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ABSTRACT 

The human population has grown rapidly in recent years, 

significantly increasing the need to optimize and safeguard food 

production and security. Subsequently, the agricultural industry is 

faced with the challenge of meeting the growing demand for food. 

To meet the projected food demands of 2050, agricultural 

production will need to rise by 70%. This work presents an 

automated approach to identify individual rows of trees which are 

planted coherently within an orchard, using images obtained from 

an unmanned aerial vehicle. Automatically detecting rows of trees 

or crops allows farmers to quickly establish where there are issues 

with yield and fertility. The proposed method introduced is a robust 

Multi-objective Depth First Search algorithm (MODFS) which can 

accommodate uncertain and curved rows. This row detection 

problem can be simplified to a graph theoretic problem which is 

remarkably like crop row detection. Thereafter, to solve the row 

identification problem, various optimization techniques are used to 

identify graph structures that represent rows made of trees. To build 

the MODFS algorithm, research was conducted on the industry-

standard pathfinding algorithms, state-of-the-art multi-objective 

evolutionary algorithms and finally image pixel analysis methods. 

The MODFS is statistically shown to be robust to straight orchard 

rows while showing promising results for the identification of 

curved rows. The MODFS can capture steadily curved orchards, but 

struggles to identify the underlying pattern of orchards with dense 

pockets of trees or sharp curves. This method is adaptable to multi-

orientated straight orchards and will produce robust rows even with 

multiple orientated substructures within the orchards. The 

competitive results of the algorithm in numerous cases confirm that 

it can identify orchard rows with an acceptable level of certainty. 

CCS CONCEPTS 
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KEYWORDS 
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1. Introduction 

The demand for the agricultural industry to provide sufficient crops 

is increasing exponentially due to the rapid growth in the human 

population. Unfortunately, the space for agricultural expansion is 

limited as the majority of land available is currently occupied or 

unavailable. Consequently, the increase in production needed to 

fulfil the demand must come from a higher crop yield on the 

currently occupied land [1]. Annually, the loss of crops due to 

diseases and pests can reach 40% of the global crop yields and this 

is expected to increase in the years ahead [2]. The agricultural 

industry must deploy methods that maximize farm profitability, 

minimize crop loss and reduce their environmental impact in order 

to meet demands [3]. A modern-day solution to these challenges is 

Precision agriculture (PA) which has recently surged in the farming 

industry due to the labour shortage coupled with the economic 

pressures on farmers. PA encourages an agricultural system that 

benefits from minimal input effort but still maintains a highly 

efficient sustainable system. Unmanned Aerial Vehicles (UAV) are 

the new standard for surveying a large landmass and are essential in 

the precision agriculture workspace. With the mass scale of modern 

farming, it is not uncommon to have numerous patches where trees 

are unable to grow or have died out. To ensure the farmers have the 

best possible understanding of their orchards, this project provides a 

new cost-effective method to fix these agricultural issues promptly. 

Through the mass surveillance of orchards, the identification of 

areas where trees need to be replaced becomes easier. Automatically 

detecting rows of trees or crops allow the farmer to quickly establish 

where there are issues with regards to yield and fertility. 

The proposed, two-step algorithm that is implemented is named the 

Multi-objective Depth First Search (MODFS). This proposed 

solution will identify orchard rows by performing a graph search on 

the possible combinations of rows which are manufactured from 

available tree nodes. The first phase comprises of building confident 

short rows. The second phase extends these short rows by using a 

depth first search to identify good candidate rows to propagate into 

and continuously searches for new potential rows. 

The main goal of this work is to identify underlying tree row 

structures in an orchard given the data is obtained from an aerial 

drone. The expected output is a collection of predicted rows made 

up of the given tree objects in each orchard. In current literature, 

crop row detection has focused on identifying rows from pixel data, 

whereas the objective of this work is to find rows from a set of 

points, with each tree centre representing a point. Due to this, not 
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Figure 1: An example of the input data of a curved orchard and the identified row. The first image is the raw aerial image of the orchard. The middle 

image contains the tree polygon objects. The right image shows an orchard row in yellow. 



much research has been conducted within this niche. This leaves a 

large amount of room to work with and produce novel solutions. 

Various pathfinding solutions only work with a single predefined 

start node which, for the proposed solution, it would need to be 

expanded upon to have a set of multiple possible start and end nodes. 

When identifying the rows, two main issues arise which increase the 

complexity of the problem. The first being that the orchard rows are 

planted in a combination of curved and straight-lines, with curved 

rows being particularly difficult to identify. The second problem 

being that the abundance of poorly classified trees leads to variations 

in tree size and positioning across the orchard.  

The MODFS algorithm aims to produce robust predictions while 

accounting for curved rows and poorly classified tree objects. The 

accuracy of the approach will be measured using Precision and 

Recall [4]. An auxiliary aim is to produce practical orchard rows 

with respect to the three previously mentioned accuracy metrics. 

These aims will ultimately conclude whether the use of a MODFS 

algorithm be can be implemented in the agricultural industry in their 

pursuit of a sustainable farming ecosystem. 

This report contains 5 sections. Section 2 covers the basic domain 

knowledge for the MODFS and provides an overview of the 

previous and related work. In Sections 3, a detailed description of 

the proposed method, evaluation metrics and project components are 

explained. In Section 4, an in-depth analysis of the results is 

produced and reasons for these results are discussed. In Section 5, 

the final conclusions are provided and possible extensions for future 

work are discussed. 

2. Background and Related Work 

The goal for this multi-objective optimisation of orchard rows is to 

minimize two objective functions that relate to the Euclidean 

distance and average change in angle within a row. This translates 

to identifying the collection of non-dominated solutions on the 

Pareto Front [5]. In Figure 4, this would be the identification of X1 

and X2 on the Pareto front – where these represent orchard rows 

which are non-dominated solutions.  

 

 

A potential solution to the orchard problem is pathfinding 

algorithms, which find the shortest path between a source and a 

destination node This shortest route could represent a row. The two 

classic pathfinding algorithms are Dijkstra [6] and A* [7]. These 

algorithms work with graphs that have either weighted edges or 

weighted nodes. Another possible solution is the class of 

evolutionary algorithms which are meta-heuristic search algorithms 

[8] that search the solution domain independently of problem-

specific details and do so very quickly. In addition, crop row 

detection using image pixel date could be a potential solution. 

The following related work section covers techniques that solve 

combinatorial optimisation problems. The three main algorithms 

reviewed are pathfinding techniques, multi-objective evolutionary 

algorithms, and image analysis methods for crop row detection. 

2.1 Pathfinding 

Ferguson and Stentz proposed an interpolated-based path planning 

algorithm, called Field D* [9], that works with uniform and non-

uniform sets of grids. This any-angle method calculates lower-cost 

paths than other path planning algorithms because transitions are 

allowed between two points on adjacent grid cell edges, instead of 

using only grid corners or cell centres to transverse. Another method 

which produces paths with fewer turns was proposed by Xu and co-

workers, called Link* [10]. Link* is a heuristic search pathfinding 

algorithm that can identify any-angle paths with fewer turns on a 

grid map. Both these methods have some the advantages of an A* 

algorithm but try to enforce smoother paths between goal states. In 

terms of the row identification problem, both of these algorithms 

would encourage smooth orchard rows to be identified since they 

both possess the any-angle path property. When searching between 

tree nodes for a potential path, any ridged rows would not be correct 

since the rows wouldn’t follow the natural contours of the orchard. 

This is a requirement as the proposed algorithm needs to capture 

both straight and curved rows while minimising the change in angle 

objective function. Both methods require that each orchard is 

converted to a grid to allow for transversal to identify orchard rows. 

One issue with changing the orchard row problem into a large grid 

is that a normal grid would consume too much memory and is 

infeasible. 

Coego and co-workers presented an improvement of the IDMOA* 

algorithm which searches for non-dominated solutions and 

simultaneously accounts for all objectives, called PIDMOA [11] 

(Pareto Front Iterative Deepening Multi-Objective A*). Each 

iteration uses a new set of threshold non-dominated vectors for the 

search and this method uses iterative deepening. The idea of using a 

threshold to select solutions which relax every iteration seems like 

an intuitive idea. The changing threshold will allow for more 

confident rows to be identified first, before developing the uncertain 

rows on top of the pre-existing confident rows. 

Comba and co-workers [12] proposed an unsupervised algorithm for 

vineyard detection using 3D point-cloud mappings that are created 

from UAV imagery. The method begins an evaluation of features at 

each point in the cloud, using a small local radius of 5m, by using 

the local terrain surface and height evaluation. This algorithm shows 

robustness for curvilinear rows which is a key characteristic needed 

for our algorithm. The local circle evaluation techniques mentioned 

above is an excellent idea to capture local information within an 

orchard without being dependent on a global orchard row direction. 

The local circle evaluation may boost the chance for the 

identification of difficult curved rows while still permitting straight 

rows to be captured within the same orchard. 

2.2 Evolutionary algorithms 

Baron [13] proposed the use of Genetic Algorithms for line 

extraction. This algorithm uses two free parameters to allow for the 

extraction of straight-lines in the 2D plane. This result could be used 

to identify straight-lines in tree orchard examples with many 

overlapping polygon objects due to robustness to outliers. Xu and 

Tie [14] proposed a method for straight-line detection based on the 

particle swarm optimization (PSO) algorithm. Each particle in this 

algorithm represents a straight-line initialized between two edges 

points. The fitness function of the PSO algorithm is the number of 

edge points (nodes) that lie on the line for any instance of a particle. 

The PSO and GA are both time-efficient methods which produce 

accurate results. These two algorithms could provide simple and 

accurate initial row detections which the MODFS could leverage off 

to produce accurate rows. 

2.3 Image Analysis 

Hough Transform (HT) methods, initially proposed by Hough [15], 

are industry-standard algorithms for finding shape primitives. 

Straight-line detection is the simplest case of these methods and is 

f1 represents the Euclidean 

distance between nodes. 

f2 represents the change in 

angle. 

X3 is a dominated solution 

 

Figure 2: Pareto Optimality 



based on computing accumulations of counts corresponding to 

pixels that lie in straight-lines. The potential of using the HT 

methods stems from the fact that the tree centroids could represent 

these points, and a straight-line extracted could indicate a row in the 

orchard. There are several academic papers which apply the HT 

methods to crop row problems with reasonable success [16-18]. 

Unfortunately, the HT is limited in that it can only detect crop rows 

which are planted in a straight-line. While various techniques like 

approximating curves with many small tiles which contain straight-

lines [19] and predefining a shape to try and identify in the source 

image [20] do exist, the HT is not flexible enough to robustly handle 

straight and curved row detections within our problem. The idea of 

breaking curves up into smaller segments to classify as straight-lines 

initially seem like a good way to deal with difficult sharp curves 

within an orchard. This will enable many short rows to be merged 

together to form an integrated curve that can be improved up at a 

post-processing stage. This idea is what inspired the initial straight-

line component in the MODFS algorithm.  

There are several methods in the literature for crop row detection 

which focus on the pixels of an image and not a graph theoretic 

approach. These methods use input images from various sources as 

input to their solution mechanism. The techniques usually differ 

according to their detection principle, namely, Hough Transform, 

Linear Regression [21, 22], Horizontal strips [23, 24], blob analysis 

[23, 25], stereo vision [26, 27], vanishing point [28, 29], and filtering 

[30, 31]. Unfortunately, all of the above-mentioned methods solve 

the crop row detection problem while using an approach which 

requires the source images from non-aerial source images (ground-

based camera equipment), or do not transform the source image into 

a graphing problem to be analysed independently of the source 

image. Due to the previously mentioned reasons, these methods 

cannot be used to solve the orchard row identification problem.  

3.  Design and Implementation 

3.1 Dataset  

The data used in this work is unlabelled raw data which can be used, 

viewed and manipulated using QGIS1. Each orchard input represents 

information collected via an aerial image. The first file contains 

polygon shape detections, which represent the trees, this can be seen 

in the middle image in Figure 1. Additionally, each tree has an 

associated confidence value which indicates how certain the object 

detector is of the tree’s presence. The second file indicates the 

boundary of the orchard on which row detection is being performed. 

The third is a georeferenced image of the actual orchard which can 

be seen in left image in Figure 1. 

The orchards have a significant variation in row structures, tree 

structures, inter-row widths and number of trees. Since the smallest 

 
1 https://qgis.org/en/site/ 

orchard from the provided datasets has 2326 trees, a subset of the 

points has been extracted from three of the orchard instances to 

allow for faster training. The extracted orchards are selected to 

ensure certain edge cases are contained within the subsets. 

Additionally, three full orchard instances have been hand-labelled to 

contain ground-truth solutions. The ground-truth solutions are hand 

draw lines which are connected to the centroids of the trees which 

subjectively are the underlying real rows within the orchard. These 

ground-truth rows will enable accuracy testing to be performed on 

the predicted rows. Following this, the precision and recall can be 

extracted to enable a quantitative metric to test results. Both 

precision and recall are measures which indicate the similarity of the 

predicted solutions to ground-truth solutions. 

Table 1, in the appendix, shows all the metadata per orchard 

instance. Each orchard has a description, along with the number of 

trees, average tree confidence, standard deviation of tree confidence, 

average orientation in degrees, average and standard deviation of 

inter-tree distance, and orchard difficult. 

3.2 Data Structures 

The two main objects used throughout the MODFS implementations 

are the Tree and Row objects. The Tree object encapsulates the data 

for the individual trees. The Tree object variables indicate its 

position, ID, confidence, local orientation and whether it is part of a 

row. The Row object is made up of numerous Tree objects. The Tree 

objects keep track of the trees which have been added to the row, the 

average orientation of the row and the first and last tree within the 

row. Additionally, this object also keeps track of its unique row ID, 

and the current objective values. 

While implementing the MODFS algorithm, the current list of Row 

objects and Tree objects are always stored in arrays. These arrays 

hold the collections of objects which are individually retrieved when 

being used for calculations. Additionally, these lists may also act as 

stacks and queues but they are still just variants of arrays. The only 

time this storage mechanism is not used is within the DFS method. 

A collection of potential rows is stored within a dictionary. The key 

for each row is the ID of the last tree within the current row. The 

dictionary holds the Row object and the three objective values. This 

dictionary is then sorted according to the objective value and the best 

row is selected. Below is an example of how the trees are stored.  

{648:  {“Row”: 651,711,715,648,  “Angle”: 0.67, 

“Distance”: 0.33, “Weighted”: 0.45}} 

In the example above, the last tree ID of the row is 648. The ID’s of 

the trees which make up the row are 651,711,715,648, respectively. 

The Angle, Distance and Weighted objective function scores for this 

row are 0.67, 0.33 and 0.45 respectively. 

3.3 Objective Functions 

A weighted objective function linearly weights each objective so 

that a combined objective function can be optimized like a single 

objective function.  

Objective 

Function 

Equation 

Distance 
∑  √(𝐱𝑖−1 − 𝐱𝑖)𝟐 + (𝒚𝑖−1 − 𝐲𝑖)𝟐 

𝑵−𝟏

𝒊=𝟏

(𝑁 − 1) ∗ 2
 

 
Change in 

Angle ∑ 𝐃𝐢𝐟𝐟(𝛉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , 𝛉𝒊 )
𝑵−𝟏

𝒊=𝟏
∗ 𝛼

180
 

 

Where   𝛉𝒊 = 𝒂𝒓𝒄𝒕𝒂𝒏𝟐(
𝐲𝟐− 𝐲𝟏  

𝐱𝟐−𝐱𝟏 
) 

Distance Objective Function: N is the number of trees in a row.  

The Distance objective is divided by 2(N-1) to give rows which have 

Figure 3: Red dots indicating the centroids of the polygon tree objects. 



more trees a smaller score – this encourages longer row to be 

selected over shorter rows. 

Angle Objective Function: Diff calculates the angle difference 

between 𝛉𝑨𝒗𝒆𝒓𝒂𝒈𝒆 and 𝛉𝒊 - then scales that value to be between 0 and 

180 degrees. 𝛉𝑨𝒗𝒆𝒓𝒂𝒈𝒆 is the average change in the angle of all the 

trees with the current row. 𝛉𝒊 is the acute angle between two adjacent 

tree objects within the current row. 

The angle objective is multiplied by a penalty term 𝛼 to discourage 

rows that have any connections (between any two adjacent trees in 

a row) which result in an angle that is a very different orientation to 

the rest of the row. This will result in an increase of the score for 

rows with a bad connection and decreases the chances of these rows 

being selected by the MODFS algorithm. The two cases of alpha are: 

𝛼 = {
𝐃𝐢𝐟𝐟(𝛉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , 𝛉𝒊 ), >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1                               ,      ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

Which means when a connection angle is greater than the threshold, 

the numerator is squared. Otherwise, no penalty term is added.  

When calculating the weighted objective function, the angle and 

distance metric are individually scaled between zero and 1 so that 

each value has an equal input into the weighted objective function.  

3.4 Weighted Multi-objective DFS 

The weighted a priori objective function will be implemented over 

a posterior multi-objective function owing to the clever assumptions 

that can be deduced from the orchard instances metadata. To be able 

to identify orchard rows for different orchards, a posterior multi-

objective method would be a good unbiased selector since no 

objectives are favoured. However, when a priori assumptions are 

presumed, a weighted objective function would produce accurate 

predictions with less computational time and space requirements. 

Due to this, a priori weighted objective function is implemented 

over a posterior multi-objective approach. This information, which 

is used to make a priori assumption, includes the mean and the 

variation of the inter-tree distance, the number of trees within an 

orchard, and the variation of the angles within an orchard. 

Unfortunately, if the incorrect objective weights are assigned, poor 

predictive results will follow. A consequence of using a weighted 

objective function is the requirement of scaled objective functions, 

otherwise, the weighted coefficient will lead to a biased sampling 

from the solutions on the Pareto Front [5]. 

The standard deviation of angles and inter-tree distance metrics are 

the biggest factors in determining the weighting. This assumption 

leverages the fact that orchards with a smaller variation of angles are 

more likely to be straight, uniform orchards which have a general 

orientation – meaning that the angle orientation objective function 

should be favoured. If a large standard deviation occurs, the orchard 

is not uniform and probably has curved rows or is densely saturated. 

The mean inter-tree distance and standard deviation of these 

distances also offer information about the orchard. The coefficient 

of variation (CV) is calculated to measure the dispersion of data 

around the mean[32]. A large CV represents trees which are 

erratically dispersed around the orchard – this suggests that the 

orchard is either curved or has densely distributed trees. The non-

uniform orchard is best handled with a larger angle threshold and a 

smaller initial tree step size. 

3.5 Constraints 

The angle objective function proved to be challenging to govern 

since normal arithmetic can’t be used to calculate angle mean and 

variation. The method identified to calculate the mean and standard 

deviation make use of conversions to the unit circle and polar 

coordinates. Following this result, all angles were constrained to lie 

within the first and second quadrants (0-180 degrees). This 

constraint still allows for bi-directional interpretation of row 

orientation. However, the main drawback of this decision is that 

short new connections occur on a predicted row when an edge is 

made in the opposite direction to the trajectory of the row. This leads 

to some rows having the last connection which goes in the opposite 

direction to its trajectory. This occurs when checking the check 

values for the angle constraint before making a new connection. 

Since the angles are always converted to be within the first and 

second quadrant, a bi-directional row growth is allowed in both 

directions. This issue can be alleviated with a check of the angles 

within a row.   

Throughout the algorithm, new edges between trees are always 

checked and only built if they satisfy the angle constraint. The angle 

constraint states that the difference between two reference angles 

must be smaller than the angle threshold between the two check 

values. The first check value is always the angle between the 

selected tree and the potential neighbour tree. The second check 

value can either be a specific tree object’s local angle metric or the 

average angle of a row object. If the difference between the check 

values is less than the angle threshold, the new edge is created, 

otherwise, the edge is not deemed a good connection and it is 

skipped.  

Similar to the angle constraint, new edges are never created when 

the Euclidean distance between the two is greater than the global 

mean inter-tree distance. This prevents rows being created which 

may transverse over multiple pre-existing rows or simply edges that 

are too far apart. 

Angle Objective Function - Local and Global Angle Measure 

In a uniform orchard instance, the edges between trees which are 

similar in direction to the global orchard orientation are potential 

rows. However, a global angle can only be used with orchards 

which contain only straight, uniform orchard rows. In the case of 

an orchard with curved rows, the global angle will be a 

generalization of the entire orchard and will force the algorithm to 

incorrectly penalize the curved rows. In the agricultural industry, 

curved orchards are common and developing an algorithm which 

cannot compensate for this minor issue would be futile. The use of 

a local tree angle is preferred when deciding a trees best 

orientation. The local tree angle is a variable which can determine 

the orientation of a pocket of trees within an orchard containing 

straight and curved rows. The average angle between all of the tree 

objects within a small neighbourhood of the selected tree object is 

used to calculate the local angle. This assures that angle 

information pertains only to a small section of the orchard without 

being dependent on the general direction of the entire orchard. 

3.6 Software Implementation 

Python 3 was used to implement the MODFS algorithm. Python has 

proven to be a good choice with its easy development syntax, 

efficient list manipulation, as well as diverse and powerful built-in 

libraries which have made the development process easier. Other 

libraries used for this work include Matplotlib for graphing data, 

GDAL for manipulating geospatial raster data, Shapely for 

manipulating geometry objects, and NumPy for quick scientific 

calculations.  

An Object Orientated approach was used to ensure all the code is 

modular and can be updated easily in the future. Each main 

algorithm is developed as an individual method to allow for code 

reuse and good overall project structure. The code has been well 

documented and this will ensure it is maintainable to any alternative 

developers who would like to work on this project.  

3.7 Orchard detection algorithm  

The MODFS algorithm can be split up into two main components. 

Firstly, the straight-line detection algorithm implements a simple 



Nearest Neighbours search for points that are close together and 

forms short rows according to a simple angle constraint. The second 

component is the Multi-Objective Depth First Search which takes 

the rows from the previous component and expands these rows to 

produce longer rows. These components are explained in section 

3.7.2 and 3.7.3 respectively. 

3.7.1 File I/O and Tree Object Initialization 

For each orchard, the polygon shapes are extracted from the raw 

detection geoJSON file. These values are then converted to the 

correct coordinate reference system (CRS) using the pyproj library 

which is a coordinate transformation library. The centroids and 

confidence values of each of the polygon shapes are then used to 

initialize Tree objects which are stored in a global array of Tree 

objects. The local angle of each tree object is also calculated and 

stored within the objects.  

3.7.2 Straight-Line Algorithm 

The straight-line algorithm produces many short confident orchard 

rows. This algorithm optimises results according to a distance 

function only, with an added angle constraint. A subprocess of this 

algorithm is the file I/O and the initializing of the tree objects. 

A K Nearest Neighbours (KNN) method has been implemented 

since it is intuitive, easier to implement and more ground-up 

approach rather than implementing a random search PSO algorithm. 

The PSO algorithm would require more time to implement 

compared to the out-of-the-box logical KNN approach from the 

Scikit-learn package2. This KNN method allows for the tree centroid 

data to be fitted using Euclidean distance. This ensures a quick 

search of the local neighbourhood around a selected tree object for 

N trees. The returned tree centroids indicate the closest tree, as well 

as the distance between the two trees. This is done in O(N log(N)) 

time complexity with linear space requirements.  

The algorithm has 3 parameters which are Number of Rows to grow 

(N), Depth per row (D), and max angle (Theta). N is set to the 

number of trees in the orchard multiplied by 75%. This is to ensure 

a large proportion of tree objects are added to row objects but not 

forcing too many bad connections to be added. 

The output of the straight-line algorithm is then checked by a post-

process cleaning algorithm. This check runs through each edge made 

on each of the rows and flags edges that are not within the angle 

constraints of the local average angles of the neighbouring trees. The 

rows with drastically changing angle are then removed entirely from 

the orchard predicted rows. 

 

 

 
2 https://scikit-learn.org/stable/modules/neighbors.html 

3.7.3 Multi-objective Depth First Search Algorithm 

The initial straight row detection creates easily identifiable straight 

rows as can be seen in Figure 4. Each row is a collection of various 

assigned tree objects where the row is represented as the red dotted 

line. This algorithm is initiated from the two endpoints of the 

previously created straight rows and will propagate outwards to the 

potential candidate trees. These candidates will be selected using the 

K-Nearest Neighbours algorithm with Euclidean distance as its 

metric – this is equivalent to a Breadth First Search for finding the 

initial neighbouring nodes to search into. All candidate nodes and 

sub-nodes are chosen only if they are within the maximum distance 

threshold and maximum angle change threshold from the associated 

straight row. In Figure 4 on the left image, the yellow lines with 

arrows heads show potential extensions, while the blue line with an 

arrowhead indicates a row that did not meet the minimum 

constraints. When the node propagates, it will search from the source 

into each of the candidate neighbour nodes (green trees) and it will 

add each potential sub-node to the stack until a specified depth, D, 

is reached. D is a parameter that will be evaluated to find the optimal 

depth, but this will likely change depending on the orchard instance. 

While traversing the different sub-nodes, the algorithm will add the 

potential row (which is an extension of the original row with the sub-

node added as an additional tree) to a collection of the selected rows. 

Once the depth has been reached, the best row will be selected 

according to the lowest weighted objective value of all the rows 

which are in the solution set. This solution selection is shown in 

Figure 4 on the right image by the red dotted line. This new row will 

be added to the predicted orchard rows, and the base row which it 

was created from will be removed. This process will be repeated for 

a specified number of times to increase the number of rows. This 

Depth First Search algorithm is run on all the current rows in the 

orchard and will either keep the same row or just extend the base 

row to include more trees within the row. A priority queue is created 

using the rows, the queue is then sorted by the weighed objective in 

ascending order. The best rows are grown first to encourage 

Algorithm Straight-Line Detection 

1: procedure Straight Line Detection ( N, D, Theta)  
2:     Initialize Tree Objects 

3:     Initialize Solutions Array 

4:     for number of trees N do 

5:         Random_Tree = Select Random Tree 

6:         for depth of row do 

7:             Neighbours = Get KNN Neighbours of Random_Tree 
8:             for neighbour in Neighbours do 

9:                 Edge = connection between Random_Tree and neighbour 

10:                 if Edge meets constraints 
11:                     Make new row with Random_Tree and neighbour 

12:                     Random_Tree = neighbour 

13:                     Add New Row to Solutions 
14:                     Break 

15:             end 

16:         end 
17:     end 

18:     Return Solutions 

19: End 

Figure 4: Shows the MODFS Tree Selection on the left. The picture on the right shows the row expansion into the selected best row. Black nodes represent 

row endpoints. Blue and green nodes represent assigned and unassigned nodes respectively. The red dotted line represents an orchard row.  



elongating already confident rows but still allowing the other rows 

to expand. 

The remaining trees that haven’t been allocated to any rows are then 

stitched together using a stitching algorithm. Firstly, the algorithm 

makes some additional short rows between free trees that satisfy the 

angle and distance constraints. Secondly, it runs a row stitching 

algorithm that collects all the row endpoints (first and last trees 

within a row) from all the rows in the orchard and attempts to merge 

these points similarly to the straight-line algorithm. If two endpoints 

are selected to be stitched, those two rows will be compared to the 

potentially merged row. If the potential row is better than both rows, 

it will be added to the orchard and the other two rows will be 

discarded. If not, nothing will be changed. These two methods are 

run a number of times with relaxing constraints to ensure that the 

majority of the free points are allocated to rows if they are within the 

angle and distance thresholds. 

The algorithm has three parameters which are the Initial Row to 

initiate the DFS from (Row), Depth to search for rows (D), and Max 

Angle (Theta). After the MODFS method, a post-process method is 

applied similar to the method applied after the straight-line 

algorithm. 

Moving Window Feature 

An orientation-driven feature that is used throughout the MODFS 

algorithm is the row’s moving window angle. When previously 

checking if an additional tree should be added onto a pre-existing 

row – the angles between the tree and row’s endpoint tree is 

compared to the pre-existing row’s average angle. This check 

justifies whether the tree is aligned with the current average 

direction of the row. Unfortunately, this check will fail if a straight 

row starts to bend in any direction. To alleviate this issue, the pre-

existing rows average angle will only be calculated by the last 6 trees 

(parameter which can be changed) and not the entire row. This 

feature allows for rows to gradually curve without the being flagged 

due to its flexible nature. Increasing the window size will ensure 

only gentle curves will be accepted. Decreasing the window size 

allows for more erratic curves to be accepted by the MODFS. 

Confident Orchard Trees 

Each tree object has a confidence value between zero and one. This 

parameter indicates the level of confidence that the tree object 

actually exists at that location. When finding the initial straight-rows 

of the orchard, the confidence parameter was integrated into the 

search for rows. The unconfident trees which had low confidence 

values were not included with the subset of trees passed to the 

straight-line algorithm. The consequence is that fewer trees are 

available for selection, therefore, fewer row combinations are 

produced by the algorithm. However, more confidence rows are 

produced since they are formed from a higher quality batch of trees. 

The threshold for trees to be included to the subset is the mean minus 

one standard deviation of the confidence of that orchard. 

Parameter Tuning 

Parameter tuning was performed over several data sets and results 

were analysed per parameter against the orchard score. The most 

influential parameters that were tuned are:  

▪ K Nearest Neighbours Number: K closest trees 

o Curved and Dense orchards prefer smaller K sizes 

▪ Depth of trees for straight-line and MODFS algorithm 

o Curved and Dense orchards prefer smaller Depth 

▪ Weighted objective percentages 

o Straight uniform orchards prefer higher angle weighted 

objective functions 

▪ Average moving window size for row angle 

o Curved orchards preferred smaller moving window sizes 

Through the parameter tuning of the orchards, general parameters 

that suit all the orchard types are unidentifiable. The curved orchards 

had the most trouble with finding optimal parameters. The 

parameters which had the best general impact were implemented.  

3.8 Evaluation  

The main qualitative methodology of evaluation will be to compare 

the rows produced visually by the MODFS approach to the 

unlabelled version of the orchard rows. Each orchard solution will 

be judged in each category. These categories serve to show the 

different aspects of the algorithm and where it may fail.  

The qualitative score options are very good, good, bad, very bad or 

average. The categories are: 

• How well the overall row structure is captured 

• How robustly the perimeter trees are handled 

• Predicted Row Length to orchard data 

• Frequency of incorrect classifications 

• Frequency of missing classifications 

 

The three testing orchards, 32377, 36502, 36507, have been used to 

perform a comprehensive statistical analysis of the results due to 

the availability of hand-labelled ground-truth rows. The ground-

truth orchard can be found in the appendix. After each execution 

for these testing orchards, the predicted rows are accompanied by 

an accuracy and precision statistic. For both testing and normal 

orchards, an orchard score is produced as a metric for how accurate 

the algorithm worked on that particular orchard. The orchard score 

is a combination of the mean weighted objective function value 

and number of unassigned trees. The goal is to minimize the 

orchard score value as each of the parameters which combine to 

make it need to be minimized. 

4. Results and Discussion 

4.1 Straight-Line Algorithm 

In Figure 5, the small straight rows do an excellent job at capturing 

the overall orchards structure with a few exceptions. The exceptions 

are either incorrectly orientated orchard rows or unassigned trees. 

The unassigned trees which haven’t been allocated to any row were 

not selected by the straight-line algorithm since they were not within 

the constraints. These exceptions usually occur around the edges of 

the orchard where there aren’t many points to connect to. After the 

straight-line algorithm has been run, a few errors appear in the 

orchard rows which can be seen as the red lines in Figure 5.  

These incorrect rows have been identified by the post-process step 

and will be removed from the orchard. These rows are produced in 

less than 5% of all the edges which occur and are easily identifiable 

for uniform orchards.  

Algorithm Depth First Search 

20: procedure MODFS ( Row, D, Theta )  

21:     Initialize empty Stack 

22:     Solutions = Empty Dictionary 
23:     Add initial Row to Stack 

24:     While Stack not empty do 

25:          R = Stack.pop() 
26:         for neighbour in getNeighbours( R ) 

27:                 Temp_Row = add neighbour tree to row R 
28:                 if Temp_Row meets constraints 

29:                     Add Temp_Row to Solutions 

30:                     Add Temp_Row to Stack 
31:         end 

32:         If Iterations > Depth do 

33:             Break 

34:     end 

35:     Return Solutions 

36:  

37: End 



Figure 6 shows two cases where the straight-line algorithm does not 

work correctly on curved rows. In the yellow square, there are 

accurate curved short rows which the post-processing step removes. 

This occurs because the post-process stage only checks an individual 

edge at once without considering the entire row. In the blue square, 

there are short predicted rows which do not follow the correct 

orientation kept within the orchard. The rows occur because there is 

a dense pocket of unstructured trees which obscures the general 

orientation information in that area of the orchard. The straight-line 

algorithm cannot extract an accurate local angle metric. This issue 

requires the MODFS algorithm to robustly identify the correct rows 

according to both angle and distance objective functions.  

 

Figure 7 shows the output of the MODFS when it is run on the 

orchard 32377. The algorithm can be seen to partially capture the 

curved structure of the rows by breaking the arc up into smaller 

sections. On the left image in Figure 7, the gentle curve is captured 

accurately by a few line segments with the straight-line algorithm. 

In the right image, the sharp curves at the peak of the orchard have 

been somewhat replicated which shows an important idea behind the 

initial algorithm. Building on these results, the MODFS can now be 

introduced to integrate these line segments to produce long smooth 

rows. 

 

4.2 Multi-objective Depth First Search 

Figure 8 displays the final output of the MODFS algorithm. 

Notably, the majority of the predicted rows are impeccably 

orientated with no major angle inconsistencies and the rows span the 

length of the orchard. This is reiterated by a precision score of 73%. 

With the exception of some shorter rows and unassigned trees, the 

results show that the MODFS works exceptionally well on straight 

orchard rows. One minor issue which has arisen is the incoherent 

short row that is circled in red. This row goes against the general 

orientation of all the other rows. This issue arises with trees which 

are situated around the perimeter of the orchard – these trees have 

very few options to make a connection which leads to irrational 

connections. 

Figure 9 depicts three images of orchard 32377 after the MODFS 

algorithm has been executed. Orchard 32277 is a challenging 

orchard as it has a mix of very sharp curves, with long straight rows, 

and dense pockets of trees. The algorithm struggles to predict 

meaningful orchard rows. The top image shows that areas of the 

orchard are plagued by inconsistent row predictions. There appears 

to be a cluster of points which restricts the effect of the local angle 

for identifying the local orientation. The bottom left picture shows 

Figure 5: Straight-line algorithm applied to Orchard 36507. Green lines 
indicate the predicted short rows and red lines indicate rows that are 

removed by the post-processing method 

Figure 6: Straight-line algorithm applied to orchard 32377. Yellow and 

Blue square represent problem areas. 

Figure 7: Straight-line algorithm applied to orchard 323577. Green 

lines indicate the predicted short rows and red lines indicate rows that 

are removed by the post-processing method. 

Figure 8: MODFS predicted orchard rows with orchard 36507. 

Precision of 73% and a Recall of 64% 



that when there are no points that are densely clustered, the flat 

curves are identified by the algorithm. The bottom right picture also 

shows this partially, but many misclassifications are mixed with 

good row classifications. 

Figure 10 shows an interesting case where a global angle approach 

would fail to produce good results. This orchard demonstrates the 

power of using the local angle approach. Both sub-orchards are well 

classified with few unassigned trees. The predicted rows are 

generally straight and long, and if not, the row is a culmination of 

accurate shorter rows. The algorithms inability to create rows that 

span the entire orchard is surpassed by the accuracy of shorter rows. 

A notable issue occurs in the bottom right corner of the orchard, 

where a parallel connection occurs. This issue only arises on the 

fringes as previously explained. 

 

Figure 11 illustrates the predicted rows on orchard 36502. The 

output shows countless misclassifications and unassigned trees. The 

slight change in angle and the dense rows create a challenging mix 

for the weighted objective function to select points which are in 

close proximity to the row, but also within the angle threshold. The 

rows are badly linked together near the point where the angle change 

occurs in the orchard. This is a by-product of numerous bad edges 

created around this point. The moving window does not help as it’s 

a sharp change and not a gradual curve. 

 

Figure 12 depicts an orchard with several straight uniform rows. 

This orchard required a very angle orientated objective function 

which manages to produce good rows. The main rows produced do 

match the length of the orchard and capture the overall structure, 

however, there are numerous outlying trees which have not been 

assigned to rows. The biggest issue is the number of unassigned trees 

which remain after the MODFS algorithm has been executed. This 

problem can be solved by relaxing the constraints to allow for more 

inaccurate rows to ensure there are fewer free trees. However, this 

mitigation strategy is never implemented because it will degrade the 

accuracy of the results. Since the main goal of this proposed 

algorithm is to produce accurate rows, it will not be implemented. 

 

Figure 13 illustrates the distribution of precision and recall for the 

respective testing orchards. Each orchard is run 30 times for each 

precision and recall to produce these results. Orchard 36507 has 

superior precision and recall, which is expected due to its simple 

nature. Orchard 32377 has the lowest precision and recall which is 

between 50% and 55%. This shows the MODFS can be significantly 

Figure 9: MODFS predicted orchard rows with orchard 32377. 

Figure 10: MODFS predicted orchard rows with orchard 36513. 

Figure 11: MODFS predicted orchard rows with orchard 36502 

with 738 free trees 

Figure 12: MODFS predicted orchard rows with orchard 43581 



improved upon for heavily curved orchards. Orchard 36502 

represents an orchard instance with straight and slightly curved 

rows. It has a precision and recall of 66% and 58% respectively. 

Focusing on precision, the MODFS provides sufficiently predicted 

rows which is an indicator that the algorithm has the potential to 

improve. 

 

The execution time of the MODFS algorithm is dependent on the 

number of trees in an orchard and not the type of orchard. This can 

be seen in Figure 14 as the average execution time of orchard 32377 

and 36507 are close to 300 seconds, and these two orchards have 

just under 2500 trees each. Orchard 36502 has double that number 

and has an average execution time close to 700 seconds. This result 

and additional unseen testing reveal that the growth in execution 

with respect to the number of trees has exponential growth. This 

exponential growth is however limited due to the constraints forced 

upon the MODFS search. 

 

4.3 General Observations 

The properties of the MODFS algorithm have been covered about 

above. The following discussion will focus on the prominent pitfalls 

of the algorithm. The MODFS algorithm is unable to capture a 

number of unique orchard cases. These failure cases are the weak 

points in the algorithm. Identifying and devising potential mitigation 

strategies for these matters will be discussed. 

In most orchards, farmers require a pathway to move within the 

orchard which provides access to the crops. These service tunnels 

that run through an orchard naturally lead to more perimeter trees. 

When service tunnels are present, the rows produced within an 

orchard will inherently be shorter which leads to less desirable 

inaccurate rows. These rows are less desirable as the longer the row 

is, the more assuredly it will capture trees along its trajectory 

knowing that after each tree the row collects, the higher potential it 

has for being a confident row. This higher potential is measured by 

the objective functions being inversely proportional to row size. 

These perimeter trees can also be seen on the peripheral of all the 

orchard instances. When trying to make connections between trees, 

a tree within the orchard will have many more options compared to 

a tree which is situated on the outskirts of the orchard due to its 

isolated location. This is because, within the orchard, a tree is 

surrounded on all side with connection options, but a tree on the 

outskirt has significantly fewer connection choices. If all of the 

connection options are unavailable, these fringe tree nodes will 

remain unassigned trees. This is a better scenario than having 

undesirable inaccurate rows which would be the case of all trees 

were forced to join a row. Due to this, no mitigation strategy is 

implemented. Nonetheless, a good strategy would be to build rows 

from these perimeter nodes inwards to initially reduce the number 

of free trees around the border of the orchard and to accommodate 

these invasive service tunnels. This problem occurs frequently in 

every orchard and within orchards that have service tunnels.  

Within an orchard, a dense cluster of shapeless trees reduces the 

certainty of the algorithm by not having a clear-cut row - an example 

can be seen in Figure 6 within the blue square. The local angle 

parameter will not provide any insight as the points are unstructured 

inside that pocket and cannot find a truthful local angle. This 

encourages more misrepresentation of the angle objective function 

which assists in selecting rows. Simultaneously, the algorithm will 

select the closest trees that are following an incorrect orientation 

which leads to unstructured row predictions. The mitigation is to 

allow the algorithm to look at a wider range of tree objects in the 

pocket of dense trees. This can be done by increasing the KNN value 

to include trees outside the cluster of trees to infer better directional 

information. 

In the top image of Figure 9, the predicted rows have not fully 

captured the peak of the curved rows. Instead, they have been broken 

up into smaller segmented rows which partially capture the arcs. The 

rows in Figure 9 represent uncommon sharp curves within an 

orchard instance, nevertheless, these do need to be accounted for 

when implementing a robust identifier. The straight-line algorithm 

Orchard 

Instance 

Predicted Row 

Length to orchard 

data 

How robustly the 

perimeter trees are 

handled 

 

Frequency of 

missing 

classifications 

 

Frequency of 

incorrect 

classifications 

 

How well the overall 

row structure is 

captured 

 

32377 Bad Bad Bad Bad Bad 

35516 Bad Bad Bad Bad Bad 

36502 Average Average Average Average Good 

36507 Good Good Good Good Good 

36513 Good Good Good Good Good 

41630 Bad Bad Bad Bad Bad 

43581 Good Average Average Average Good 

Figure 13: Boxplot showing the Precision and Recall for the 

three testing orchards 

Figure 14: Boxplot showing the Execution Time in Seconds for the 

three testing orchards 

Table 2: Summary of the results of the MODFS on each orchard instance 



provided a good base to try to capture the curved rows, but the 

MODFS was not able to replicate the true rows. A potential strategy 

to improve this problem would be to identify the correct moving 

window parameter or add a trajectory parameter. The trajectory 

parameter would allow for sharp connections to be made if these 

connections are following the slope of the row. The angle constraint 

usually flags these sharp turns and removes these rows, but if the 

trajectory parameter is added, it will allow the MODFS to more 

accurately map curved orchard rows. 

Another issue which appears in all of the results of the MODFS 

algorithm is the excessive number of unassigned trees within the 

orchard after execution. Figure 15 shows the average number of 

unassigned trees after the execution of the algorithm per orchard. 

These trees have not been assigned rows since they are deemed to 

worsen the rows which they could possibly be added to. The 

percentage of free trees to total trees per orchard ranges from 10% 

to 20% of the total number of trees (see Figure 15 and Table 1). 

This percentage seems to increase with the size of the dataset, as 

well as the occurrence of curved rows. The number of unassigned 

trees will linearly increase as the number of total trees increases. The 

reason being that as the number of starting trees increases, the 

number of unstructured trees usually increases too – adding more 

uncertainty. This leads to more free trees which aren’t assigned to 

rows due to the additional noise these extra trees create for the 

algorithm. This result shows that the MODFS algorithm prioritises 

more accurate rows. In addition, this predetermined rule should 

encourage the algorithm to be more robust to bad tree object 

classification coming from the object detector phase of the project. 

This independence comes at a cost of not identifying a few rows 

which seem straight-forward to predict, but to satisfy the aim of the 

project a robust row identifier is preferred. 

 

 

Experiment Improvements 

• Additional data sets could be hand-labelled to allow for more 

statistical tests to be performed on more orchards using 

precision and recall.  

• The labelling of the ground-labelled solutions may be biased 

since they are manufactured with what is deemed to be the 

best solution by the development team. Using a mutual party 

to do the labelling would create less bias. 

• Additional parameter tuning could have been conducted for 

all the minute parameters which would only have a minor 

effect on the output. Nevertheless, with additional time, the 

same tests that were done for the main parameters would be 

performed on these auxiliary parameters. 

In summary, The MODFS algorithm produces accurately predicted 

rows for straight uniformly orientated orchards while struggling 

with orchards that contain dense pockets of trees or sharp curves. 

The MODFS is adaptable to multi-orientated orchards and will 

produce robust rows without a fixed global orientation. The 

algorithm suffers from the inability to allocating all the trees to 

suitable rows, as it classifies many connections as unfeasible. 

The results for each orchard are summaries in Table 2, which is on 

the previous page. The MODFS algorithm is run on each orchard 

and the results are evaluated with the qualitative metrics decided in 

section 3.8. 

5. Conclusions 

The MODFS algorithm was shown to produce sufficiently accurate 

orchard row prediction for straight and slightly curved orchards. 

Additionally, the algorithm can adapt to multi-orientated straight 

orchards and will produce accurate rows. Unfortunately, orchards 

which contain very dense or curved trees would result in inaccurate 

rows which do not capture the underlying row patterns. The rows 

produced on heavily curved orchards show potential because they 

partially map the arc of rows with a few short rows. Additional areas 

where the MODFS may be improved upon include; handling 

perimeter trees and service tunnels within the orchard, and reducing 

the number of unassigned trees. Nevertheless, a robust algorithm has 

been developed, implemented and proven to accurately predict 

orchard rows for numerous cases. This is shown by the numerous 

orchard predictions which have visually correct rows, as well as the 

qualitative metrics which boost statistical confidence in the 

MODFS’s predictive power. The aims of the project have only been 

partially met; however, the project has been successfully informative 

on where the algorithm works correctly and indicated where it can 

be potentially enhanced.  

Finally, it is our belief that the MODFS algorithm is not ready to be 

implemented in the agricultural industry. The algorithm is currently 

computationally feasible in terms of execution time and space 

required. The rows produced are acceptable for the simple orchard 

cases, meaning, implementation is feasible for a subset of orchard 

types. After some alternative feature implementations on the 

MODFS algorithm, our projection is that it will ready to be 

implemented to assist farmers in agricultural endeavours by the next 

iteration of the project. 

Future Work 

After the implementation of the MODFS, there are a few avenues 

which seem promising to further this project. Firstly, the alteration 

which could have the biggest impact on the results would be to 

implement a pure multi-objective algorithm instead of the weighted 

objective function. Secondly, a more robust straight-line algorithm 

could be used to capture better initial short rows. The potential 

implementations of this could come from the Genetic algorithm[13] 

or Particle Swarm Optimisation[14] algorithms discussed in the 

related work. Finally, the integration of height data into the MODFS 

algorithm would allow it to use contour lines to assist in predicting 

curved rows more robustly. 

Acknowledgements 

I would like to sincerely thank my Supervisor, Patrick Marais, for 

all his help, constant guidance, and encouragement throughout the 

project. In addition, I would like to thank my two team members, 

Tim Simon and Leonard Chuang, for their contributions to the 

Orchard project and all the support they provided. Finally, I would 

like to extend my appreciation to Aerobotics for supplying the 

problem and various datasets.  

 

 

Figure 15: Bar Graph showing the number of unassigned trees 

after each orchard’s execution 
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Appendix 

Table 1: 
Orchard 

Instance 

Number of 

classified 

Trees 

Average 

Confidence 

Standard 

Dev of 

Confidence 

Standard 

Dev of Local 

Angles 

Mean inter-

tree 

Distance 

Standard 

Dev of inter-

tree Distance 

Problem 

Difficulty 

Description 

32377 2581 0.745 0.336 56.339 10.42 3.63 Hard Sharply 

curved rows 

35516 14404 0.296 0.214 53.469 2.15 0.97 Hard  Dense 

uncertain 

trees 

36502 4532 0.685 0.285 39.454 3.54 1.55 Hard Dense 

rotating 

rows  

36507 2326 

 

0.894 0.060 20.849 3.65 1.63 Easy Straight 

Confident 

Rows 

36513 2435 0.862 0.142 18.901 3.70 1.89 Medium  Pair of 

overlapping 

straight 

orchard 

41630 4038 

 

0.573 0.280 35.715 3.19 1.08 Hard Dense 

uncertain 

noisy rows 

43581 10190 0.544 0.270 35.839 3.38 1.72 Medium Dense 

straight 

rows with 

minor noise 

36507_Test 235 0.884 0.060 15.223 3.59 1.67 Easy Straight 

Confident 

Ros 

32377_Test 281 0.810 0.286 52.217 9.37 3.73 Hard Sharply 

curved rows 

35516_Test 967 0.341 0.230 53.002 2.15 0.97 Hard Dense 

uncertain 

trees 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MODFS Testing Orchard Predicted Rows and Ground-truth Orchards 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Orchard 32377 and its 

Ground-Truth Rows 

Orchard 36502 and its 

Ground-Truth Rows 

Orchard 36507 and its 

Ground-Truth Rows 



MODFS Orchard Predicted Rows 
 

Orchard 41630 Orchard 43581 
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