracting the information of tree positions from the UAV images, 

pathfinding algorithms may be the solution for finding rows. This 

can be applied to the row finding problem as the shortest possible 

routes traversing several nodes are very likely to be tree rows and 

this could be a starting point for the algorithm. Evolutionary 

Algorithms are meta-heuristic search algorithms that search the 

solution domain independently of problem-specific details. The 

evolutionary algorithms investigated are Genetic Algorithms, Ant 

Colony Optimization and Particle Swarm Optimization. Genetic 

Algorithms (GA) are based on the principles of Darwinian 

evolution where possible solutions are called chromosomes. GA’s 

work with a population of chromosomes and a fitness function. 

Through various iterations, the population undergoes selection, 

crossover, and mutation to reach optimal solutions.[8] Ant Colony 

Optimization (ACO) is a Meta-heuristic algorithm that is based on 

the swarm intelligence found in nature. ACO deploys agents 

(ants) to find the shortest path between two nodes on a graph 

using pheromone trails left by the agents. Particle swarm 

optimization (PSO) algorithm is a stochastic optimization method 

based on the simulating the movement organisms in nature such 

as a school of fish and flocks of birds[9]. The Hough Transform 

(HT) is used to compare several results from academic methods 

covered in the literature review section. The Hough Transform 
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was initially proposed by Hough (1962) and is an algorithm that is 

based on computing accumulations of counts corresponding to 

crop rows.[10]. 

 

3 Literature Review 

This literature review is about understanding all the prior 

academic work, related knowledge, and similar subfields of the 

project. The three fields that are review are pathfinding 

techniques, evolutionary algorithms, and image segmentation. 

Crop row detection can be linked to the section on finding tree 

rows section.  

3.1 Pathfinding in two dimensions 

The method of clustering data points based on geometric 

proximity to models (lines) is called Geometric model fitting. Past 

methods usually treat model parameter estimation and inlier 

classification as isolated subproblems, but a new method 

combines these two in the same problem space. A method 

proposed by Isack and Boykov (2012) performs multi-model 

fitting that balances geometric errors and regularity of inlier 

clustered data points based on global optimization. This method is 

called PEaRL. PEaRL finds models that explain the data points 

based on sparsity priors and spatial regularities. In practice, 

PEaRL can be shown to converge to acceptable minimum energy 

that allows for a small number of well-selected models to be 

chosen on a dataset. Using an original energy approach, it can be 

shown to outperform the previous state-of-the-art geometric 

model-fitting algorithm like RANSAC (Random Sample 

Consensus). This method does not need to know the number of 

models a priori to execution like Multi-RANSAC. The models 

were tested on randomly generated synthetic datasets, which vary 

in uniformity and amount of noise present and compared their 

estimation error concerning parameters to the ground truth.[11] 

Ferguson and Stentz (2006) proposed an interpolated-based path 

planning algorithm, called Field D*, that works with uniform and 

non-uniform sets of grids. This any-angle method calculates 

lower-cost paths than other path planning algorithms because 

transitions are allowed between two points on adjacent grid cell 

edges, instead of using only grid corners or cell centres to 

transverse. Field D* is based on D* Lite (an algorithm based on 

dynamic A*) and was created to improve upon the paths created 

and the memory used during execution while updating the graph 

in real-time. Field D* has capabilities which allow it to 

dynamically change its path when the environment changes. The 

results compare these two algorithms on the time to produce a 

path and the length of the path. On average, the Field D* 

algorithm produced shorter paths 96% of the time but took 8% 

longer to compute the paths. These results show that at the 

expense of extra time a better path can be found.[12] Xu and co-

workers (2013) proposed a heuristic search pathfinding algorithm 

that can identify any-angle paths with fewer turns on a grid map, 

called Link*. Link* is the combination of three algorithms, 

namely, Basic Link*, Enhanced Link*, and Weighted Link*. 

Link* is modelled from the Theta* any-angle path planning 

framework that is based on the A* algorithm.[13] Link* iterates 

through the nodes, checking if the neighbouring nodes are visible 

from the current node and then makes a decision based on the 

estimated cost to the destination node. Basic Link* is the fast and 

the simplest variation. Enhanced Link* establishes shorter paths 

and improves the path quality of Basic Link*. Weighted Link* 

balances the vertex expansions and the number of turns made 

from the previous two. Results compared the execution time, the 

number of turns, and the path length to Theta* and A*. A* has 

more turns compared to all the others due to its rigid nature but 

performed quicker execution times than all the Link* variants. 

Link* found paths that had less than half of the turns at the cost of 

no more than 122% of the path length of those found by Theta* 

on random maps.[14]  

3.2 Pathfinding in three dimensions 

An improved A* algorithm for 3D pathfinding was proposed by 

Niu and Zhuo (2008) that uses the same core principle of a 

heuristic search method to find the optimal routes between and 

source and destination node. The optimal path is described using a 

culmination of the moving cost from the source node to the 

current node, and the estimated moving cost from the current grid 

layout to the destination node.[15] It builds on the industry-

standard A* algorithm[7], by increasing the number of moving 

styles that the algorithm can make at each point and using regions 

to allow for parallelism within the new algorithm. Regions contain 

cells that are the 3D basic units in this pathfinding algorithm. The 

use of regions allows for less storage space as each region runs an 

independent A* algorithm that each uses less storage. The results 

compared the normal A* method and the newly proposed method 

on the same problem set with three metrics. The metrics are the 

difference in execution time, CPU usage, and storage space used. 

The new method had better storage use, speed of execution and is 

more flexible with the use of the Cell structure.[16] Comba and 

co-workers (2018) proposed an advanced, unsupervised algorithm 

for vine-rows feature evaluation and vineyard detection using 3D 

point-cloud mappings that are created from UAV multispectral 

imagery. The method begins an evaluation of features at each 

point in the cloud, using a small local radius of 5m, by using the 

local terrain surface and height evaluation. The by-product of the 

first step is the orientation parameter (direction of rows) for each 

local circle. The next is a scoring procedure that uses these 

evaluations to generate a likelihood map according to height, 

orientation, and local circle. The last step is the detection of 

vineyard areas using a simple binary threshold method that 

determines if it is a vineyard row. This threshold is calculated 

using the mean, autocorrelation, and normalized frequency 

distributions from each of the local circles. A by-product of this 

step is inter-row widths. This algorithm has been proven to be 

effective even in the case of noise, curved row, steep orchard 

gradients, and missing plants. The results obtained, on average, 

were above 90% for good detections with a low misdetection rate 

and over-detection because of small service paths parallel to vine 

rows (services rows). The results were obtained from four 

different instances of the same piece of land, roughly a month 
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apart. The results were not compared to any previous row finding 

algorithms which may be a potential downfall of this method. 

This algorithm is overly complex, but the robustness for 

curvilinear rows and local circle evaluation techniques are 

fascinating and we would like to try to implement something 

similar.[17] 

3.3 Genetic Algorithms 

An improvement on the previous nondominated sorting genetic 

algorithm (NSGA) was proposed by Deb and co-workers (2002) 

to address the shortcomings, called NSGA-II. The NSGA-II 

algorithm finds multiple Pareto Optimal solutions in just a single 

run due to its diverse set of solutions. The algorithm is sped up by 

a faster-nondominated sorting procedure, a fast-crowded distance 

estimation process that then uses a crowded comparison operator 

for solution selection. The algorithm is tested against the Pareto-

archived evolution strategy (PAES) and strength Pareto EA 

(SPEA) in terms of how close they converge to the true Pareto-

optimal set. The diversity of solutions is also compared in the 

results. The NSGA-II achieved better convergence than the other 

two algorithms on highly constrained and multi-objective 

problems while still having a diverse set of solutions. The runtime 

of NSGA-II is O(m*n*n) where m is the number of objectives and 

n is the population size.[18] Wei and Lui (2010) proposed a multi-

objective path planning genetic algorithm to minimize the 

distance of a path as well as the maximal curvature between 

points. The path primitive for waypoints are cubic splines that are 

piece-wise polynomial functions. The method ensured diversity 

by using the Island-based Parallel Genetic Algorithm (IPGA), as a 

path planning framework, which avoids premature convergence. 

The results compare paths from different structures between the 

proposed algorithm, Single Objective(distance) GA, and Multi-

objective GA. The proposed method successfully produces 

collision-free, well-constructed paths that reduce the curve 

between waypoints but still maintain a path of reasonable 

length.[19] Baron (1998) proposed the use of Genetic Algorithms 

for line extraction. This algorithm focuses on a two-dimensional 

space and it uses two free parameters which means it only extracts 

straight lines but is said to be easily extended by adding more free 

parameters to capture polynomial equations. It uses robust 

statistics, based on the breakdown point, to allow generalization 

for any geometric primitive. This algorithm has a breakdown 

point of about 95%, which means it can tolerate outliers up to a 

maximum of 95% in source data and still perform line extraction 

accurately. For comparison, the Least Squares statistical method 

has a 0% breakpoint point. Genetic algorithms allow for the 

search of a large domain and this property is used by a clever 

manipulation to map every possible line of the image space to a 

single point in the parameter space. This is done because the 

parameter space is bounded using a clever transformation of the 

line equation [20]. A single run of this method extracts multiple 

lines. The results show that it can produce results equivalent to the 

Hough Transformation. [21]  

 

3.4 Swarm Algorithms 

A modified Ant Colony Optimization algorithm was proposed by 

Sangeetha and co-workers (2019) to determine the optimal path, 

called the Modified Gain based Ant Colony Optimization 

(MGACO). MGACO uses satellite images from the International 

Society for Photogrammetry and Remote Sensing (ISPRS) as the 

input. These images are used to produce a thematic map, that is a 

map of the traversable areas, utilizing SegNet. SegNet 

semantically segments the input images through a deep 

convolution encoder-decoder architecture to produce a thematic 

map. The MGACO algorithm is then run on the thematic map to 

produce a path. The path is altered using the Bezeir spline 

approximation for a smoother path. The results are compared with 

the A* algorithm and Ant Colony Optimization. The MGACO 

algorithm outperforms these two in terms of the speed and the 

length of the optimal route produced. [22] Xu and Tie (2013) 

proposed a method for straight line detection based on the particle 

swarm optimization (PSO) algorithm. Each particle in this 

algorithm represents a straight line initialized between two edges 

points. The fitness function of the PSO algorithm is the number of 

edge points (nodes) that lie on the line for any instance of a 

particle. This method is compared to the HT and Random Hough 

Transformation (RHT) on simple and noisy images. The results 

show the method is equivalent to the HT and RHT but with a 

much lower computational time.[23] 

3.5 Image segmentation 

Zhang and co-workers (2018) proposed an automatic and robust 

crop row detection method for maize fields based on images 

acquired from a vision-based system. The vision-based system 

captures images from the front of a tractor. This method is 

intended for straight row detection with minimal angle changes 

and crop rows with heavy weed pressure. The three steps in the 

method are image segmentation, feature point extraction, and crop 

row detection. The crop row method is implemented by separating 

the input image into horizontal and vertical segments, thereafter, 

Floyds shortest path algorithm and a position clustering algorithm 

are applied to identify crop rows. The results obtained are 

comparing the proposed algorithm and Hough Transform on 

detection accuracy of angle and the line parameters of crop rows 

produced. The proposed algorithm slightly outperforms HT and 

produces more accurate lines in the presence of heavy weeds. The 

take away from this method is the crop row detection algorithm 

after the feature points have been extracted.[24] 

 

Currently, there is a plethora of academic literature for crop row 

detection using image segmentation. These methods use input 

images from various sources as input to their solution mechanism. 

The different techniques usually differ according to their detection 

principle, namely, Hough Transform[25-27], Linear 

Regression[28, 29], Horizontal strips[30, 31], blob analysis[30, 

32], stereo vision[33, 34], vanishing point[35, 36], and 

filtering[37, 38]. Unfortunately, all of the methods above solve the 

crop row problem while using an inequivalent input mechanism 

(ground-based imagery) or do not transform the source image into 



Review 

 

 

a graphing problem. Therefore, we do no analyse these methods 

further.  

4 Discussion 

The critical analysis table (Table 1) includes a 2D or 3D 

capability column because if the Digital Elevation Map is 

included in the problem instance, every (x; y) value has a 

corresponding z value which would enable us to use 3D 

pathfinding methods. The ratings are out of five, one being the 

worst and five being the best. 

Table 1: Critical Analysis Table 

Algorithm 2D/ 

3D 

Execution 

Time 

Straight/ 

Curved 

lines 

Algorithm 

Relevance 

Ratings 

PEaRL [11] 2D < 60 seconds Straight 3 

The Field D* 

Algorithm 

[12] 

2D < 4 seconds Any-angle 

straight 

lines 

3 

Link* [14] 2D < 3 seconds Any-angle 

straight 

lines 

3 

3D A* 

algorithm [16] 

3D < 1 second; 

Parallelizable 

Both 3 

Vineyard 

detection 

using 3D 

point-cloud 

[17] 

3D Not specified Both 3 

NSGA-II [18] 3D O(n²) Both 5 

Cubic Spline 

MOGA [19] 

2D Parallelizable Both 4 

Genetic 

Algorithm for 

Line 

Extraction 

[21] 

2D Parallelizable Straight 2 

MGACO [22] 2D < 1 second Both 3 

PSO [23] 2D < 1 second Straight 3 

Crop row 

detection for 

maize fields 

[24] 

2D O(n³) Straight 3 

 

The pathfinding algorithms previously presented are usually run 

on a uniform square grid where each node has a single (x, y) pair. 

However, the format of tree objects that we have does not meet 

the standard grid requirements. The row finding problem can be 

transformed by using the centroids of each object as a single node 

with an (x, y) value that can be plotted on a standard grid. After 

this transformation, all of the pathfinding algorithms can be used 

to solve the row finding problem. The Link*[14] and Field D*[12] 

algorithms are both any-angle path planning algorithms that work 

on a two-dimensional space. These algorithms are applicable to 

the tree row problem if the height data is not used. These 

algorithms produce adequate outputs and are considered for the 

solution. When the problem instance includes the height data, we 

can apply the 3D A*[16] algorithm. It enables the traditional A* 

algorithm to branch out in three dimensions while using Regions 

to allow parallelization. Using precise mathematics, PEaRL[11] 

has accurately identified straight lines. This algorithm does not 

require the number of lines to be classified a priori. It is robust in 

handling outliers however it does not work for curved lines. 

Fortunately, this makes it a good candidate for an initial 

algorithm. Similar to PEaRL, the crop row detection for 

maize[24] can detect straight lines with great accuracy in two 

dimensions. The disadvantage of the crop row detection for maize 

is that the time complexity is O(n³) which means it takes longer 

than PEaRL but obtains similar results. Therefore, we shall only 

consider PEaRL for straight-line detection. The point-cloud 

processing algorithm[17] is not usable directly, as it makes use of 

the source image of the data which is not allowed in the solution 

mechanism. However, we do believe that similar steps could be 

performed without the source image and valid results would still 

be obtained. The idea of using a smaller radius, with height data, 

to capture all the information in a given area should add 

inspiration to the tree row detection algorithm. We can, therefore, 

consider the whole algorithm unfeasible for tree row finding but 

we will take in this new isolated detection principle of using a 

small radius. The evolutionary algorithms we have reviewed have 

indicated that Genetic Algorithms have very good, feasible 

solutions. The NSGA-II[18] and cubic spline MOGA[19] are both 

multi-objective Genetic Algorithms that have excellent results. 

The NSGA-II is more general but if we apply it, we can use the 

same objective functions as the cubic spline MOGA. The results 

show that the minimax-curvature MOGA produces good paths 

with no sharp turns by ensuring a larger radius is used for turns. 

This is a candidate for the row finding algorithm as it allows more 

natural curves which may mimic the way curved tree rows follow 

the contour lines on a Digital Elevation Map. Using smoothed 

splines also protects against unnatural curves which could be 

triggered by noise from the uncertainty of the classified trees in a 

problem instance where there are many overlapping tree objects. 

We believe that the NSGA-II might be volatile with the transitions 

between nodes, and the cubic spline could smooth out the curves 

to fit the crop rows more naturally. These two algorithms can 

handle both curved and straight lines unlike the Genetic 

Algorithm for line extraction[21] method which can only handle 

straight lines. The genetic algorithm for line extraction extracts 

multiple lines from one execution which encourages the use of 

this algorithm as the initial straight-line algorithm. The swarm 

algorithms performed well for their respective objectives. The 

PSO[23] is a good candidate for the initial straight-line algorithm 

because of the quick execution time matched with suitable results 

for straight lines. The Genetic Algorithm for line extraction, 

PEaRL, or PSO could be used as an initial algorithm to identify 

the tree rows that are easily classifiable as a row. The Genetic 

Algorithm for line extraction and PEaRL work well with noisy 



Review 

 

 

 

data. This property is useful because of the uncertainty of the 

clustering of tree objects that arises in difficult problem examples. 

Based on the ratings of these three methods, we believe PEaRL or 

PSO is the best options to explore for the initial straight-line 

algorithm. The MGACO algorithm[22] has a competitive 

execution time and can be used to classify straight and curved 

lines. In addition, it uses a similar input to the row finding 

problem’s input, but the generation of the thematic map is using 

the source image. The input mechanism would have to be altered, 

but we still believe this is a good candidate solution for the row 

finding problem. 

 

5 Conclusions 

In this review, there has been a comprehensive amount of research 

conducted into the different methods of row detection. The 

problem is to associate detected trees to individual rows in an 

orchard which contains an internal structure of trees planted in 

coherent rows. Following this, to identify patches in those rows 

which contain missing trees. This problem can be reduced to a 

directed graph where each node is a tree and each edge is the 

distance between the trees. Row detection, on this directed graph, 

can be completed by finding disjoint subgraph structures that 

represent tree or crop rows. These subgraphs are found using 

various optimization procedures that are single or multi-objective. 

The main avenues investigated are pathfinding and evolutionary 

algorithms as they can be used for efficient multi-objective 

optimization. The literature review suggested that line detection 

could be used as an effective solution to tree row identification. 

We have covered algorithms that can conclusively identify 

straight rows of trees, but for heavily curved lines we are 

uncertain of the accuracy that can be achieved. We have 

concluded that using a dedicated straight-line algorithm in the 

initial stages to identify the straight rows benefits the main row 

detector as it provides a good starting point to try to classify the 

difficult tree rows. The best candidates for the straight-line initial 

algorithm are PEaRL and PSO. NSGA-II has announced itself an 

ideal algorithm for the main robust algorithm, but the cubic spline 

could rival it based the natural curve it produces. The next step is 

to try and integrate the knowledge from previous academic works 

into a single specialized tree row detection algorithm for curved 

and straight lines. 
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