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ABSTRACT
Remote sensing techniques and in particular, unmanned
aerial vehicles (UAVs), are increasingly used in the collection
of survey data formonitoring themaintenance of agricultural
land. These surveys provide information about the elevation
of the top surfaces of farmland i.e., elevation values for tree
canopies include the altitude of the terrain on which they
are planted. Theoretically tree heights can be extracted by
subtracting the height of the terrain from those of the tree
canopies. For this reason, various methods have been em-
ployed to extract canopy and individual tree heights from the
digital elevation models (DEMs) produced by these surveys.
This paper reviews literature on such methods, for ground
plane removal using UAV survey data of orchards. Orchards
are cultivated on sloping terrain, as well as hilly and moun-
tainous terrain. Reviewed methods are analysed with this
in mind. The methods investigated in this review are con-
cerned with DEM extraction and synthesis—identification
of the ground plane in the original image and completion of
the terrain obscured by the trees. Ground filtering methods,
progressive morphology and triangulated irregular network
(TIN) based algorithms, are discussed for the extraction step
of the solution. Progressive morphology (PM), while highly
accurate for light detection and ranging (LiDAR) point cloud
data, performs less so on UAV data. Improvements to PM
require additional data such as RGB colour values. As such
Chen et al. ’s modified progressive TIN densification (PTD)[9]
algorithm is recommended as a basis for the ground filtering
solution. For the synthesis step, interpolation methods of-
ten used with the above filtering algorithms were discussed.
Kriging is the one of the best performing algorithms on all
terrain types that are of interest to us. However, it is also
the most computationally intensive. Hybrid interpolation
techniques are thus recommended to reduce the intensity of
computation while maintaining accuracy.
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1 INTRODUCTION
Orchard farmers—and farmers in general—have monitored
tree growth for years using manual measurements of tree
heights (among other parameters). The agricultural tree
height metric carries information about crop production,
plantation status and soil quality, that assist with the manage-
ment of farmland[26, 33]. In addition, tree height information
can be used to monitor farms for compliance with greening
regulations, for biomass predictions and for other ecological
applications[6, 11, 28]. Remote sensing techniques have been
employed in the retrieval and calculation of canopy and in-
dividual tree heights because of their accuracy, and time and
cost efficiency over manual data collection[7]. Increasingly,
unmanned aerial vehicles (UAVs) are being used to conduct
these remote sensing surveys to even further reduce survey
costs. Our input data is a digital elevation model (DEM) gen-
erated from such a UAV i.e., drone images of orchards. Each
DEM will be used to estimate canopy and individual tree
heights for rows of trees in an orchard.
Tree height estimation will require digital terrain model

(DTM) extraction from each DEM. This paper reviews DTM/
DEM extraction and synthesis methods that are effective on
the types of terrain on which orchards can be found i.e., flat
and gentle slopes[16, 23] as well as hilly and mountainous
terrain[18]. DEM synthesis, in this paper, refers to the gen-
eration of new terrain where elevation values are missing.
The synthesised terrain should match the actual terrain as
closely as possible to ensure the accuracy of the estimated
tree heights.

2 BACKGROUND
A digital elevation model (DEM) is a 2D pixel height map: a
2-dimensional array of equally spaced pixels/squared cells
each with an elevation value[19]. DEMs representing the
bare-earth terrain are often termed a digital terrain model
(DTM); and a DEM containing height information for the
top surfaces of the terrain—including off-terrain objects—is
what is known as a digital surface model (DSM).

Theoretically, we can calculate canopy heights by sub-
tracting the DTM from the DSM generated with UAV survey
data[7, 27]. The resulting DEM is a normalised DSM (nDSM)
from which individual tree heights can be determined. In or-
der to calculate canopy and tree heights, we therefore need
to extract the DTM from our input DEM/ DSM. A result



EMRCHI001

of survey data being collected from orchards is that tree
canopies occlude the terrain. Therefore the extracted DTM
will contain voids where elevation values are missing for the
terrain. Hence, the DTM extraction process is divided into 2
subprocesses: ground filtering for identifying terrain points
from the DEM; and interpolation for DEM synthesis of the
filtered terrain.

3 GROUND FILTERING
Ground filtering refers to the extraction of terrain by remov-
ing off terrain points from (usually point cloud) data[9]. Sit-
hole and Vosselman[24] categorised filters according to their
assumptions about terrain structure within a local neigh-
bourhood: slope-based, morphology-based, surface-based
and clustering/ segmentation-based. In slope-based filters,
algorithms use the assumption that the higher of two points
between which the slope exceeds a determined slope thresh-
old is off-terrain. These algorithms differ by their threshold
selection and the way data is partitioned for slope calcula-
tion. They are computationally efficient but perform worse
on mountainous terrain[9]. Morphology-based algorithms
operate under the assumption that local terrain can be de-
scribed by a plane. Points in the local neighbourhood are
selected or discarded based on a buffer zone around this
plane. Morphological filters have high accuracy in relatively
flat terrain.
Surface-based filters classify terrain points using the as-

sumption that they fall within a buffer zone around a para-
metric surface. Finally, clustering filters assume that clus-
tered points are off-terrain if their cluster lies above its neigh-
bourhood. This class of filters preserve terrain discontinuities
but are dependent on the quality of segmentation. Sithole
and Vosselman[24] determined that surface-based filters pro-
duce better results in general for all fifteen tested terrain
types, however the suggestion remains that filter selection
depend on the type of terrain.

Our concerns with filtering results include necessarily the
removal of vegetation, where low vegetation and hetero-
geneous and steep terrain may pose difficulties[9, 24]. The
following are filtering approaches that have been applied to
the problem of tree height detection.

3.1 Progressive morphology
Progressive morphology (PM) is a morphology-based ground
filtering algorithm[9]. It works by using gradually increasing
window sizes and elevation difference thresholds to classify
points as terrain/ off-terrain[34]. The different window sizes
allows the algorithm to pick up off-terrain objects of differ-
ent sizes. PM is used often and performs well when used
on point cloud data obtained via light detection and rang-
ing (LiDAR)[1, 25]. When used on data obtained via UAVs

however, PM can misclassify vegetation as terrain. This has
led to the development of adaptations[21, 25] of PM which
aim to improve the filtering accuracy on terrain with vege-
tation, for UAV point cloud data. Many improvements use
data additional to elevation value and as such cannot be
applied to this project. The "improved Progressive Morpho-
logical filter (IPM)"[25] is one such adaptation, applicable if
additional—specifically colour—data is made available.
PM (and IPM) operate on a DEM. An initial surface is

generated from the LiDAR/ UAV point cloud—usually a min-
imum surface created by assigning to each cell in the DEM
grid, the minimum elevation value within the cell. The win-
dow size increases iteratively, and during each iteration
the mathematical morphology sourced dilation and erosion
algorithms[15] are applied (in that order) and the elevation
differences between the original and filtered surface are cal-
culated. Points whose elevation difference exceed the eleva-
tion threshold are classified as off-terrain and this process
continues until the window size exceeds a predetermined
maximum.[25, 34]

IPM improves on this algorithm by introducing the Wang
et al. [32] visible-band difference vegetation index (VDVI).
It post-processes the filtered surface using the VDVI val-
ues calculated for each identified terrain point, to identify
misclassified off-terrain vegetation according to a threshold.
Following this, PM is performed again to eliminate any re-
maining off-terrain vegetation points. Quantitatively, IPM
resulted in higher accuracy than PM for all 4 sites tested.

3.2 Triangulated irregular network
The classic triangulated irregular network (TIN) based algo-
rithm by Axelsson[3], progressive TIN densification (PTD),
is one of the most robust filtering algorithms[20, 21]. Using
Sithole and Vosselman’s classification, it is a surface-based
algorithm[24]. PTD begins the creation of the TIN surface
with seed points (local minima) from the data and iteratively
adds points based on height differences and direction to
the plane of the nearest triangle—a process referred to as
densification. A shortcoming of PTD, however, is detection
of discontinuous terrain. Chen et al. proposed a modifica-
tion to PTD which yields higher accuracy for mountainous
regions[9]. These modifications are as follows:

i. Collecting additional seed points frommountain ridges
using a rule-based ridge point detection method.

ii. Systematically discarding erroneous seed points by
comparison with a confidence interval.

The goal with this new algorithm was to improve filtering
results for mountainous terrain by including ridge points and
to optimise seed point selection, while increasing memory
efficiency for its application on dense point clouds. In their
paper, its performance was compared against the classic PTD
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algorithm as well as 3 other filtering algorithms, both visu-
ally and statistically. For homogenous terrain, the proposed
algorithm is comparable to PTD (an interpretation confirmed
in the literature[21]). In mountainous terrain, overall it ex-
ceeds the performance of all 4 algorithms. Additionally, the
authors note the algorithm’s robustness against vegetation
on steep terrain, ensured by the optimisation of seed points,
as well as point selection in cells during densification.

4 INTERPOLATION
Following the ground filtering process, interpolation algo-
rithms are applied to the incomplete resultant DTMs in the
attempt to model the previously obstructed terrain. Interpo-
lation refers to the process of estimating missing data. These
algorithms use data surrounding missing values to generate/
determine appropriate values for the missing data. Deng et al.
claimed that interpolation algorithms can be roughly divided
into 3 categories: regression-based, inverse distance weight-
ing (IDW) and kriging[12]. The classes of methods that this
paper will review are commonly used in conjunction with
the ground filtering methods reviewed. Image inpainting,
a widespread method borrowed from art restoration[17], is
also reviewed.

4.1 Inpainting
Texture or image inpainting refers to the process of correct-
ing/ completing patches in images[31]. Inpainting learns
from the areas surrounding missing patches to synthesise a
suitable fill[17]. The novel inpainting technique, Contextual
Void Patching (CVP)[31], was developed as an application
of inpainting for DEM synthesis which exploits the DEM
structure, as opposed to treating them as textures. This in-
terpolation method is often applied after morphology-based
filters[9], on DEMs with missing data points, such as when
foreground objects (e.g. trees) have been removed.

CVP is a 3-step process: (1) identify the voids in the DEM,
(2) synthesise a smooth patch using overall directions of
the surrounding area for each void; (3) extract surrounding
area characteristics and apply to the smooth patch. Quali-
tative analysis shows that patches produced by CVP seam-
lessly match the surrounding terrain with above satisfactory
results[21, 31]. A patch generated by the algorithm for an
artificial void was tested against the original terrain and
visually, the results were near identical. However, quantita-
tive analysis for terraced and steep regions revealed inpaint-
ing to over-smooth discontinuities, thereby increasing total
error[21].

4.2 Kriging
A number of authors have identified kriging (a method of
geostatistical estimation)[29] as one of the most effective in-
terpolation methods for smooth plane, sloping and heteroge-
neous terrain[2, 12, 14]. Studies comparing Kriging to other
interpolation algorithms have found it to produce the most
accurate terrain estimations. Kriging produces highly accu-
rate and unbiased estimates with minimal variance[2, 12]
i.e., estimates obtained have a mean residual error of zero.
Kriging algorithms use a system of linear equations to

provide their estimations. The missing values as well as the
values in their neighbourhoods, are interpreted as random
variables. Linear combinations of these, which are them-
selves random variables, are then used as estimators for the
missing values[5, 12].

4.3 Hybrid interpolation techniques
Kriging is a high accuracy interpolation method but complex
and computationally intensive[14]. Simpler methods, while
fast, have higher error rates. Combinations of multiple inter-
polation methods (hybrid techniques) have been proposed
as a solution to retain accuracy of kriging while reducing
the computational intensity.

5 VALIDATION
Theoretically, canopy and tree height details will be deter-
mined from the nDSM. Therefore the accuracy of the ex-
tracted DTMs will affect the accuracy of the retrieved tree
heights. Thus this paper reviewsmethods of error evaluation/
validation.

5.1 Error statistics
Bater and Coops[4], in their paper analysing algorithm per-
formance through interpolatedDTMs, use the statistics: resid-
ual mean squared error (RMSE) and mean absolute error
(unsigned error) to assess performance. These are calculated
using the estimation error from each cell in the DTM i.e., pre-
dicted elevation value minus actual elevation value. These
statistics provide a measurement of the overall accuracy of
the interpolated terrain.
For a more fine-grained error analysis, several authors

have used the following metrics: Type I, Type II and total
error rates[9, 21, 24, 27]. The 2 error types represent different
types of misclassification. Type I errors occur when terrain
points are misclassified as off-terrain and Type II errors when
off-terrain points are misclassified as terrain. To calculate
the error rates, the total number of Type I and Type II errors
is divided by the total number of true terrain and off-terrain
points, respectively. These calculations occur directly after
ground filtering and provide insight—Type II errors will nec-
essarily result in errors in the final extracted DTM. To get
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the total error rate, divide the number of misclassified points
by the total number of points in the grid.
A final metric that appeared in the literature[21] is Co-

hen’s Kappa statistic[10]. Originally from the domain of
psychology, the Kappa statistic is used in the paper to mea-
sure the agreement of the actual terrain and the synthesised
terrain. According to Pingel et al. it measures model accu-
racy and takes into consideration the possibility of a chance
agreement. The statistic has range [−1, 1] ∈ R interpreted
as a scale measuring strong disagreement (−1) to chance
agreement (0) to strong agreement (1).

5.2 Quantifying error distribution
In addition to global error statistics, it would be useful to anal-
yse error patterns and areas of concentration. Local spatial
autocorrelation enables such analysis by providing insight
into error clustering[13]. Other statistical techniques have
been employed to quantify DEM accuracy. Ordinary least
squares (OLS) regression is one such method. It is normally
used to estimate parameters for linear models and can be
used to test DEM prediction accuracy[8, 27]. Another tech-
nique is cross validation, which is used to test interpolation
algorithms[30]. It interpolates across fixed sized subsets of
the DEM and compares the actual values against predicted
values. Erdoǧan[13] suggested graphical representations, in
particular, an error map of the terrain. Another visual rep-
resentations used in the literature[22] is an error frequency
histogram. Error visualisations can assist with comprehen-
sion of contributing factors.

6 DISCUSSION
Much research has gone into methods of extracting infor-
mation from point cloud data sourced via LiDAR and UAVs.
Of these, this paper has investigated techniques with a par-
ticular relevance to the quantification of tree heights via
DEM extraction and synthesis. In order to calculate tree
heights from our input DEM, available terrain data must be
extracted through a process called ground filtering. From
the literature, it is evident that most filtering methods work
well on flat and homogenous terrain with tall vegetation.
However, our data will not always be found on such terrain.
Orchards (our survey sites) are cultivated on sloping and
heterogeneous regions, e.g. terraced orchards—in addition
to flat and homogenous terrain. Distinguishing qualities for
these algorithms are therefore, performance on (1) mountain-
ous terrain/ terrain with large discontinuities and (2) terrain
with low vegetation [1–2m] (to accommodate the younger
trees on these farms). Of the methods reviewed in this pa-
per, the modified PTD algorithm by Chen et al. [9] meets
the performance criteria on both of those terrain categories.
Classical PTD underperforms on discontinuous terrain and

PM on terrain with low vegetation for UAV sourced DEMs.
As mentioned in subsection 3.1, modifications to PM that
aim to improve it’s classification of low vegetation require
additional data to be recorded using the UAVs.

Due to the type of survey sites (orchards) and the survey
method (drones i.e., UAV), extracted DTMs will have missing
data where tree canopies occlude the ground. To complete
the terrain, interpolation methods were investigated in this
paper. Again with interpolation, as with ground filtering,
synthesis over voids in flat terrain is practically a solved
problem. For other terrain types (particularly those of inter-
est to us), there is a trade-off required between accuracy of
the synthesised terrain and computational intensity. Krig-
ing is a highly effective method of interpolation but very
computationally intensive. Other less intensive algorithms
consistently perform worse than kriging. Hybrid interpola-
tion techniques look to balance that trade-off and are worth
consideration.

This paper also presented recurring methods of error eval-
uation used in literature about filters and interpolation al-
gorithms. The literature revealed that smaller magnitudes
for type II error, total error and RMSE show higher accuracy.
Additionally, a smaller type I error minimises computation—
removing terrain points just to recalculate them results in
more computation. Standard deviation and variance are also
statistics that provide information about the error dispersion
around the mean. Error distribution is valuable in the as-
sessment of algorithm performance and model accuracy. For
example, spatial autocorrelation and error heat maps, pro-
vide insight on the terrain characteristics where the DEMs
are most inaccurate. Some papers have used ordinary least
squares (OLS) regression to test prediction accuracy. This
relies on the assumption of a linear trend. Error frequency
histograms can be used to present Type I and II error. How-
ever, simply presenting the values is just as effective.

7 CONCLUSIONS
Tree height quantification from DEMs requires the removal
of the ground plane/ terrain elevations. To do this, this pa-
per has reviewed ground filtering and DEM interpolation
methods. PM is an efficient filtering algorithm but underper-
forms on terrain with low vegetation. Improvements require
additional data and cannot be implemented. The otherwise
robust classical PTD algorithm is inefficient on discontinu-
ous terrain but Chen et al. ’s[9] modifications improve its
performance in that regard so it is recommended. Of the in-
terpolation algorithms commonly used with ground filtering
methods, Kriging is the best performing. It’s performance is
not conditional on terrain type. Because kriging is a complex
and intensive algorithm, it is recommended that hybrid inter-
polation algorithms (as in [5, 12, 14]) are further explored.
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