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ABSTRACT 

The identification of trees from aerial images is a popular topic. 

They are useful for quickly gathering data about trees over large 

distances. Digital Elevation Models (DEMs) contain data about the 

height of a terrain, therefore, DEMs of orchards are useful for 

determining the growth rate of trees. This allows farmers to monitor 

their orchards which would allow them to customise their farming 

techniques according to their orchards’ needs. To identify trees in 

these DEMs, an image segmentation technique must be used. There 

are many methods available and all differ in execution time, 

accuracy and the type of data they are suitable for. This paper 

investigates the use of two such models: Simple Linear Iterative 

Clustering (SLIC) and watershed segmentation when used on 

DEMs of orchards as well as on synthetic DEMs with the aim of 

understanding their viability when used together. With the use of 

34 synthetic DEMs, a mean accuracy (when measured using the 

union over intersection calculation) of 88.16% per tree was 

obtained in one of the easy case DEM categories. Performance of 

the system ultimately depended on factors of the DEMs, such as 

noise, proximity of the trees to each other and the gradient of the 

ground. 

CCS CONCEPTS 

• Computing methodologies → Computer graphics → Image 

manipulation → Image processing 

KEYWORDS 

Tree segmentation, image segmentation, SLIC, watershed, DEM, 

orchard, OpenCV 

1 Introduction 

Humanity is dependent on the agricultural industry for survival 

[36]. It is vital that food security is improved upon. One of the ways 

to achieve this would be to increase the yield of existing farms. This 

can be accomplished by allowing farmers to customise their 

farming techniques according to tree health information, such as 

tree height (which can be used to gather information about a tree’s 

mass and its fruit yield [41]), gathered from their orchards [23]. 

Many of these methods require trees to be identified from aerial 

imagery. In this project, the imagery used was Digital Elevation 

Models (DEMs), which are height maps of a terrain. This height 

data is obtained from Light Detection and Ranging (LiDAR) 

systems [15]. LiDAR sensors are mounted onto drones. As they fly 

over terrain, they emit a beam of light into the ground and measure 

the time it takes for the beam to bounce back to the drone. By doing 

this, they can indirectly measure the height of terrain. 

      LiDAR sensors are expensive [9]. Cheap, pseudo-LiDAR 

techniques, which aim to extract terrain height data from low-

resolution visible spectrum images, are not very accurate [40]. 

Photographic images from cheaper systems are often not usable due 

to their low-resolution. Therefore, to allow farmers to measure tree 

height (and other metrics) cheaply, methods must be developed to 

allow for tree data extraction from DEMs that do not have a very 

high depth precision. This paper aims to investigate image 

segmentation techniques – Simple Linear Iterative Clustering 

(SLIC) and watershed segmentation – that can be used to identify 

trees in DEMs of orchards as well as in synthetic DEMs, without 

the use of photographic (RGB) data. This does pose a challenge as 

it reduces the amount of data we can work with. A secondary aim 

is to compare the performance of SLIC with that of the watershed 

algorithm when used in this context. Metrics such as execution time 

and Intersection Over Union (IOU) values were obtained. The 

results produced by this project, the location information of trees in 

DEM, can used in other projects to further extract information from 

DEMs, such as tree height data. 

      The segmentation worked well on flat terrains, obtaining a 

mean IOU per tree of 88.16%. It also performs better in cases where 

trees have no noise, therefore, noise and ground gradient are 

significant factors which affects segmentation accuracy. The other 

important factor is the proximity of the trees to each other. Due to 

these factors, the segmentation system does not work as well in 

DEMs that have uneven terrain and very noisy, compacted trees, 

      This paper discusses background information, and related work, 

on the concepts involved in this project in Section 2. In Section 3, 

the design and implementation of the solution developed will be 

discussed. Section 4 contains methodology about the experiment 

design and execution. Section 5 presents the results obtained from 

the experiments in Section 4 and also discusses findings. The 

limitations of the project are discussed in Section 6, while the 

ethical, professional and legal issues are covered in Section 7. 

Finally, Section 8 concludes the paper and offers insight about 

future work. 

2 Background and Related Work 

This section presents background information regarding concepts 

used in this project. 



October 2020, Cape Town, Western Cape, South Africa L. Moodley 

 

2 

 

2.1 DEMs 

Digital Elevation Models (DEMs) are raster images that contain the 

height data of some terrain [43]. They are single band images where 

the value of each pixel represents a height of a piece of land. This 

height data can be collected by LiDAR sensors [15], which work 

by emitting light at a target and measuring the time it takes to return. 

This data is then used to indirectly measure distance between the 

target and sensor. Synthetic data can also be produced for DEMs 

[28]. In this project, both DEMs of real terrain and synthetic DEMs 

are considered. 

2.2 Filters 

Filters are operations that can be used to manipulate images. They 

are useful for extracting certain areas from images or even for 

emphasising certain parts of images. 

      Blurring filters are useful for removing noise from images. As 

noise can negatively impact segmentation [26], this is a useful 

operation in image segmentation. A simple blurring technique 

would be to assign pixels the value of the average of its 

neighbourhood. Gaussian blur, a more sophisticated method, is also 

useful for smoothing images [17]. It uses a matrix to scale pixels in 

a neighbour. Bilateral blurring is useful for cases where one would 

want to smooth an image, but leave the edges sharp [29], which 

would be useful for edge detection. 

      Threshold functions are useful for generating a mask image, a 

binary image, based on some limit [5]. If a pixel is less the limit, it 

is set to 0 and if it is equal to or greater than the limit, it is set to 1. 

Adaptive thresholding techniques exist, which can locally 

threshold an image by automatically calculating the local limit, as 

investigated by Xu et al. [42], however, such a technique has 

difficulties when two image features with variances that are very 

different, lie next to each other. As the height of the trees used in 

this project are variable, this approach was not used. 

2.3 Simple Linear Iterative Clustering (SLIC) 

Superpixels are a collection of similar, neighbouring pixels [2]. 

Clusters, in this project, refers to a collection of pixels. Simple 

Linear Iterative Clustering (SLIC) is a way of grouping pixels into 

superpixels [1], by using high-dimensional space. To do this, it 

requires the number of clusters (superpixels), k, required in an 

image. The centres, centroids, of the clusters are spread out at 

regular intervals throughout the image. The distance between each 

pixel and centroid is then calculated. Distance, in this case, refers 

to the Euclidean distance when considering all the dimensions of a 

pixel, such as the RGBA bands and x, y coordinates. As these 

values may have different scales, normalisation is required before 

SLIC processing is performed. To improve performance, the 

Euclidean distance calculation is normally only performed between 

pixels and centroids that lie in the same neighbourhood, often 

defined as a window of n pixels wide. Once all pixels have been 

assigned to their nearest centroid, the clusters have been formed. 

The centre of each cluster is then calculated, by averaging all the 

pixels in a cluster – again, considering all dimensions. The centroid 

is moved to the location of the newly calculated cluster centre. 

Pixels are then assigned to centroids again and the process repeats 

until the centroids no longer move when the cluster centre is 

recalculated. Variables can be introduced to control the size of the 

superpixels [31]. This processes of calculating new clusters 

improves the segmentation, but this can take a long time to occur, 

so the algorithm is often limited in the number of iterations it can 

run, as investigated by Ren et al [31]. This greatly reduces 

execution time and is used in this project. A decision must be made 

to achieve the optimal balance between accuracy and execution 

time. 

      In OpenCV, the library that was used to execute the SLIC 

function, there is an option that allows for hexagonal initial cluster 

shapes [13]. This is an improvement over square shaped clusters as 

it means that clusters would be able to fit the round shape of the 

trees, when the algorithm is executing its first few iterations, better 

than square-shaped clusters. OpenCV also automatically calculates 

the number of clusters to use, and instead, requests a cluster size as 

input. 

      In an investigation by Han et al. [20], they found that SLIC, due 

to its finite number of superpixels, often under-segments images. 

Their solution was to use another K-means iteration in each 

segment to improve segmentation accuracy. This idea was used 

here, by using watershed segmentation to further segment the 

clusters produced by SLIC. 

2.4 Watershed Segmentation 

The watershed algorithm is a technique, in image segmentation, 

that uses the concept of catchment basins [12], which are low-lying 

areas that are noted for their ability to collect precipitation, to 

segment images [11]. Watersheds are high-lying regions which 

separate catchment basins. In an image, it is up to the user to 

defining what constitutes as low- or high-lying regions [30]. To 

process the image, a “flood” is performed at predetermined points 

(there is usually one point in every catchment basin). As the basins 

fill, the pixels that are covered by the flood are classified as being 

part of the catchment basin. If two basins meet, the pixels along 

their point of contact are considered. If they are very similar to the 

pixels found in both basins, then the basins will merge, forming a 

single, larger basin. If the pixels at the meeting point are not similar 

to the pixels in the basin, then a boundary (watershed) is formed at 

the meeting point, separating the two basins [6]. After the flooding 

has been completed, all pixels that have not been flooded are 

classified as watershed lines. It is these watershed lines that mark 

the boundaries of the different segments the algorithm has 

identified in the image. 

      Watershed segmentation is well suited for problems that deal 

with ground height, as the user can very clearly define what 

constitutes as a low- and high-lying region in a heightmap image. 

However, noise in these images can lead to inaccurate 

segmentations. A common issue is over-segmentation, where 

multiple, small basins are identified in an area where a single, large 

basin should be. Markers are a way of overcoming this problem, as 

they allow the algorithm to identify the significant basins in the 

image [11]. Fig. 1(a) shows a function with many local minima, 
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while Fig. 1(b) shows the same function with its significant local 

minima (markers) identified.  

 

 

a)                                          b) 

Figure 1: A function  showing watershed lines in an 

unprocessed function (a) and significant minima (markers) 

identified in the function (b) [10]. 

      Gies et al. described abnormal segmentations, with no proposed 

solution, that can occur when noise is present at the edge of an 

image segment [19] and similar phenomena were observed during 

this project. Finding a way to highlight the areas of interest is 

important when using watershed, as demonstrated by Frucci et al. 

[18] as this allows the watershed algorithm to be more contained as 

it will be able to identify edges more easily, prevent it from 

spreading into areas it should not consider. 

2.5 Region Growing 

Region growing is an image segmentation method based on seed 

points [4] and the flood-fill technique, where an action is performed 

on a pixel and recursively on all of the pixel’s neighbours until 

some terminating condition is met [27]. Region growing attempts 

to identify connected pixels of similar value in an area. This was 

considered for this project. As the algorithm expanded from its seed 

point, it would calculate the difference in height (based on the 

values of pixels) from the seed pixel to the current pixel. If the 

height is greater than some pre-determined limit, then that pixel 

represents the edge of the tree. The issue with this approach is that 

the height of the trees can vary. A height limit may suit one tree 

very well, but not its shorter (or taller), neighbouring tree. This was 

experienced with some of the DEMs and, as a result, we decided 

not to investigate this method further. 

3 Framework Design and Development 

This section present information about the system developed and 

the techniques used to process DEMs. 

3.1 Design 

An agile approach was adopted when designing and developing the 

system. This was beneficial, as it allowed us to quickly change 

course when we felt the system need significant changes, a useful 

aspect of agile, given the short time frame we had to complete the 

project. Watershed was meant to be the sole segmentation means, 

however, it was very sensitive to noise. SLIC performed much 

better in this regard, but SLIC has a longer execution time. 

Therefore, both were investigated to determine the improvement 

the combination of SLIC and watershed offers. An investigation 

was also done to determine the difference in execution time and 

performance between SLIC and watershed. 

      There are 3 parts of the system: pre-processing, segmentation 

and evaluation, seen in Fig. 2. Pre-processing is where DEMs are 

formatted to the form required by the segmentation part of the 

system. Markers are also extracted (for watershed) and filters are 

applied. Segmentation is where watershed segmentation takes place. 

Evaluation tests the results of the system, by comparing the tree 

masks outputted by the system against the ground truths. The UI is 

minimal, taking place through terminal and input and output are 

done through TIFF images. 

3.2 Development Tools 

      C++ was chosen for this project, due to its robust and fast nature 

[21]. The OpenCV library was used to implement many of the 

image processing techniques. Visual Studio Code was used as the 

IDE and CMake was used to build the project. For debugging, the 

GNU Project Debugger and Valgrind were used. Git was used for 

version control. Doxygen was used for documentation. 

 

Figure 2: System diagram including the pre-processing, 

segmentation and evaluation frameworks. 

3.3 Implementation 

The main parts of the system, pre-processing and segmentation, can 

be reduced to the pseudocode in Algorithm 1. 

 

Algorithm 1: Segmentation 

Input: DEM 

Output: A tree mask 

1.    Set null values in the DEM to 0 

2.    LocalMaxima := FindLocalMaxima ( DEM ) 

3.    Apply Gaussian filter to DEM 
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4.    Perform SLIC operation on DEM to get clusters 

5.    FOR every cluster: 

6.            IF cluster contains a local maximum: 

7.                    Set cluster to tree 

8.            END IF 

9.    END FOR 

10.  Calculate the average variance of all tree clusters in the 

DEM 

11.  FOR every cluster in the DEM that is NOT a tree: 

12.         IF cluster has a neighbour that is a tree AND cluster 

has a variance of at least 90% of the average variance: 

13.         Set cluster to tree 

14.                   Find local maximum of cluster and add it to 

LocalMaxima 

15.          END IF 

16.    END FOR 

17.    SLICMask: = DEM 

18.    FOR every cluster in the DEM: 

19.    IF cluster is a tree: 

20.            Set all cluster pixels in SLICMask to white 

21.    ELSE: 

22.            Set all cluster pixels in SLICMask to black 

23.    END ELSE 

24.    DEM := bitwise-and ( DEM , SLICMask ) 

25.    Assign every point in LocalMaxima a unique value 

26.    WatershedMask := watershed ( DEM , LocalMaxima ) 

27.    RETURN WatershedMask 

 

      SLIC was used to segment the trees from the ground, which 

follows an approach by Frucci et al. [18] to highlight the areas of 

interest in an image. Once SLIC has determined which clusters are 

trees (which are cluster with a significant local maximum, 

discussed below, present), the system will classify all other clusters 

as being part of the ground (and will set those pixel values to 0). 

This allows the watershed algorithm to focus only on the tree 

clusters, providing a sharper edge for the tree clusters, thus 

improving the chance that the watershed algorithm will detect the 

edge of a tree. 

      Distance transform [16], an algorithm which assigns every 

pixel a value according to its distance to the nearest black pixel 

(usually the background of the image), is a popular way of 

determining markers for the watershed algorithm [3]. However, this 

proved difficult to implement as the DEMs were not guaranteed to 

have any black pixels (the ground part of the DEM could consist 

entire of non-black pixels). Instead, we assumed that the centre of 

a tree would also be its highest point. We then used a significant 

local maxima detection algorithm to find local maxima in the image, 

to pose as markers for the watershed algorithm. This works by 

expanding the high areas in the image, to emphasise the high points, 

and then using a window to traverse through the image. The highest 

point in the window is chosen to be the local maximum [39]. 

      To identify trees that have been missed by the local maxima 

detection algorithm, a variance check was done on all non-tree 

SLIC clusters [32]. The average variance of all tree clusters was 

calculated, where the variance of a cluster is the variance of all pixel 

values in that cluster [35]. Each cluster was then checked. If the 

variance of that cluster was at least 10% (this value was derived 

after several tests and is small to cater for the small, shallow trees 

of the orchard DEMs) of the average variance, then that cluster 

would be reclassified as a tree. A neighbour check was also done to 

ensure that only clusters neighbouring trees were considered as we 

made the assumption that trees in orchards form a grid and would, 

therefore, have tree neighbours. This prevented incorrectly 

classifying noise (or other obstacles) as trees. This neighbour 

checking algorithm was done in place of a row finding algorithm 

[38], which was too time consuming to implement accurately with 

the time constrains we were under. 

      One of the other decisions that had to be made was determining 

the appropriate filter to use to alleviate noise. Even though a 

bilateral filter is useful in cases of edge detection, we decided to 

use a gaussian filter instead. The noise at the edges of trees, which 

are essentially gaps through which the ground can be seen, meant 

that the bilateral filter would leave these intact, which would cause 

the watershed algorithm to produce abnormal segments, as 

discussed by Gies et al. [19]. The Gaussian filter was better at 

smoothing these artefacts, which can be seen in Fig. 3. 

 

 

a)                            b)                                 c) 

Figure 3: A series of images displaying a sample DEM (a), the 

DEM after a bilateral filter has been applied (b) and the DEM 

after a Gaussian filter has been applied (c). 

The results from each of the significant operations can be seen in 

Fig. 4 below. 

 

 

a)                                              b) 

 

c)                                                  d) 

Figure 4: An illustration of the segmentation process, showing 

the original DEM (a), the DEM after a Gaussian filter has 

been applied (b), the DEM after a SLIC mask has been 

applied (c) and the trees identified from the DEM (d). 
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4 Experiment Design and Execution 

This section presents information about the experiment regarding 

computer hardware used, data used and the evaluation methods 

used to test the tree masks produced by the system. 

4.1 Hardware and Environment 

The experiments were carried out on a virtual machine running 

Ubuntu 20.04. The virtual machine was assigned 4 Intel Core i7-

6700HQ CPU cores and 8GB DDR4 RAM.  None of the techniques 

used made use of GPU processing, therefore, the dedicated GPU 

was not required.  

4.2 Data 

Two DEM datasets were considering in this experiment. The first 

of which was provided by Aerobotics. These were single-layer, 

greyscale TIFF images of orchards which consisted of 32-bit float 

pixel values. Using the GeoTIFF standard, they contained location 

metadata, which allowed us to establish boundaries in order to crop 

out areas in the DEM that were not of interest. An example can be 

seen in Fig. 5. 

      As this is real data, measured using LiDAR, it can be prone to 

error [7]. Abnormal artefacts can be observed in the DEM, that 

would not exist on an ordinary photograph of the same terrain. The 

height resolution can be poor as well, which is one of the side-

effects of using cheaper LiDAR equipment, or pseudo-LiDAR 

techniques [40]. This can be observed in Fig. A1 and Fig. A2, 

Appendix A, where the height profile of samples of the orchard 

DEM are displayed. With an orchard tree, we expect the curve to 

form a dome shape at the canopy of the tree, with rapid drops to 

either side. The ground between trees should also be flat. However, 

from the images in Fig. A2(b.ii & c.ii), we see that the canopy part 

of the trees is very steep, almost forming a sinusoidal shape. The 

profile of Fig. A1(a.i) has a very irregular shape, which the 

maximum height of trees differing greatly from each other. These 

factors negatively affected the results of the segmentation system. 

 

        

Figure 5: A DEM of an orchard, where light areas represent 

high lying regions and dark areas represent low lying regions. 

      The second set of DEMs was provided by a related project. This 

synthetic data, which was also 32-bit float, single-layer greyscale 

images, was used test our algorithm against a wide variety of 

terrains and it allowed for the tuning of parameters in the system. 

From the height profiles of the images in Fig. A3, Appendix A, it 

can be seen that these DEMs follow more closely the expected 

shape of orchard trees. The images could be broken up into five 

categories: flat terrain, gentle gradient terrain, steep gradient terrain, 

large-hilled terrain and small-hilled terrain. Within each category, 

there were three subcategories: smooth trees; noisy, dispersed trees; 

noisy, compacted trees. 

      There were several properties of the DEMs that had to be 

considered. One of which was the space between trees. Spread 

DEMs had a clear space in between trees. The gradient of the 

ground was important as well. The flat, gentle, and steep DEMs had 

flat, gentle and steep gradients respectively. The largeHill DEMs 

represented a large rounded hill. The smallHill DEMs represented 

terrain with many little hills spread throughout the land. Noise was 

another factor. Smooth DEMs had trees with no noise (their 

canopies were a smooth curve), while images without the smooth 

indicator had noise in their trees. 

      Some additional challenges are presented with the Aerobotics 

data, as there are some unknown obstacles in the image, such as a 

non-orchard tree. 

4.3 Evaluation 

Evaluating the images produced by this system required a ground 

truth, which is a set of measures that is more accurate than the 

measurements produced by the system being tested. In this project, 

two such ground truths, created manually, were considered: tree 

masks (an image with all tree pixels set to white and the rest set to 

black) and tree centres (an image where only the pixel representing 

a tree centre is set to white, while other pixels are set to black). 

      The first evaluation done was to determine the accuracy of the 

tree centre detection. This was vital as the tree centres were used as 

markers for the watershed algorithm. A ground truth image 

contains the actual location of tree centres. For every local 

maximum in the ground truth, the Euclidean distance [14] to every 

predicted local maximum was calculated, and the closest local 

maximum was regarded as being that tree’s centre. If, however, the 

distance is greater than the radius of a tree, then that indicated that 

the algorithm had failed to detect the local maximum of that tree. 

      The second test performed, which aimed to determine the ratio 

between the number of correctly identified trees and the number of 

incorrectly identified trees, obtained the Sorensen-Dice coefficient 

(a number from 0 to 1) for every DEM [8]. This involved 

comparing the tree mask calculated and information about the tree 

clusters produced by the system with the ground truth centres. If a 

tree centre matched with a white pixel on the mask, then that tree 

had been correctly identified (a true positive). If the centre did not 

match with the mask, then that indicated that the tree was not 

identified (a false negative). If a tree cluster did not contain a centre, 

then that indicated that the system had identified a tree that did not 

exist (a false positive). 



October 2020, Cape Town, Western Cape, South Africa L. Moodley 

 

6 

 

      The third test performed was an Intersection Over Union (IOU) 

calculation [33], which determined how closely the calculated tree 

mask fitted the ground truth mask, both globally and per tree. In 

this project, to determine the IOU per tree, we used bounding boxes 

[24] to estimate the extent of the actual tree and the extent of the 

calculated tree. The minimum and maximum coordinates of each 

tree was determined, and this was used to generate a box to 

represent each tree (both for ground truth and calculated). The area 

of the overlapping region of the two boxes, along with the total area 

of each box, was then used to calculate IOU. A separate calculation, 

to obtain the overall IOU, had to be done as the IOU per tree figure 

would not account for false positive tree identifications. This 

involved comparing the ground truth mask with the calculated 

mask. The number of matching pixels were then divided by the 

number of non-matching pixels to produce the IOU. 

      Qualitative evaluation was also required to assess the shapes of 

the tree masks and distribution of errors. This was also required to 

inspect the non-orchard tree region of the orchard DEM. 

Additionally, as no ground truth was provided for the orchard 

images (and it was difficult to manually draw a ground truth mask 

due to the low resolution of the DEMs), the orchard DEMs relied 

primarily on visual inspection to determine the performance of the 

system when used on those images. 

      Lastly, execution time of SLIC, watershed and the system as a 

whole were also measured to determine their performance. 

5 Results and Discussion 

This section presents the results of the tests described in Section 4.3 

and discusses the findings from these results. 

5.1 System Tuning 

Some of the algorithms used in the system required adjustments to 

their parameters. This allowed them to work more accurately. 

Optimal parameter values were chosen based on logical decisions, 

such as setting the initial cluster size of the SLIC function to be the 

diameter of a tree, and then using trial and error to determine if 

better parameter values could be obtained. The same was done with 

the local maxima detection algorithm. This can be seen in Fig. 6, 

where the local IOU per tree is plotted according to differing SLIC 

cluster and local maxima window sizes. SLIC performs better when 

its cluster size is higher than 27 pixels, while the local maxima 

algorithm performs better when its neighbourhood size is less than 

25 pixels. This makes sense considering what the aim of each 

algorithm is. SLIC is not responsible for separating trees from each 

other, therefore, it can have large sizes, which may contain more 

than one tree. The local maxima algorithm is responsible is locating 

the centre of trees. If its window size is too large, it may miss out 

trees entirely. 

  

Figure 6: A graph showing the average IOU percentages 

obtained for different cluster sizes in the SLIC and different 

window sizes in the local maxima detection algorithm for the 

flat terrain. 

      The next parameter that required tuning was the number of 

iterations that the SLIC operation ran for. The higher the number of 

iterations SLIC can run for, the higher the accuracy of its 

segmentation. We could have let SLIC run to completion, i.e. run 

it until the centroids no longer move between iterations, but that 

could be very time consuming. Instead, we ran SLIC many times 

while changing the number of times it iterated for, to determine the 

optimal iteration number. The results of this can be seen in Fig. 7, 

where the IOU percentage and execution time are plotted for 

different iteration amounts of SLIC. Execution time has a linear 

relationship, with it increasing steadily as the number of iterations 

increases. IOU, however, experiences a sharp increase at the 

beginning, before plateauing. This indicates that the SLIC 

algorithm does produce an accurate result early on. There is only a 

1.4% increase in IOU when increasing the number of iterations 

from 3 to 20, while the execution time increases by 360.48% during 

this same period. Therefore, 3 iterations seem like the optimal value, 

however, to cater for edge cases, we choose 6, allowing for 

increased accuracy at a reasonable execution time.  

 

Figure 7: A graph showing the IOU percentages obtained and 

time taken to complete segmentation for different SLIC 

iteration amounts for the flat terrain. 

5.2 Marker Detection 

As watershed relies on the local maxima detection algorithm to 

identify tree centres, it is important to test the local maxima 
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detection as well. Table 1 contains the results of these tests. It can 

be seen that the algorithm performs best on flat terrain, with 

98.312% of tree centres identified and a calculated mean distance 

of only 0.308 pixels from the ground truth centre. More detailed 

results are displayed in Table B1, Appendix B. It can be seen that 

the spread terrains are more likely to have all trees identified. This 

would be due to the size of the local maxima window. As the trees 

are spread out, there is only 1 tree present in the window at a time 

as it traverses the image. In non-spread images, where trees can 

occlude each other, hence their centres will be closer to each other, 

there is a chance of 2 trees ending up in the local maxima window 

at the same time. In this case, the algorithm will only identify the 

taller tree and will ignore the shorter one. This leads to trees being 

unidentified. It should also be noted, however, that the spread 

terrains do not always have low mean distances, such as 

steep_spread, which has a mean distance of 0.726 pixels and a 

standard deviation of 0.483. As the trees are spread out, they can 

often be cut out by the local maxima window, i.e. part of the tree 

lies outside the window. When this occurs, the centre of the tree 

(and the tree’s highest point) may be excluded from the local 

maximum calculation, and the calculated local maximum would be 

that of another high point of the tree. However, considering that, in 

the DEMs, the centre of a tree may not necessarily be the highest 

point, the local maxima detection algorithm does detect the centres 

adequately as, in most cases, it is off by an average of less than a 

pixel. 

Table 1: A table displaying the mean Euclidean distance of the 

calculated centres from the actual centres for the different 

terrains. 

Terrain Total 

Trees 

% of 

Trees 

Identified 

Mean 

Distance 

from Centre 

(in pixels) 

Standard 

Deviation 

Flat 711 98.312 0.308 0.325 

Gentle 530 95.849 0.350 0.440 

Steep 540 95.926 0.376 0.430 

Large hills 466 82.403 1.257 2.366 

Small hills 568 94.014 0.403 0.479 

5.3 Segmentation 

To determine the segmentation accuracy per tree, the IOU value per 

tree was obtained. In Fig. 8, the stacked graphs are used to display 

the percentage of trees that obtained a certain IOU percentage. We 

see that for the flat, gentle and steep terrains, the smooth 

subcategory has more IOUs with a value of 70% or more, than the 

other subcategories. This is because the trees in these terrains are 

smooth. As the watershed algorithm is sensitive to noise, the 

smooth terrains pose less of a challenge. It is also clear that the 

gradient of the ground affects the accuracy of segmentation as the 

DEMs with shallower gradients have a better accuracy than DEMs 

with steeper gradients. Except for the flat terrain, the noisy and 

disperse subcategory have more trees with an IOU of at least 60%, 

than the noisy and compact subcategory. The spread-out nature of 

the trees in the noisy and disperse subcategory means that there is 

a greater chance that only one tree is present in a SLIC tree cluster, 

thus ensuring that tree masks fit tighter. The noisy and compact 

subcategory has the worse segmentation, as expected. The lack of 

space between trees increases the chance of under-segmentation. 

Due to the close nature of the trees, the gradient in-between trees 

can be shallow (as seen in Fig. A3(c.ii), Appendix A). This means 

that the algorithm will find it difficult to determine the boundary 

between two trees. The noise factor leads to abnormal segments, 

which reduces IOU which can be seen, as non-smooth DEMs have 

a lower accuracy than smooth DEMs. An unusual phenomenon can 

be seen in Fig. B1(c), Appendix B, where some of the tree segments 

have a square shape. This is a side effect of the Gaussian filter, 

which often leaves images grid-like. The watershed segmentation 

follows these patterns, which then produces a square tree segment. 

 

a)                             b)                                c) 

                   

                                    d)                               e) 

 

Figure 8: A series of graphs showing the percentages of trees 

that obtained a certain IOU percentage (shown in the legend), 

when using different subcategories of terrains in the flat 

terrain (a), gentle terrain (b), steep terrain (c), large-hilled 

terrain (d) and small-hilled terrain (e). 
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      Although Fig. 8 displays data per tree, it is also important to 

gather a high-level view of the segmentation. Table 2 displays the 

mean Sorensen-Dice coefficient and mean overall IOU of DEMs. 

The small-hilled category provides a good example of why an 

overview is important. Its noisy and disperse subcategory has a 

good mean IOU per tree of 80.2%, but a poor overall IOU of 24.3%. 

This is due to false positives in the image, which would not affect 

per tree calculations, but would affect the overall IOU. Fig. B1(e), 

Appendix B is an example of an image with many false positive 

identifications. Cases with high mean Sorensen-Dice values, but 

low mean overall IOUs or low mean per tree IOUs indicate that the 

system had successfully identified the location of most trees, but 

had trouble determining their boundaries. This occurs frequently in 

the smooth subcategory where the gentle terrain, for example, has 

a mean Sorensen-Dice of 0.987 but a mean overall IOU of only 

75.94%. This is counterintuitive, as we expected noise to have a 

greater negative impact on segmentation than proximity. The 

images here, as they can be dispersed or compacted, have 

watershed tree clusters with more than one tree. The clusters often 

include ground space, which decreases overall IOU, as seen in Fig. 

B1, Appendix B, where the tree masks have abnormal shapes. 

      The accuracy of the segmentation of the flat, smooth DEMs is 

comparable to that of Martins et al. [25] (as they have achieved 

accuracies of 87.50% to 89.01%) although, they made use of CNNs 

with their SLIC implementation, without using watershed. 

Table 2: A table displaying the mean Sorensen-Dice 

coefficients, mean overall IOU, mean IOU per tree (and 

standard deviation) for different terrains. 

Terrain Mean 

Sorensen-

Dice 

Mean 

Overall 

IOU 

(%) 

Mean 

IOU 

Per 

Tree 

(%) 

Standard 

Deviation 

(%) 

a) Flat 

Smooth 1 87.52 88.16 18.28 

Noisy, disperse 0.6577 65.43 69.8 17.09 

Noisy, compact 0.7197 67.41 63.45 17.41 

b) Gentle 

Smooth 0.987 75.94 72.07 25.44 

Noisy, disperse 0.597 60.63 68.42 23.81 

Noisy, compact 0.6973 58.6 61.59 20.97 

c) Steep 

Smooth 0.9701 68.55 69.95 28.17 

Noisy, disperse 0.5 56.61 62.38 24.71 

Noisy, compact 0.718 58.03 57.21 21.76 

d) Large hill 

Smooth 0.9262 74.22 55.22 26.61 

Noisy, disperse 0.6617 55.11 69.76 18.53 

Noisy, compact 0.7277 62.69 54.3 22.38 

e) Small hill 

Smooth 0.831 57.08 75.81 22.14 

Noisy, disperse 0.4941 24.3 80.2 11.77 

Noisy, compact 0.6239 42.6 61.76 19.1 

      A visual inspection of the orchard DEM was performed. In Fig. 

9, a sample of the orchard DEM with a non-orchard tree can be seen 

(the light area in Fig. 9(a)). The system had classified most of this 

region as a tree. The use of the local maxima detection meant that 

the high points in the non-orchard tree were found. Improvements 

to remove false positives should be made. 

 

 

a)                                              b) 

Figure 9: A series of images showing the original DEM (a) and 

tree mask produced by the system, where coloured regions 

represent a tree. 

      In Fig. 10, there is a sample of the orchard DEM and its 

calculated tree mask. There several gaps present in the mask and it 

is obvious, by looking at the DEM, that there should be a tree 

present there. The close proximity of the trees here presented an 

issue. The local maxima detection algorithm failed to detect trees 

as there were multiple trees present in its window at a time. The 

variance check has also failed to detect that these are trees. It is 

unlikely that their variance is very different from neighbouring 

trees. There are, in fact, mini clusters in between trees, that 

increased the neighbour count, which prevented the clusters from 

being reclassified as trees. The noise in the DEM (the areas around 

trees which extend into the ground space, which leads to trees from 

different rows touching each other) leads to the formation of these 

mini clusters. We also see cases where tree clusters, from two trees, 

extend past a middle tree to meet each other. Again, this is due to 

the noise in the DEM. 

 

 

 

 

 

 



October 2020, Cape Town, Western Cape, South Africa L. Moodley 

 

9 

 

 

a)                                               b) 

Figure 10: A series of images showing the original DEM (a) 

and tree mask produced by the system, where coloured 

regions represent a tree. 

      The following images, Fig. 11, show an area of the DEM with 

a very low-lying tree (with no neighbours), present where there is 

a dark region in Fig. 11(a). The system has successfully identified 

this tree with the local maxima detection (the variance check would 

not work here as the tree has no tree neighbours). We also see a 

case where a tree cluster is complete encircled by another cluster. 

The trees in that region have very shallow slopes, with no sharp 

drop-offs at their edges. This makes it difficult for the watershed 

algorithm to detect the edge of the tree. Thus, when being 

calculated, it expands until it meets and engulf another tree rather 

than stopping at the edge of the first tree. 

 

a)                                               b) 

Figure 11: A series of images showing the original DEM (a) 

and tree mask produced by the system, where coloured 

regions represent a tree. 

5.4 SLIC versus Watershed 

As two segmentation techniques were used, it is important to 

determine the cost and impact on segmentation accuracy they each 

had. Fig. 12 shows a series of graphs that display the percentage of 

trees that had obtained a certain IOU percentage for different 

terrains. From the graphs, it can be seen that, overall, using a 

combination of SLIC and watershed does yield more matches with 

an IOU of 50% or more for the flat and gentle terrain. For the small-

hilled terrain, it is about even, however, the watershed-only method 

has fewer trees in the 70-100% IOU ranges. Watershed is more 

sensitive to noise than SLIC. The noise at the edges of the trees 

presents a more difficult medium and results in abnormal 

segmentations where the watershed extends into the ground region. 

Using SLIC alone resulted in more matches with an IOU of 90% 

and higher. This is as a result of the lack of abnormal segmentations 

produced by the watershed algorithm. However, SLIC, tends to 

under-segment, as trees are either too close to each other or have 

too similar height profiles. This leads to SLIC clusters containing 

more than 1 tree, decreasing its accuracy. 

 

 

a)                            b)                              c) 

 

Figure 12: A series of graphs showing the percentages of trees 

that obtained a certain IOU percentage (shown in the legend), 

when using a certain segmentation technique, for the flat 

terrain (a), gentle terrain (b) and small hill terrain (c). 

      The execution time of the different segmentation techniques 

was also important. In Fig. 13, the average execution time of SLIC, 

watershed and other processes (pre-processing functions) are 

displayed for different terrains. From this, it can be seen that the 

pre-processing functions take up the most time in an execution, 

followed by SLIC. In the flat terrain, the pre-processing functions 

take 399.11ms, SLIC takes 211ms and watershed takes 9.89ms to 

execute. Therefore, a 1.62% increase in time, by adding watershed, 

would lead to a 5% increase in segmentations with an IOU of over 

50% in flat terrain. If execution is very important to a user, and an 

IOU of greater than 70% is considered to be a good match, then 

using watershed, without SLIC, would be a good compromise as 

this would reduce execution time, but would still have an accuracy 

that is similar to a system that uses both SLIC and watershed. 
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Figure 13: A graph showing the execution time taken by the 

SLIC, watershed and other processes for the different 

terrains. 

6 Limitations 

As a limited number of DEMs were available, the system could 

only be tested against a limited number of conditions. If we had 

more DEMs available, we could have gathered more data which 

would have allowed us to further optimise system parameters or 

even introduce new filters.  

      The IOU per tree calculation was done with bounding boxes 

due to time constraints. A more accurate, pixel-wise calculation 

would produce more accurate results. 

      Time was a significant factor. There were many variables to 

consider (both for system parameter optimisation and for pre-

processing operations) and many different approaches that we 

could have taken. Had we had more time, we could have explored 

more avenues with regards to improving system accuracy. We also 

could have investigated, in greater detail, the effects the type of data 

(i.e. noisy, disperse or compact trees) had on the final result. 

7 Ethical, Professional and Legal Issues 

There were no ethical issues to consider during this project. DEMs 

of real terrain were used, therefore is it possible that a person 

located underneath the scanning equipment could have been 

subsequently recorded by the LiDAR system. However, it would 

not be possible to identify this person, because only distance data 

was collected. As the research did not involve human or animal 

subjects, ethical clearance from the university was not required. 

Communication with the DEM provider, Aerobotics, took place 

through the supervisor. As no novel engineering techniques were 

used, there was no dispute over the ownership of intellectual 

property creating during this project. As per the university’s 

publishing policy, the work here shall be published under the 

creative commons licence. 

8 Conclusions and Future Work 

As the agricultural industry plays such a crucial role to keep 

humanity alive, it is important that we find ways to improving the 

industry in order to improve food security. By monitoring trees, we 

can gather data about them and use this to improve their growing 

conditions. Many of these methods require trees to be identified 

from aerial images. This project investigated ways of segmenting 

trees from DEMs. SLIC and watershed were considering as ways 

of achieving this. Many pre-processing functions, such as a 

Gaussian filter and a local maxima detection algorithm, were also 

used to prepare the DEMs for segmentation. 

      The results of the segmentation varied depending on the DEMs 

used. In a best case scenario, where trees are smooth topped, a mean 

IOU per tree of 88.16% can be achieved while in the worst case 

scenario, in a DEM with noisy, compacted trees on a large hill, a 

mean IOU per tree of 54.3% can be achieved. As a result, this 

system may be usable on orchards with spaced-out identical trees. 

However, more work is required to make it robust enough to 

operate in conditions with uneven terrain. 

      The combination of SLIC and watershed has been shown to be 

more effective than when either are used alone. SLIC has a much 

longer execution time than watershed segmentation. In time critical 

operations, SLIC can be removed from the system to reduce 

execution time, with a small reduction in segmentation accuracy. 

      Overall, this project has shown that SLIC and watershed are 

viable options when segmenting trees in DEMs. Although DEMs 

were tested to optimise the system parameters, our estimations for 

them, using information about the DEMs, were very close to the 

optimal values. Therefore, test data and training is not required for 

this system, unlike with the neural network approaches [22]. 

      There is much to be done and explored in the field of image 

segmentation. A different set of image processing libraries could 

be used to implement the significant operations done in this project. 

As implementations of these methods may differ slightly in 

different software libraries, a different result may be produced by 

using different image processing libraries. Convolutional Neural 

Networks (CNNs) [34, 37] are an alternative image segmentation 

approach that could be integrated into this project to improve tree 

segmentation, although, they would drastically increase execution 

time of the system [22]. 
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APPENDIX A 

Height Profiles of DEMs 

  

        a.i)                a.ii) 

  

          b.i)     b.ii) 

  

          c.i) c.ii) 

Figure A1: A series of samples of a DEM of an orchard (a.i, b.i and c.i) and their corresponding height profiles (a.ii, b.ii and c.ii), 

demonstrating the intrarow heights of the DEM. 
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          a.i)                a.ii) 

  

          b.i)   b.ii) 

  

          c.i)  c.ii) 

Figure A2: A series of samples of a DEM of an orchard (a.i, b.i and c.i) and their corresponding height profiles (a.ii, b.ii and c.ii), 

demonstrating the interrow heights of the DEM. 
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          a.i)                a.ii) 

  

                         b.i)   b.ii) 

  

          c.i)  c.ii) 

Figure A3: A series of synthetic DEMs, showing a flat terrain (a.i), a steep terrain (b.i) and a small-hilled terrain (c.i) and their 

corresponding height profiles (a.ii, b.ii and c.ii respectively). 
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APPENDIX B 

Local Maxima Test Results 

Table B1: A table displaying the mean Euclidean distance of the calculated centres from the actual centres of the different terrains. 

The word easy indicates that the image has smooth trees. 

Terrain Total 

Trees 

% of 

Trees 

Identified 

Mean Distance 

from Centre 

(in pixels) 

Standard 

Deviation 

Terrain Total 

Trees 

% of 

Trees 

Identified 

Mean Distance 

from Centre 

(in pixels) 

Standard 

Deviation 

Flat_easy 42 100 0 0 LargeHill_easy 35 85.714 2.8858 5.63904 

Flat_spread_easy 29 100 0 0 LargeHill_join_easy 33 81.818 2.70638 5.32497 

Flat_small_easy 211 97.630 0.0194175 0.138323 LargeHill_join_small_easy 62 80.645 0.3 1.0351 

Flat_spread 23 100 0.539748 0.535106 LargeHill_small_easy 68 79.412 0.54153 1.63202 

Flat_small_spread 151 100 0.542381 0.526493 LargeHill_spread 16 100 0.650888 0.530504 

Flat 44 100 0.554868 0.559346 LargeHill_small_spread 39 100 0.457139 0.534345 

Flat_small 211 96.682 0.497477 0.518207 LargeHill_join_spread 15 100 0.521895 0.592476 

Gentle_easy 43 97.674 0.119048 0.452763 LargeHill 35 85.714 1.75338 4.02479 

Gentle_small_easy 214 93.925 0.0298507 0.1706 LargeHill_small 68 70.588 0.734222 1.06316 

Gentle_spread 22 100 0.564282 0.534294 LargeHill_join_small 62 72.581 0.809205 1.06102 

Gentle 43 95.349 0.48362 0.534101 LargeHill_join 33 90.909 2.4713 4.58551 

Gentle_small 208 97.115 0.552757 0.510004 SmalHill_small_easy 207 93.720 0.0721649 0.259431 

Steep_easy 46 95.652 0.0909091 0.362047 SmallHill_easy 42 92.857 0.102564 0.383534 

Steep_small_easy 211 95.261 0.0497512 0.217974 SmallHill_spread 22 100 0.590909 0.503236 

Steep_spread 24 100 0.725592 0.482943 SmallHill 42 88.095 0.443627 0.519567 

Steep 44 100 0.505365 0.56574 SmallHill_small 210 95.714 0.61094 0.529042 

Steep_small 215 95.348 0.509684 0.518035 SmallHill_smoothGround 45 91.111 0.597042 0.67796 
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Tree Mask Results 

   

a)                                                      b)                                                           c) 

                              

                                                           d)                                                           e) 

 

Figure B1: A series of images showing the tree masks produced, and their IOU percentage (as shown in the 

legend above), for the flat_spread_easy DEM (a), gentle DEM (b), steep_spread DEM (c), largeHill_spread 

DEM (d) and smallHills DEM (e). 


