

CS/IT Honours Final

Final Paper 2020

Title: Orchard Row Identification using Aerial Images

Author: Ryan McCarlie

Project Abbreviation: ORCHARD

Supervisor(s): Patrick Marais

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 5

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Total marks 80

Orchard Row Identification using Aerial Images

ABSTRACT

The human population has grown rapidly in recent years,

significantly increasing the need to optimize and safeguard food

production and security. Subsequently, the agricultural industry is

faced with the challenge of meeting the growing demand for food.

To meet the projected food demands of 2050, agricultural

production will need to rise by 70%. This work presents an

automated approach to identify individual rows of trees which are

planted coherently within an orchard, using images obtained from

an unmanned aerial vehicle. Automatically detecting rows of trees

or crops allows farmers to quickly establish where there are issues

with yield and fertility. The proposed method introduced is a robust

Multi-objective Depth First Search algorithm (MODFS) which can

accommodate uncertain and curved rows. This row detection

problem can be simplified to a graph theoretic problem which is

remarkably like crop row detection. Thereafter, to solve the row

identification problem, various optimization techniques are used to

identify graph structures that represent rows made of trees. To build

the MODFS algorithm, research was conducted on the industry-

standard pathfinding algorithms, state-of-the-art multi-objective

evolutionary algorithms and finally image pixel analysis methods.

The MODFS is statistically shown to be robust to straight orchard

rows while showing promising results for the identification of

curved rows. The MODFS can capture steadily curved orchards, but

struggles to identify the underlying pattern of orchards with dense

pockets of trees or sharp curves. This method is adaptable to multi-

orientated straight orchards and will produce robust rows even with

multiple orientated substructures within the orchards. The

competitive results of the algorithm in numerous cases confirm that

it can identify orchard rows with an acceptable level of certainty.

CCS CONCEPTS
• Precision Agriculture • Optimization • Row Detection

KEYWORDS
Line Detection, Path Planning, Multi-objective Search

1. Introduction

The demand for the agricultural industry to provide sufficient crops

is increasing exponentially due to the rapid growth in the human

population. Unfortunately, the space for agricultural expansion is

limited as the majority of land available is currently occupied or

unavailable. Consequently, the increase in production needed to

fulfil the demand must come from a higher crop yield on the

currently occupied land [1]. Annually, the loss of crops due to

diseases and pests can reach 40% of the global crop yields and this

is expected to increase in the years ahead [2]. The agricultural

industry must deploy methods that maximize farm profitability,

minimize crop loss and reduce their environmental impact in order

to meet demands [3]. A modern-day solution to these challenges is

Precision agriculture (PA) which has recently surged in the farming

industry due to the labour shortage coupled with the economic

pressures on farmers. PA encourages an agricultural system that

benefits from minimal input effort but still maintains a highly

efficient sustainable system. Unmanned Aerial Vehicles (UAV) are

the new standard for surveying a large landmass and are essential in

the precision agriculture workspace. With the mass scale of modern

farming, it is not uncommon to have numerous patches where trees

are unable to grow or have died out. To ensure the farmers have the

best possible understanding of their orchards, this project provides a

new cost-effective method to fix these agricultural issues promptly.

Through the mass surveillance of orchards, the identification of

areas where trees need to be replaced becomes easier. Automatically

detecting rows of trees or crops allow the farmer to quickly establish

where there are issues with regards to yield and fertility.

The proposed, two-step algorithm that is implemented is named the

Multi-objective Depth First Search (MODFS). This proposed

solution will identify orchard rows by performing a graph search on

the possible combinations of rows which are manufactured from

available tree nodes. The first phase comprises of building confident

short rows. The second phase extends these short rows by using a

depth first search to identify good candidate rows to propagate into

and continuously searches for new potential rows.

The main goal of this work is to identify underlying tree row

structures in an orchard given the data is obtained from an aerial

drone. The expected output is a collection of predicted rows made

up of the given tree objects in each orchard. In current literature,

crop row detection has focused on identifying rows from pixel data,

whereas the objective of this work is to find rows from a set of

points, with each tree centre representing a point. Due to this, not

Ryan McCarlie
Department of Computer Science

University of Cape Town

September 2020

Figure 1: An example of the input data of a curved orchard and the identified row. The first image is the raw aerial image of the orchard. The middle

image contains the tree polygon objects. The right image shows an orchard row in yellow.

much research has been conducted within this niche. This leaves a

large amount of room to work with and produce novel solutions.

Various pathfinding solutions only work with a single predefined

start node which, for the proposed solution, it would need to be

expanded upon to have a set of multiple possible start and end nodes.

When identifying the rows, two main issues arise which increase the

complexity of the problem. The first being that the orchard rows are

planted in a combination of curved and straight-lines, with curved

rows being particularly difficult to identify. The second problem

being that the abundance of poorly classified trees leads to variations

in tree size and positioning across the orchard.

The MODFS algorithm aims to produce robust predictions while

accounting for curved rows and poorly classified tree objects. The

accuracy of the approach will be measured using Precision and

Recall [4]. An auxiliary aim is to produce practical orchard rows

with respect to the three previously mentioned accuracy metrics.

These aims will ultimately conclude whether the use of a MODFS

algorithm be can be implemented in the agricultural industry in their

pursuit of a sustainable farming ecosystem.

This report contains 5 sections. Section 2 covers the basic domain

knowledge for the MODFS and provides an overview of the

previous and related work. In Sections 3, a detailed description of

the proposed method, evaluation metrics and project components are

explained. In Section 4, an in-depth analysis of the results is

produced and reasons for these results are discussed. In Section 5,

the final conclusions are provided and possible extensions for future

work are discussed.

2. Background and Related Work

The goal for this multi-objective optimisation of orchard rows is to

minimize two objective functions that relate to the Euclidean

distance and average change in angle within a row. This translates

to identifying the collection of non-dominated solutions on the

Pareto Front [5]. In Figure 4, this would be the identification of X1

and X2 on the Pareto front – where these represent orchard rows

which are non-dominated solutions.

A potential solution to the orchard problem is pathfinding

algorithms, which find the shortest path between a source and a

destination node This shortest route could represent a row. The two

classic pathfinding algorithms are Dijkstra [6] and A* [7]. These

algorithms work with graphs that have either weighted edges or

weighted nodes. Another possible solution is the class of

evolutionary algorithms which are meta-heuristic search algorithms

[8] that search the solution domain independently of problem-

specific details and do so very quickly. In addition, crop row

detection using image pixel date could be a potential solution.

The following related work section covers techniques that solve

combinatorial optimisation problems. The three main algorithms

reviewed are pathfinding techniques, multi-objective evolutionary

algorithms, and image analysis methods for crop row detection.

2.1 Pathfinding

Ferguson and Stentz proposed an interpolated-based path planning

algorithm, called Field D* [9], that works with uniform and non-

uniform sets of grids. This any-angle method calculates lower-cost

paths than other path planning algorithms because transitions are

allowed between two points on adjacent grid cell edges, instead of

using only grid corners or cell centres to transverse. Another method

which produces paths with fewer turns was proposed by Xu and co-

workers, called Link* [10]. Link* is a heuristic search pathfinding

algorithm that can identify any-angle paths with fewer turns on a

grid map. Both these methods have some the advantages of an A*

algorithm but try to enforce smoother paths between goal states. In

terms of the row identification problem, both of these algorithms

would encourage smooth orchard rows to be identified since they

both possess the any-angle path property. When searching between

tree nodes for a potential path, any ridged rows would not be correct

since the rows wouldn’t follow the natural contours of the orchard.

This is a requirement as the proposed algorithm needs to capture

both straight and curved rows while minimising the change in angle

objective function. Both methods require that each orchard is

converted to a grid to allow for transversal to identify orchard rows.

One issue with changing the orchard row problem into a large grid

is that a normal grid would consume too much memory and is

infeasible.

Coego and co-workers presented an improvement of the IDMOA*

algorithm which searches for non-dominated solutions and

simultaneously accounts for all objectives, called PIDMOA [11]

(Pareto Front Iterative Deepening Multi-Objective A*). Each

iteration uses a new set of threshold non-dominated vectors for the

search and this method uses iterative deepening. The idea of using a

threshold to select solutions which relax every iteration seems like

an intuitive idea. The changing threshold will allow for more

confident rows to be identified first, before developing the uncertain

rows on top of the pre-existing confident rows.

Comba and co-workers [12] proposed an unsupervised algorithm for

vineyard detection using 3D point-cloud mappings that are created

from UAV imagery. The method begins an evaluation of features at

each point in the cloud, using a small local radius of 5m, by using

the local terrain surface and height evaluation. This algorithm shows

robustness for curvilinear rows which is a key characteristic needed

for our algorithm. The local circle evaluation techniques mentioned

above is an excellent idea to capture local information within an

orchard without being dependent on a global orchard row direction.

The local circle evaluation may boost the chance for the

identification of difficult curved rows while still permitting straight

rows to be captured within the same orchard.

2.2 Evolutionary algorithms

Baron [13] proposed the use of Genetic Algorithms for line

extraction. This algorithm uses two free parameters to allow for the

extraction of straight-lines in the 2D plane. This result could be used

to identify straight-lines in tree orchard examples with many

overlapping polygon objects due to robustness to outliers. Xu and

Tie [14] proposed a method for straight-line detection based on the

particle swarm optimization (PSO) algorithm. Each particle in this

algorithm represents a straight-line initialized between two edges

points. The fitness function of the PSO algorithm is the number of

edge points (nodes) that lie on the line for any instance of a particle.

The PSO and GA are both time-efficient methods which produce

accurate results. These two algorithms could provide simple and

accurate initial row detections which the MODFS could leverage off

to produce accurate rows.

2.3 Image Analysis

Hough Transform (HT) methods, initially proposed by Hough [15],

are industry-standard algorithms for finding shape primitives.

Straight-line detection is the simplest case of these methods and is

f1 represents the Euclidean

distance between nodes.

f2 represents the change in

angle.

X3 is a dominated solution

Figure 2: Pareto Optimality

based on computing accumulations of counts corresponding to

pixels that lie in straight-lines. The potential of using the HT

methods stems from the fact that the tree centroids could represent

these points, and a straight-line extracted could indicate a row in the

orchard. There are several academic papers which apply the HT

methods to crop row problems with reasonable success [16-18].

Unfortunately, the HT is limited in that it can only detect crop rows

which are planted in a straight-line. While various techniques like

approximating curves with many small tiles which contain straight-

lines [19] and predefining a shape to try and identify in the source

image [20] do exist, the HT is not flexible enough to robustly handle

straight and curved row detections within our problem. The idea of

breaking curves up into smaller segments to classify as straight-lines

initially seem like a good way to deal with difficult sharp curves

within an orchard. This will enable many short rows to be merged

together to form an integrated curve that can be improved up at a

post-processing stage. This idea is what inspired the initial straight-

line component in the MODFS algorithm.

There are several methods in the literature for crop row detection

which focus on the pixels of an image and not a graph theoretic

approach. These methods use input images from various sources as

input to their solution mechanism. The techniques usually differ

according to their detection principle, namely, Hough Transform,

Linear Regression [21, 22], Horizontal strips [23, 24], blob analysis

[23, 25], stereo vision [26, 27], vanishing point [28, 29], and filtering

[30, 31]. Unfortunately, all of the above-mentioned methods solve

the crop row detection problem while using an approach which

requires the source images from non-aerial source images (ground-

based camera equipment), or do not transform the source image into

a graphing problem to be analysed independently of the source

image. Due to the previously mentioned reasons, these methods

cannot be used to solve the orchard row identification problem.

3. Design and Implementation

3.1 Dataset

The data used in this work is unlabelled raw data which can be used,

viewed and manipulated using QGIS1. Each orchard input represents

information collected via an aerial image. The first file contains

polygon shape detections, which represent the trees, this can be seen

in the middle image in Figure 1. Additionally, each tree has an

associated confidence value which indicates how certain the object

detector is of the tree’s presence. The second file indicates the

boundary of the orchard on which row detection is being performed.

The third is a georeferenced image of the actual orchard which can

be seen in left image in Figure 1.

The orchards have a significant variation in row structures, tree

structures, inter-row widths and number of trees. Since the smallest

1 https://qgis.org/en/site/

orchard from the provided datasets has 2326 trees, a subset of the

points has been extracted from three of the orchard instances to

allow for faster training. The extracted orchards are selected to

ensure certain edge cases are contained within the subsets.

Additionally, three full orchard instances have been hand-labelled to

contain ground-truth solutions. The ground-truth solutions are hand

draw lines which are connected to the centroids of the trees which

subjectively are the underlying real rows within the orchard. These

ground-truth rows will enable accuracy testing to be performed on

the predicted rows. Following this, the precision and recall can be

extracted to enable a quantitative metric to test results. Both

precision and recall are measures which indicate the similarity of the

predicted solutions to ground-truth solutions.

Table 1, in the appendix, shows all the metadata per orchard

instance. Each orchard has a description, along with the number of

trees, average tree confidence, standard deviation of tree confidence,

average orientation in degrees, average and standard deviation of

inter-tree distance, and orchard difficult.

3.2 Data Structures

The two main objects used throughout the MODFS implementations

are the Tree and Row objects. The Tree object encapsulates the data

for the individual trees. The Tree object variables indicate its

position, ID, confidence, local orientation and whether it is part of a

row. The Row object is made up of numerous Tree objects. The Tree

objects keep track of the trees which have been added to the row, the

average orientation of the row and the first and last tree within the

row. Additionally, this object also keeps track of its unique row ID,

and the current objective values.

While implementing the MODFS algorithm, the current list of Row

objects and Tree objects are always stored in arrays. These arrays

hold the collections of objects which are individually retrieved when

being used for calculations. Additionally, these lists may also act as

stacks and queues but they are still just variants of arrays. The only

time this storage mechanism is not used is within the DFS method.

A collection of potential rows is stored within a dictionary. The key

for each row is the ID of the last tree within the current row. The

dictionary holds the Row object and the three objective values. This

dictionary is then sorted according to the objective value and the best

row is selected. Below is an example of how the trees are stored.

{648: {“Row”: 651,711,715,648, “Angle”: 0.67,

“Distance”: 0.33, “Weighted”: 0.45}}

In the example above, the last tree ID of the row is 648. The ID’s of

the trees which make up the row are 651,711,715,648, respectively.

The Angle, Distance and Weighted objective function scores for this

row are 0.67, 0.33 and 0.45 respectively.

3.3 Objective Functions

A weighted objective function linearly weights each objective so

that a combined objective function can be optimized like a single

objective function.

Objective

Function

Equation

Distance
∑ √(𝐱𝑖−1 − 𝐱𝑖)𝟐 + (𝒚𝑖−1 − 𝐲𝑖)𝟐

𝑵−𝟏

𝒊=𝟏

(𝑁 − 1) ∗ 2

Change in

Angle ∑ 𝐃𝐢𝐟𝐟(𝛉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , 𝛉𝒊)
𝑵−𝟏

𝒊=𝟏
∗ 𝛼

180

Where 𝛉𝒊 = 𝒂𝒓𝒄𝒕𝒂𝒏𝟐(
𝐲𝟐− 𝐲𝟏

𝐱𝟐−𝐱𝟏
)

Distance Objective Function: N is the number of trees in a row.

The Distance objective is divided by 2(N-1) to give rows which have

Figure 3: Red dots indicating the centroids of the polygon tree objects.

more trees a smaller score – this encourages longer row to be

selected over shorter rows.

Angle Objective Function: Diff calculates the angle difference

between 𝛉𝑨𝒗𝒆𝒓𝒂𝒈𝒆 and 𝛉𝒊 - then scales that value to be between 0 and

180 degrees. 𝛉𝑨𝒗𝒆𝒓𝒂𝒈𝒆 is the average change in the angle of all the

trees with the current row. 𝛉𝒊 is the acute angle between two adjacent

tree objects within the current row.

The angle objective is multiplied by a penalty term 𝛼 to discourage

rows that have any connections (between any two adjacent trees in

a row) which result in an angle that is a very different orientation to

the rest of the row. This will result in an increase of the score for

rows with a bad connection and decreases the chances of these rows

being selected by the MODFS algorithm. The two cases of alpha are:

𝛼 = {
𝐃𝐢𝐟𝐟(𝛉𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , 𝛉𝒊), > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 , ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Which means when a connection angle is greater than the threshold,

the numerator is squared. Otherwise, no penalty term is added.

When calculating the weighted objective function, the angle and

distance metric are individually scaled between zero and 1 so that

each value has an equal input into the weighted objective function.

3.4 Weighted Multi-objective DFS

The weighted a priori objective function will be implemented over

a posterior multi-objective function owing to the clever assumptions

that can be deduced from the orchard instances metadata. To be able

to identify orchard rows for different orchards, a posterior multi-

objective method would be a good unbiased selector since no

objectives are favoured. However, when a priori assumptions are

presumed, a weighted objective function would produce accurate

predictions with less computational time and space requirements.

Due to this, a priori weighted objective function is implemented

over a posterior multi-objective approach. This information, which

is used to make a priori assumption, includes the mean and the

variation of the inter-tree distance, the number of trees within an

orchard, and the variation of the angles within an orchard.

Unfortunately, if the incorrect objective weights are assigned, poor

predictive results will follow. A consequence of using a weighted

objective function is the requirement of scaled objective functions,

otherwise, the weighted coefficient will lead to a biased sampling

from the solutions on the Pareto Front [5].

The standard deviation of angles and inter-tree distance metrics are

the biggest factors in determining the weighting. This assumption

leverages the fact that orchards with a smaller variation of angles are

more likely to be straight, uniform orchards which have a general

orientation – meaning that the angle orientation objective function

should be favoured. If a large standard deviation occurs, the orchard

is not uniform and probably has curved rows or is densely saturated.

The mean inter-tree distance and standard deviation of these

distances also offer information about the orchard. The coefficient

of variation (CV) is calculated to measure the dispersion of data

around the mean[32]. A large CV represents trees which are

erratically dispersed around the orchard – this suggests that the

orchard is either curved or has densely distributed trees. The non-

uniform orchard is best handled with a larger angle threshold and a

smaller initial tree step size.

3.5 Constraints

The angle objective function proved to be challenging to govern

since normal arithmetic can’t be used to calculate angle mean and

variation. The method identified to calculate the mean and standard

deviation make use of conversions to the unit circle and polar

coordinates. Following this result, all angles were constrained to lie

within the first and second quadrants (0-180 degrees). This

constraint still allows for bi-directional interpretation of row

orientation. However, the main drawback of this decision is that

short new connections occur on a predicted row when an edge is

made in the opposite direction to the trajectory of the row. This leads

to some rows having the last connection which goes in the opposite

direction to its trajectory. This occurs when checking the check

values for the angle constraint before making a new connection.

Since the angles are always converted to be within the first and

second quadrant, a bi-directional row growth is allowed in both

directions. This issue can be alleviated with a check of the angles

within a row.

Throughout the algorithm, new edges between trees are always

checked and only built if they satisfy the angle constraint. The angle

constraint states that the difference between two reference angles

must be smaller than the angle threshold between the two check

values. The first check value is always the angle between the

selected tree and the potential neighbour tree. The second check

value can either be a specific tree object’s local angle metric or the

average angle of a row object. If the difference between the check

values is less than the angle threshold, the new edge is created,

otherwise, the edge is not deemed a good connection and it is

skipped.

Similar to the angle constraint, new edges are never created when

the Euclidean distance between the two is greater than the global

mean inter-tree distance. This prevents rows being created which

may transverse over multiple pre-existing rows or simply edges that

are too far apart.

Angle Objective Function - Local and Global Angle Measure

In a uniform orchard instance, the edges between trees which are

similar in direction to the global orchard orientation are potential

rows. However, a global angle can only be used with orchards

which contain only straight, uniform orchard rows. In the case of

an orchard with curved rows, the global angle will be a

generalization of the entire orchard and will force the algorithm to

incorrectly penalize the curved rows. In the agricultural industry,

curved orchards are common and developing an algorithm which

cannot compensate for this minor issue would be futile. The use of

a local tree angle is preferred when deciding a trees best

orientation. The local tree angle is a variable which can determine

the orientation of a pocket of trees within an orchard containing

straight and curved rows. The average angle between all of the tree

objects within a small neighbourhood of the selected tree object is

used to calculate the local angle. This assures that angle

information pertains only to a small section of the orchard without

being dependent on the general direction of the entire orchard.

3.6 Software Implementation

Python 3 was used to implement the MODFS algorithm. Python has

proven to be a good choice with its easy development syntax,

efficient list manipulation, as well as diverse and powerful built-in

libraries which have made the development process easier. Other

libraries used for this work include Matplotlib for graphing data,

GDAL for manipulating geospatial raster data, Shapely for

manipulating geometry objects, and NumPy for quick scientific

calculations.

An Object Orientated approach was used to ensure all the code is

modular and can be updated easily in the future. Each main

algorithm is developed as an individual method to allow for code

reuse and good overall project structure. The code has been well

documented and this will ensure it is maintainable to any alternative

developers who would like to work on this project.

3.7 Orchard detection algorithm

The MODFS algorithm can be split up into two main components.

Firstly, the straight-line detection algorithm implements a simple

Nearest Neighbours search for points that are close together and

forms short rows according to a simple angle constraint. The second

component is the Multi-Objective Depth First Search which takes

the rows from the previous component and expands these rows to

produce longer rows. These components are explained in section

3.7.2 and 3.7.3 respectively.

3.7.1 File I/O and Tree Object Initialization

For each orchard, the polygon shapes are extracted from the raw

detection geoJSON file. These values are then converted to the

correct coordinate reference system (CRS) using the pyproj library

which is a coordinate transformation library. The centroids and

confidence values of each of the polygon shapes are then used to

initialize Tree objects which are stored in a global array of Tree

objects. The local angle of each tree object is also calculated and

stored within the objects.

3.7.2 Straight-Line Algorithm

The straight-line algorithm produces many short confident orchard

rows. This algorithm optimises results according to a distance

function only, with an added angle constraint. A subprocess of this

algorithm is the file I/O and the initializing of the tree objects.

A K Nearest Neighbours (KNN) method has been implemented

since it is intuitive, easier to implement and more ground-up

approach rather than implementing a random search PSO algorithm.

The PSO algorithm would require more time to implement

compared to the out-of-the-box logical KNN approach from the

Scikit-learn package2. This KNN method allows for the tree centroid

data to be fitted using Euclidean distance. This ensures a quick

search of the local neighbourhood around a selected tree object for

N trees. The returned tree centroids indicate the closest tree, as well

as the distance between the two trees. This is done in O(N log(N))

time complexity with linear space requirements.

The algorithm has 3 parameters which are Number of Rows to grow

(N), Depth per row (D), and max angle (Theta). N is set to the

number of trees in the orchard multiplied by 75%. This is to ensure

a large proportion of tree objects are added to row objects but not

forcing too many bad connections to be added.

The output of the straight-line algorithm is then checked by a post-

process cleaning algorithm. This check runs through each edge made

on each of the rows and flags edges that are not within the angle

constraints of the local average angles of the neighbouring trees. The

rows with drastically changing angle are then removed entirely from

the orchard predicted rows.

2 https://scikit-learn.org/stable/modules/neighbors.html

3.7.3 Multi-objective Depth First Search Algorithm

The initial straight row detection creates easily identifiable straight

rows as can be seen in Figure 4. Each row is a collection of various

assigned tree objects where the row is represented as the red dotted

line. This algorithm is initiated from the two endpoints of the

previously created straight rows and will propagate outwards to the

potential candidate trees. These candidates will be selected using the

K-Nearest Neighbours algorithm with Euclidean distance as its

metric – this is equivalent to a Breadth First Search for finding the

initial neighbouring nodes to search into. All candidate nodes and

sub-nodes are chosen only if they are within the maximum distance

threshold and maximum angle change threshold from the associated

straight row. In Figure 4 on the left image, the yellow lines with

arrows heads show potential extensions, while the blue line with an

arrowhead indicates a row that did not meet the minimum

constraints. When the node propagates, it will search from the source

into each of the candidate neighbour nodes (green trees) and it will

add each potential sub-node to the stack until a specified depth, D,

is reached. D is a parameter that will be evaluated to find the optimal

depth, but this will likely change depending on the orchard instance.

While traversing the different sub-nodes, the algorithm will add the

potential row (which is an extension of the original row with the sub-

node added as an additional tree) to a collection of the selected rows.

Once the depth has been reached, the best row will be selected

according to the lowest weighted objective value of all the rows

which are in the solution set. This solution selection is shown in

Figure 4 on the right image by the red dotted line. This new row will

be added to the predicted orchard rows, and the base row which it

was created from will be removed. This process will be repeated for

a specified number of times to increase the number of rows. This

Depth First Search algorithm is run on all the current rows in the

orchard and will either keep the same row or just extend the base

row to include more trees within the row. A priority queue is created

using the rows, the queue is then sorted by the weighed objective in

ascending order. The best rows are grown first to encourage

Algorithm Straight-Line Detection

1: procedure Straight Line Detection (N, D, Theta)
2: Initialize Tree Objects

3: Initialize Solutions Array

4: for number of trees N do

5: Random_Tree = Select Random Tree

6: for depth of row do

7: Neighbours = Get KNN Neighbours of Random_Tree
8: for neighbour in Neighbours do

9: Edge = connection between Random_Tree and neighbour

10: if Edge meets constraints
11: Make new row with Random_Tree and neighbour

12: Random_Tree = neighbour

13: Add New Row to Solutions
14: Break

15: end

16: end
17: end

18: Return Solutions

19: End

Figure 4: Shows the MODFS Tree Selection on the left. The picture on the right shows the row expansion into the selected best row. Black nodes represent

row endpoints. Blue and green nodes represent assigned and unassigned nodes respectively. The red dotted line represents an orchard row.

elongating already confident rows but still allowing the other rows

to expand.

The remaining trees that haven’t been allocated to any rows are then

stitched together using a stitching algorithm. Firstly, the algorithm

makes some additional short rows between free trees that satisfy the

angle and distance constraints. Secondly, it runs a row stitching

algorithm that collects all the row endpoints (first and last trees

within a row) from all the rows in the orchard and attempts to merge

these points similarly to the straight-line algorithm. If two endpoints

are selected to be stitched, those two rows will be compared to the

potentially merged row. If the potential row is better than both rows,

it will be added to the orchard and the other two rows will be

discarded. If not, nothing will be changed. These two methods are

run a number of times with relaxing constraints to ensure that the

majority of the free points are allocated to rows if they are within the

angle and distance thresholds.

The algorithm has three parameters which are the Initial Row to

initiate the DFS from (Row), Depth to search for rows (D), and Max

Angle (Theta). After the MODFS method, a post-process method is

applied similar to the method applied after the straight-line

algorithm.

Moving Window Feature

An orientation-driven feature that is used throughout the MODFS

algorithm is the row’s moving window angle. When previously

checking if an additional tree should be added onto a pre-existing

row – the angles between the tree and row’s endpoint tree is

compared to the pre-existing row’s average angle. This check

justifies whether the tree is aligned with the current average

direction of the row. Unfortunately, this check will fail if a straight

row starts to bend in any direction. To alleviate this issue, the pre-

existing rows average angle will only be calculated by the last 6 trees

(parameter which can be changed) and not the entire row. This

feature allows for rows to gradually curve without the being flagged

due to its flexible nature. Increasing the window size will ensure

only gentle curves will be accepted. Decreasing the window size

allows for more erratic curves to be accepted by the MODFS.

Confident Orchard Trees

Each tree object has a confidence value between zero and one. This

parameter indicates the level of confidence that the tree object

actually exists at that location. When finding the initial straight-rows

of the orchard, the confidence parameter was integrated into the

search for rows. The unconfident trees which had low confidence

values were not included with the subset of trees passed to the

straight-line algorithm. The consequence is that fewer trees are

available for selection, therefore, fewer row combinations are

produced by the algorithm. However, more confidence rows are

produced since they are formed from a higher quality batch of trees.

The threshold for trees to be included to the subset is the mean minus

one standard deviation of the confidence of that orchard.

Parameter Tuning

Parameter tuning was performed over several data sets and results

were analysed per parameter against the orchard score. The most

influential parameters that were tuned are:

▪ K Nearest Neighbours Number: K closest trees

o Curved and Dense orchards prefer smaller K sizes

▪ Depth of trees for straight-line and MODFS algorithm

o Curved and Dense orchards prefer smaller Depth

▪ Weighted objective percentages

o Straight uniform orchards prefer higher angle weighted

objective functions

▪ Average moving window size for row angle

o Curved orchards preferred smaller moving window sizes

Through the parameter tuning of the orchards, general parameters

that suit all the orchard types are unidentifiable. The curved orchards

had the most trouble with finding optimal parameters. The

parameters which had the best general impact were implemented.

3.8 Evaluation

The main qualitative methodology of evaluation will be to compare

the rows produced visually by the MODFS approach to the

unlabelled version of the orchard rows. Each orchard solution will

be judged in each category. These categories serve to show the

different aspects of the algorithm and where it may fail.

The qualitative score options are very good, good, bad, very bad or

average. The categories are:

• How well the overall row structure is captured

• How robustly the perimeter trees are handled

• Predicted Row Length to orchard data

• Frequency of incorrect classifications

• Frequency of missing classifications

The three testing orchards, 32377, 36502, 36507, have been used to

perform a comprehensive statistical analysis of the results due to

the availability of hand-labelled ground-truth rows. The ground-

truth orchard can be found in the appendix. After each execution

for these testing orchards, the predicted rows are accompanied by

an accuracy and precision statistic. For both testing and normal

orchards, an orchard score is produced as a metric for how accurate

the algorithm worked on that particular orchard. The orchard score

is a combination of the mean weighted objective function value

and number of unassigned trees. The goal is to minimize the

orchard score value as each of the parameters which combine to

make it need to be minimized.

4. Results and Discussion

4.1 Straight-Line Algorithm

In Figure 5, the small straight rows do an excellent job at capturing

the overall orchards structure with a few exceptions. The exceptions

are either incorrectly orientated orchard rows or unassigned trees.

The unassigned trees which haven’t been allocated to any row were

not selected by the straight-line algorithm since they were not within

the constraints. These exceptions usually occur around the edges of

the orchard where there aren’t many points to connect to. After the

straight-line algorithm has been run, a few errors appear in the

orchard rows which can be seen as the red lines in Figure 5.

These incorrect rows have been identified by the post-process step

and will be removed from the orchard. These rows are produced in

less than 5% of all the edges which occur and are easily identifiable

for uniform orchards.

Algorithm Depth First Search

20: procedure MODFS (Row, D, Theta)

21: Initialize empty Stack

22: Solutions = Empty Dictionary
23: Add initial Row to Stack

24: While Stack not empty do

25: R = Stack.pop()
26: for neighbour in getNeighbours(R)

27: Temp_Row = add neighbour tree to row R
28: if Temp_Row meets constraints

29: Add Temp_Row to Solutions

30: Add Temp_Row to Stack
31: end

32: If Iterations > Depth do

33: Break

34: end

35: Return Solutions

36:

37: End

Figure 6 shows two cases where the straight-line algorithm does not

work correctly on curved rows. In the yellow square, there are

accurate curved short rows which the post-processing step removes.

This occurs because the post-process stage only checks an individual

edge at once without considering the entire row. In the blue square,

there are short predicted rows which do not follow the correct

orientation kept within the orchard. The rows occur because there is

a dense pocket of unstructured trees which obscures the general

orientation information in that area of the orchard. The straight-line

algorithm cannot extract an accurate local angle metric. This issue

requires the MODFS algorithm to robustly identify the correct rows

according to both angle and distance objective functions.

Figure 7 shows the output of the MODFS when it is run on the

orchard 32377. The algorithm can be seen to partially capture the

curved structure of the rows by breaking the arc up into smaller

sections. On the left image in Figure 7, the gentle curve is captured

accurately by a few line segments with the straight-line algorithm.

In the right image, the sharp curves at the peak of the orchard have

been somewhat replicated which shows an important idea behind the

initial algorithm. Building on these results, the MODFS can now be

introduced to integrate these line segments to produce long smooth

rows.

4.2 Multi-objective Depth First Search

Figure 8 displays the final output of the MODFS algorithm.

Notably, the majority of the predicted rows are impeccably

orientated with no major angle inconsistencies and the rows span the

length of the orchard. This is reiterated by a precision score of 73%.

With the exception of some shorter rows and unassigned trees, the

results show that the MODFS works exceptionally well on straight

orchard rows. One minor issue which has arisen is the incoherent

short row that is circled in red. This row goes against the general

orientation of all the other rows. This issue arises with trees which

are situated around the perimeter of the orchard – these trees have

very few options to make a connection which leads to irrational

connections.

Figure 9 depicts three images of orchard 32377 after the MODFS

algorithm has been executed. Orchard 32277 is a challenging

orchard as it has a mix of very sharp curves, with long straight rows,

and dense pockets of trees. The algorithm struggles to predict

meaningful orchard rows. The top image shows that areas of the

orchard are plagued by inconsistent row predictions. There appears

to be a cluster of points which restricts the effect of the local angle

for identifying the local orientation. The bottom left picture shows

Figure 5: Straight-line algorithm applied to Orchard 36507. Green lines
indicate the predicted short rows and red lines indicate rows that are

removed by the post-processing method

Figure 6: Straight-line algorithm applied to orchard 32377. Yellow and

Blue square represent problem areas.

Figure 7: Straight-line algorithm applied to orchard 323577. Green

lines indicate the predicted short rows and red lines indicate rows that

are removed by the post-processing method.

Figure 8: MODFS predicted orchard rows with orchard 36507.

Precision of 73% and a Recall of 64%

that when there are no points that are densely clustered, the flat

curves are identified by the algorithm. The bottom right picture also

shows this partially, but many misclassifications are mixed with

good row classifications.

Figure 10 shows an interesting case where a global angle approach

would fail to produce good results. This orchard demonstrates the

power of using the local angle approach. Both sub-orchards are well

classified with few unassigned trees. The predicted rows are

generally straight and long, and if not, the row is a culmination of

accurate shorter rows. The algorithms inability to create rows that

span the entire orchard is surpassed by the accuracy of shorter rows.

A notable issue occurs in the bottom right corner of the orchard,

where a parallel connection occurs. This issue only arises on the

fringes as previously explained.

Figure 11 illustrates the predicted rows on orchard 36502. The

output shows countless misclassifications and unassigned trees. The

slight change in angle and the dense rows create a challenging mix

for the weighted objective function to select points which are in

close proximity to the row, but also within the angle threshold. The

rows are badly linked together near the point where the angle change

occurs in the orchard. This is a by-product of numerous bad edges

created around this point. The moving window does not help as it’s

a sharp change and not a gradual curve.

Figure 12 depicts an orchard with several straight uniform rows.

This orchard required a very angle orientated objective function

which manages to produce good rows. The main rows produced do

match the length of the orchard and capture the overall structure,

however, there are numerous outlying trees which have not been

assigned to rows. The biggest issue is the number of unassigned trees

which remain after the MODFS algorithm has been executed. This

problem can be solved by relaxing the constraints to allow for more

inaccurate rows to ensure there are fewer free trees. However, this

mitigation strategy is never implemented because it will degrade the

accuracy of the results. Since the main goal of this proposed

algorithm is to produce accurate rows, it will not be implemented.

Figure 13 illustrates the distribution of precision and recall for the

respective testing orchards. Each orchard is run 30 times for each

precision and recall to produce these results. Orchard 36507 has

superior precision and recall, which is expected due to its simple

nature. Orchard 32377 has the lowest precision and recall which is

between 50% and 55%. This shows the MODFS can be significantly

Figure 9: MODFS predicted orchard rows with orchard 32377.

Figure 10: MODFS predicted orchard rows with orchard 36513.

Figure 11: MODFS predicted orchard rows with orchard 36502

with 738 free trees

Figure 12: MODFS predicted orchard rows with orchard 43581

improved upon for heavily curved orchards. Orchard 36502

represents an orchard instance with straight and slightly curved

rows. It has a precision and recall of 66% and 58% respectively.

Focusing on precision, the MODFS provides sufficiently predicted

rows which is an indicator that the algorithm has the potential to

improve.

The execution time of the MODFS algorithm is dependent on the

number of trees in an orchard and not the type of orchard. This can

be seen in Figure 14 as the average execution time of orchard 32377

and 36507 are close to 300 seconds, and these two orchards have

just under 2500 trees each. Orchard 36502 has double that number

and has an average execution time close to 700 seconds. This result

and additional unseen testing reveal that the growth in execution

with respect to the number of trees has exponential growth. This

exponential growth is however limited due to the constraints forced

upon the MODFS search.

4.3 General Observations

The properties of the MODFS algorithm have been covered about

above. The following discussion will focus on the prominent pitfalls

of the algorithm. The MODFS algorithm is unable to capture a

number of unique orchard cases. These failure cases are the weak

points in the algorithm. Identifying and devising potential mitigation

strategies for these matters will be discussed.

In most orchards, farmers require a pathway to move within the

orchard which provides access to the crops. These service tunnels

that run through an orchard naturally lead to more perimeter trees.

When service tunnels are present, the rows produced within an

orchard will inherently be shorter which leads to less desirable

inaccurate rows. These rows are less desirable as the longer the row

is, the more assuredly it will capture trees along its trajectory

knowing that after each tree the row collects, the higher potential it

has for being a confident row. This higher potential is measured by

the objective functions being inversely proportional to row size.

These perimeter trees can also be seen on the peripheral of all the

orchard instances. When trying to make connections between trees,

a tree within the orchard will have many more options compared to

a tree which is situated on the outskirts of the orchard due to its

isolated location. This is because, within the orchard, a tree is

surrounded on all side with connection options, but a tree on the

outskirt has significantly fewer connection choices. If all of the

connection options are unavailable, these fringe tree nodes will

remain unassigned trees. This is a better scenario than having

undesirable inaccurate rows which would be the case of all trees

were forced to join a row. Due to this, no mitigation strategy is

implemented. Nonetheless, a good strategy would be to build rows

from these perimeter nodes inwards to initially reduce the number

of free trees around the border of the orchard and to accommodate

these invasive service tunnels. This problem occurs frequently in

every orchard and within orchards that have service tunnels.

Within an orchard, a dense cluster of shapeless trees reduces the

certainty of the algorithm by not having a clear-cut row - an example

can be seen in Figure 6 within the blue square. The local angle

parameter will not provide any insight as the points are unstructured

inside that pocket and cannot find a truthful local angle. This

encourages more misrepresentation of the angle objective function

which assists in selecting rows. Simultaneously, the algorithm will

select the closest trees that are following an incorrect orientation

which leads to unstructured row predictions. The mitigation is to

allow the algorithm to look at a wider range of tree objects in the

pocket of dense trees. This can be done by increasing the KNN value

to include trees outside the cluster of trees to infer better directional

information.

In the top image of Figure 9, the predicted rows have not fully

captured the peak of the curved rows. Instead, they have been broken

up into smaller segmented rows which partially capture the arcs. The

rows in Figure 9 represent uncommon sharp curves within an

orchard instance, nevertheless, these do need to be accounted for

when implementing a robust identifier. The straight-line algorithm

Orchard

Instance

Predicted Row

Length to orchard

data

How robustly the

perimeter trees are

handled

Frequency of

missing

classifications

Frequency of

incorrect

classifications

How well the overall

row structure is

captured

32377 Bad Bad Bad Bad Bad

35516 Bad Bad Bad Bad Bad

36502 Average Average Average Average Good

36507 Good Good Good Good Good

36513 Good Good Good Good Good

41630 Bad Bad Bad Bad Bad

43581 Good Average Average Average Good

Figure 13: Boxplot showing the Precision and Recall for the

three testing orchards

Figure 14: Boxplot showing the Execution Time in Seconds for the

three testing orchards

Table 2: Summary of the results of the MODFS on each orchard instance

provided a good base to try to capture the curved rows, but the

MODFS was not able to replicate the true rows. A potential strategy

to improve this problem would be to identify the correct moving

window parameter or add a trajectory parameter. The trajectory

parameter would allow for sharp connections to be made if these

connections are following the slope of the row. The angle constraint

usually flags these sharp turns and removes these rows, but if the

trajectory parameter is added, it will allow the MODFS to more

accurately map curved orchard rows.

Another issue which appears in all of the results of the MODFS

algorithm is the excessive number of unassigned trees within the

orchard after execution. Figure 15 shows the average number of

unassigned trees after the execution of the algorithm per orchard.

These trees have not been assigned rows since they are deemed to

worsen the rows which they could possibly be added to. The

percentage of free trees to total trees per orchard ranges from 10%

to 20% of the total number of trees (see Figure 15 and Table 1).

This percentage seems to increase with the size of the dataset, as

well as the occurrence of curved rows. The number of unassigned

trees will linearly increase as the number of total trees increases. The

reason being that as the number of starting trees increases, the

number of unstructured trees usually increases too – adding more

uncertainty. This leads to more free trees which aren’t assigned to

rows due to the additional noise these extra trees create for the

algorithm. This result shows that the MODFS algorithm prioritises

more accurate rows. In addition, this predetermined rule should

encourage the algorithm to be more robust to bad tree object

classification coming from the object detector phase of the project.

This independence comes at a cost of not identifying a few rows

which seem straight-forward to predict, but to satisfy the aim of the

project a robust row identifier is preferred.

Experiment Improvements

• Additional data sets could be hand-labelled to allow for more

statistical tests to be performed on more orchards using

precision and recall.

• The labelling of the ground-labelled solutions may be biased

since they are manufactured with what is deemed to be the

best solution by the development team. Using a mutual party

to do the labelling would create less bias.

• Additional parameter tuning could have been conducted for

all the minute parameters which would only have a minor

effect on the output. Nevertheless, with additional time, the

same tests that were done for the main parameters would be

performed on these auxiliary parameters.

In summary, The MODFS algorithm produces accurately predicted

rows for straight uniformly orientated orchards while struggling

with orchards that contain dense pockets of trees or sharp curves.

The MODFS is adaptable to multi-orientated orchards and will

produce robust rows without a fixed global orientation. The

algorithm suffers from the inability to allocating all the trees to

suitable rows, as it classifies many connections as unfeasible.

The results for each orchard are summaries in Table 2, which is on

the previous page. The MODFS algorithm is run on each orchard

and the results are evaluated with the qualitative metrics decided in

section 3.8.

5. Conclusions

The MODFS algorithm was shown to produce sufficiently accurate

orchard row prediction for straight and slightly curved orchards.

Additionally, the algorithm can adapt to multi-orientated straight

orchards and will produce accurate rows. Unfortunately, orchards

which contain very dense or curved trees would result in inaccurate

rows which do not capture the underlying row patterns. The rows

produced on heavily curved orchards show potential because they

partially map the arc of rows with a few short rows. Additional areas

where the MODFS may be improved upon include; handling

perimeter trees and service tunnels within the orchard, and reducing

the number of unassigned trees. Nevertheless, a robust algorithm has

been developed, implemented and proven to accurately predict

orchard rows for numerous cases. This is shown by the numerous

orchard predictions which have visually correct rows, as well as the

qualitative metrics which boost statistical confidence in the

MODFS’s predictive power. The aims of the project have only been

partially met; however, the project has been successfully informative

on where the algorithm works correctly and indicated where it can

be potentially enhanced.

Finally, it is our belief that the MODFS algorithm is not ready to be

implemented in the agricultural industry. The algorithm is currently

computationally feasible in terms of execution time and space

required. The rows produced are acceptable for the simple orchard

cases, meaning, implementation is feasible for a subset of orchard

types. After some alternative feature implementations on the

MODFS algorithm, our projection is that it will ready to be

implemented to assist farmers in agricultural endeavours by the next

iteration of the project.

Future Work

After the implementation of the MODFS, there are a few avenues

which seem promising to further this project. Firstly, the alteration

which could have the biggest impact on the results would be to

implement a pure multi-objective algorithm instead of the weighted

objective function. Secondly, a more robust straight-line algorithm

could be used to capture better initial short rows. The potential

implementations of this could come from the Genetic algorithm[13]

or Particle Swarm Optimisation[14] algorithms discussed in the

related work. Finally, the integration of height data into the MODFS

algorithm would allow it to use contour lines to assist in predicting

curved rows more robustly.

Acknowledgements

I would like to sincerely thank my Supervisor, Patrick Marais, for

all his help, constant guidance, and encouragement throughout the

project. In addition, I would like to thank my two team members,

Tim Simon and Leonard Chuang, for their contributions to the

Orchard project and all the support they provided. Finally, I would

like to extend my appreciation to Aerobotics for supplying the

problem and various datasets.

Figure 15: Bar Graph showing the number of unassigned trees

after each orchard’s execution

References

[1] Carr, G. THE FUTURE OF AGRICULTURE. City, 2016.

[2] FAO-FOOD and ORGANIZATION, A. The state of food

and agriculture. Livestock in the balance Rome, City, 2009.

[3] Arnó Satorra, J., Martínez Casasnovas, J. A., Ribes Dasi,

M. and Rosell Polo, J. R. J. S. J. o. A. R., , vol. 7, núm. 4, p.

779-790 Precision viticulture. Research topics, challenges

and opportunities in site-specific vineyard management

(2009).

[4] Tan, P.-N., Steinbach, M. and Kumar, V. Introduction to

data mining. Pearson Education India, 2016.

[5] Miettinen, K. Nonlinear multiobjective optimization.

Springer Science & Business Media, 2012.

[6] Dijkstra, E. W. J. N. m. A note on two problems in

connexion with graphs, 1, 1 (1959), 269-271.

[7] Hart, P. E., Nilsson, N. J., Raphael, B. J. I. t. o. S. S. and

Cybernetics A formal basis for the heuristic determination of

minimum cost paths, 4, 2 (1968), 100-107.

[8] Raidl, G. R. and Puchinger, J. Combining (integer) linear

programming techniques and metaheuristics for

combinatorial optimization. Springer, City, 2008.

[9] Ferguson, D. and Stentz, A. J. J. o. F. R. Using

interpolation to improve path planning: The Field D*

algorithm, 23, 2 (2006), 79-101.

[10] Xu, H., Shu, L. and Huang, M. Planning paths with fewer

turns on grid maps. City, 2013.

[11] Coego, J., Mandow, L. and De La Cruz, J. P. A new

approach to iterative deepening multiobjective A. Springer,

City, 2009.

[12] Comba, L., Biglia, A., Aimonino, D. R., Gay, P. J. C.

and Agriculture, E. i. Unsupervised detection of vineyards by

3D point-cloud UAV photogrammetry for precision

agriculture, 155 (2018), 84-95.

[13] Baron, L. Genetic algorithm for line extraction. École

polytechnique de Montréal, 1998.

[14] Xu, S., Tie, J. J. S. and Transducers Straight Line

Detection Based on Particle Swarm Optimization, 160, 12

(2013), 653.

[15] Hough, P. V. Method and means for recognizing

complex patterns. Google Patents, City, 1962.

[16] Ji, R., Qi, L. J. M. and Modelling, C. Crop-row detection

algorithm based on Random Hough Transformation, 54, 3-4

(2011), 1016-1020.

[17] Leemans, V., Destain, M.-F. J. I. and Computing, V.

Line cluster detection using a variant of the Hough transform

for culture row localisation, 24, 5 (2006), 541-550.

[18] Åstrand, B. and Baerveldt, A.-J. J. M. A vision based

row-following system for agricultural field machinery, 15, 2

(2005), 251-269.

[19] Soares, G. A., Abdala, D. D. and Escarpinati, M.

Plantation Rows Identification by Means of Image Tiling and

Hough Transform. City, 2018.

[20] Ballard, D. H. J. P. r. Generalizing the Hough transform

to detect arbitrary shapes, 13, 2 (1981), 111-122.

[21] Hague, T., Tillett, N. and Wheeler, H. J. P. A. Automated

crop and weed monitoring in widely spaced cereals, 7, 1

(2006), 21-32.

[22] Søgaard, H. T., Olsen, H. J. J. C. and agriculture, e. i.

Determination of crop rows by image analysis without

segmentation, 38, 2 (2003), 141-158.

[23] Fontaine, V. and Crowe, T. J. C. b. e. Development of

line-detection algorithms for local positioning in densely

seeded crops, 48 (2006), 7.

[24] Jiang, G., Wang, Z. and Liu, H. J. E. s. w. a. Automatic

detection of crop rows based on multi-ROIs, 42, 5 (2015),

2429-2441.

[25] García-Santillán, I., Guerrero, J. M., Montalvo, M. and

Pajares, G. J. P. A. Curved and straight crop row detection by

accumulation of green pixels from images in maize fields, 19,

1 (2018), 18-41.

[26] Kise, M., Zhang, Q. and Más, F. R. J. B. e. A

stereovision-based crop row detection method for tractor-

automated guidance, 90, 4 (2005), 357-367.

[27] Kise, M. and Zhang, Q. J. B. E. Development of a

stereovision sensing system for 3D crop row structure

mapping and tractor guidance, 101, 2 (2008), 191-198.

[28] Pla, F., Sanchiz, J. M., Marchant, J. A., Brivot, R. J. I.

and Computing, V. Building perspective models to guide a

row crop navigation vehicle, 15, 6 (1997), 465-473.

[29] Jiang, G., Wang, X., Wang, Z., Liu, H. J. C. and

Agriculture, E. i. Wheat rows detection at the early growth

stage based on Hough transform and vanishing point, 123

(2016), 211-223.

[30] Hague, T. and Tillett, N. J. M. A bandpass filter-based

approach to crop row location and tracking, 11, 1 (2001), 1-

12.

[31] Bossu, J., Gée, C., Jones, G., Truchetet, F. J. c. and

agriculture, e. i. Wavelet transform to discriminate between

crop and weed in perspective agronomic images, 65, 1 (2009),

133-143.

[32] Dixon, W. J. and Massey Jr, F. J. Introduction to

statistical analysis (1951).

Appendix

Table 1:
Orchard

Instance

Number of

classified

Trees

Average

Confidence

Standard

Dev of

Confidence

Standard

Dev of Local

Angles

Mean inter-

tree

Distance

Standard

Dev of inter-

tree Distance

Problem

Difficulty

Description

32377 2581 0.745 0.336 56.339 10.42 3.63 Hard Sharply

curved rows

35516 14404 0.296 0.214 53.469 2.15 0.97 Hard Dense

uncertain

trees

36502 4532 0.685 0.285 39.454 3.54 1.55 Hard Dense

rotating

rows

36507 2326

0.894 0.060 20.849 3.65 1.63 Easy Straight

Confident

Rows

36513 2435 0.862 0.142 18.901 3.70 1.89 Medium Pair of

overlapping

straight

orchard

41630 4038

0.573 0.280 35.715 3.19 1.08 Hard Dense

uncertain

noisy rows

43581 10190 0.544 0.270 35.839 3.38 1.72 Medium Dense

straight

rows with

minor noise

36507_Test 235 0.884 0.060 15.223 3.59 1.67 Easy Straight

Confident

Ros

32377_Test 281 0.810 0.286 52.217 9.37 3.73 Hard Sharply

curved rows

35516_Test 967 0.341 0.230 53.002 2.15 0.97 Hard Dense

uncertain

trees

MODFS Testing Orchard Predicted Rows and Ground-truth Orchards

Orchard 32377 and its

Ground-Truth Rows

Orchard 36502 and its

Ground-Truth Rows

Orchard 36507 and its

Ground-Truth Rows

MODFS Orchard Predicted Rows

Orchard 41630 Orchard 43581

Orchard 36513 Orchard 35516

