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ABSTRACT
Remote sensing techniques and in particular, unmanned aerial ve-

hicles (UAVs) are increasingly popular methods of data collection in

the maintenance of farmland. UAVs provide absolute height values

for each recorded point, therefore digital elevation models (DEMs)

created using this data record only the top surfaces of these sur-

veyed areas. One of the applications of the collection of this survey

data on farms, is tree height quantification (determining the heights

of trees). Theoretically, given height information of an orchard, one

can extract tree heights by subtracting the heights of the terrain

from those of tree canopies. However, given UAV-sourced DEMs,

tree canopies occlude the ground and thus terrain values under

canopies are missing. This project and paper focus on using the

available terrain height values to determine the missing values, so

that the normalised DEMs can be calculated. This paper explores

the use of a common interpolation algorithm, the local modified

Shephard method and a more novel in-painting technique, Contex-

tual Void Patching, to solve this problem. The in-painting technique

was found to under-perform in comparison to Shephard’s algorithm

on most terrain types. However CVP was better suited to estimat-

ing ground values where the slopes are unstable (i.e. the hügelland

terrain). Shephard’s algorithm produced interpolated regions with

small (<1) RMSE values and variance for most terrain types.

CCS CONCEPTS
• Computing methodologies→ Image processing; Model veri-
fication and validation.

KEYWORDS
Ground plane removal, Tree height quantification, Spatial Data

Interpolation, Digital ElevationModels, Inverse DistanceWeighting,

Contextual Void Patching, Local Modified Shephard

1 INTRODUCTION
The practice of agriculture requires farmers to monitor progress

on farms in order to gauge information relating to crop production,

soil quality and plantation status[18, 24], and to ensure that they

meet greening regulations[2, 20]. One of the metrics used in the

monitoring of farmland is tree height, which can be checked pe-

riodically. Tree heights can be used to detect, for example, trees

with stunted growth which would inform a farmer of erosion/poor

nutrient quality/pests/etc. For years, tree heights have been moni-

tored be measuring and logging tree heights manually which, while

prone to fewer errors, is time consuming and labour intensive, par-

ticularly as trees grow taller. Over the past score years, remote

sensing: the use of unmanned aerial vehicles (drones) has become

an increasingly popular method for capturing tree heights. The

height data is usually captured using Photogrammetry or Light

Detection and Ranging (LiDAR)[7]. Photogrammetry applied to

this problem, uses aerial photographs from two or more separate

vantage points to obtain depth and perspective information. LiDAR

uses lasers to measure distances and create a 3-dimensional point

cloud from which the height of trees and ground can be extracted.

However, these methods are more expensive and data intensive[3].

This project aims to explore the use of simple Digital Elevation

Models (DEMs) which are 2-dimensional grids with only one grid

value for each grid block, corresponding to the absolute heights of

trees and adjacent terrain.

The focus of this project is tree height quantification from sim-

ple DEMs of an orchard and this paper focuses on estimating the

missing terrain values using interpolation. The approach is to sub-

tract the digital terrain model (of bare-earth terrain) from the DEM,

so that what is left is a DEM of the true heights of off-terrain

objects[3, 19]. We make a simplifying assumption that all such ob-

jects are trees. The DEM resulting from subtracting the bare-earth

elevation values is termed the normalised DEM. The first step is

to classify grid cells as terrain or off-terrain points and extract the

bare-earth terrain elevation across the entire DEM. Due to the struc-

ture of the DEMs—i.e. only one height value for each grid cell—there
will be gaps in the resultant DEM, where tree canopies occlude the

ground. Therefore, determining the heights of the ground below

tree canopies will require filling in said gaps. So the next step is

interpolation of the ground plane from the extracted terrain values.

Interpolation relies on available values to provide estimations. Thus

challenges arise when the tree canopies are clustered together with

minimal ground visible between individual trees/rows of trees.

Following interpolation, we subtract the ground plane elevation

values from the original DEM to extract the normalised DEM. To

enable testing of algorithms used in this process, synthetic DEMs

are created and manipulated (i.e. trees are added to the DEM and

patches of missing terrain values are created). As such, the true

heights and elevation values are known and can be compared with

our results. This subproject aims to determine the accuracy with

which the height of the ground plane can be calculated given

a height map occluded by canopy cover. Interpolation accuracy

should be consistent across terrain types and results should strongly

agree with the actual landscapes.

2 BACKGROUND
2.1 Digital Elevation Models

A digital elevation model (DEM) is a 2-dimensional image where

pixel coordinates correspond to coordinates in some model, and the

value of each pixel represents the elevation of the model at the corre-

sponding coordinates. They are used to represent an equally spaced

grid of height values and are often referred to as height maps[13].
The grid structure of a DEM makes them easier to work with and
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reduces the need for computationally intensive mesh/triangulation

pre-processes[8]. DEMs can contain multiple bands of information.

A band is a 2-dimensional grid with the same dimensions as the

DEM but with a pixel depth of 1. It can be thought of as a layer or

channel of the DEM. Multiple bands are stacked in a single DEM.

For example, a 4-band DEM can store elevation values as well as

RGB-colour values per pixel. In this project, we will be working

with single-band DEMs containing only height information.

In this paper, the term digital terrain model (DTM) will be used

to refer to a DEM of bare-earth terrain. DEM will refer to models

containing off-terrain elevation values (e.g. trees) as well as any
synthesised DEMs. Although the ground/bare-earth terrain may

not always be planer, we use the term Ground Plane Removal to

refer to the extraction of the normalised DEM, by subtracting the

ground elevation values. The resulting DEM will contain the true

heights of off-terrain objects on a plane.

2.2 Interpolation
Interpolation is the term for the process of estimating missing

data. Interpolation algorithms use surrounding data in a local or

global neighbourhood to determine estimates for the missing data

points. There are roughly three categories of interpolation algo-

rithms: regression-based, inverse distance weighting (IDW) and

kriging[6]. Kriging is a geostatistical method of estimation that

has been proven to be quite effective as an interpolation method

(interpolation with kriging gives an RMSE value of 0)[21]. While

Kriging is very effective, it is a very slow and computationally in-

tensive algorithms[11]. IDW methods are a class of interpolation

algorithms that use a weighted sum of neighbouring points with

weights corresponding to the inverse distances from the missing

point[1]. Regression-based interpolation methods use regression

models to estimate missing data[1]. In this project, interpolation

will be used to estimate the bare-earth terrain elevations occluded

by tree canopies. Local neighbourhoods will be used in estimations

to reduce computation.

2.3 Related Work
Most of the research available on ground plane removal pertains

to the urban areas, particularly determining buildings heights[23].

However, unlike orchards, urban settings have distinct boundaries

between buildings/ off-terrain objects and the ground. Ground oc-

clusion is also not as prominent or variable a problem as it is in

orchards. So these methods are generally not directly applicable

to our problem of calculating tree heights in orchards. A lot of the

literature uses LiDAR data and constructs surfaces from 3D point

clouds[4, 14, 16, 17]. As a result, a lot of exploredmethods have to do

with triangulated irregular networks (TIN) which have a different

structure to DEMs[14, 16]. DEM interpolation methods that have

been explored with similar applications include interpolation using

linear/quadratic trend surfaces or cubic spline interpolation, krig-

ing, linear regression, and inverse distance weighting/citeM21,M22.

IDW is usually used on irregularly spaced data, but it produces

some of the best results after kriging, on most terrain types[? ].

3 EXPERIMENT DESIGN
The goal of the Ground Plane Removal subsection of this project

is to reconstruct the complete terrain (ground plane) from the

scarce captured ground height values. Using interpolation, we fill

in missing ground points that were obstructed by tree canopies

during the retrieval of orchard DEMs. This paper evaluates and

compares the inverse distance weighting method and contextual

void patching[22] (CVP), for interpolation.

3.1 Design Framework
Tree height quantification from a single-band DEM requires

segmentation for identifying tree pixels and terrain pixels, and

interpolation to determine elevation values of missing terrain pix-

els. Thus our system, has two height extraction sub-modules: Tree

Segmentation, and Ground Plane Removal. Due to our provided

inputs lacking true height values for comparison, our system also

required additional testing data. The DEM Generation module han-

dles the fabrication of test data for the other two modules. The

system architecture diagram is presented in figure 1.

Figure 1: System architecture diagram
The system has a height extraction module with two sub-modules: Tree

Segmentation and *Ground Plane Removal, and a DEM generation

module which provides sample DEMs with which the sub-modules are

evaluated.

Each of these modules (and sub-modules) is able to function

independently of the rest, provided correctly formatted input data

is used.

3.1.1 DEMGeneration. TheDEMgenerationmodule is responsible

for DTM creation and tree placement. Tree placement involves

adding canopy heights for grids of trees to the DTM, to create



Ground Plane Removal from Drone Images of Orchard

a DEM that mimics height maps to be expected of an orchard.

These sample orchard DEMs are saved as greyscale (single-band)

tiff images. These, along with the DTM tiffs and binary mask images

of the tree canopies, serve as the input into the next module(s).

3.1.2 Tree Segmentation. This submodule is the first stage in the

height extraction pipeline. It receives a greyscale tiff image as input

and produces segmented images as output. Of these, a binary tree-

mask of the same dimensions as the input tiff image is used in the

next stage. The non-zero values of the mask image data represent

grid positions that contain tree elevation values.

3.1.3 Ground Plane Removal. The Ground Plane Removal mod-

ule receives as input, a DEM (of an orchard) and a binary mask,

indicating which portions of the DEM are to be interpolated over.

These are both expected to be in the tiff image format. The mask is

applied to the DEM and both are fed to an interpolation algorithm

(inverse distance weighting—the modified Shephard[15] algorithm

for a radius/neighbourhood around the missing point). The result

of this is a DEM estimating the original terrain DTM and is saved

as a greyscale tiff image. The interpolated DEM is subtracted from

the original to create the normalised DEM, which is also saved as a

greyscale tiff image. The normalised DEM should contain only the

true heights of the trees. This is the final output of the system.

3.1.4 Development Tools. The program was written in the C++

programming language and compiled using CMake version 2.8 with

C++ compiler GNU 7.5.0. The main libraries used were OpenCV

version 4.2.0 and LibTiff version 4 for reading of the tiff images and

manipulation of the contained data. Statistical analysis was done

in R version 4.0.2.

3.2 Datasets
A third party DEM generator was used to create test Tiff images.

The ground plane removal project was tested on different terrain

types that orchards can be cultivated on: flat or gentle (<20
◦
) slopes,

mountain slopes and hills[6, 9, 12]. Specifically, these landscape

DTMs (see figure 2) were used: flat (plane), gentle slope (plane),

steep slope (plane), hill slope, interlocking spur, and a Hügelland

landscape.

A landscape was generated for each terrain type and for each

DTM, three masks corresponding to different levels of canopy cover

was applied. The canopy levels are: wide canopies, small overlap-

ping canopies and small, spaced canopies. The mask trees were

arranged in rows (placed along contours—on slopes, and in grids—

on planes and knolls) as they would be in an orchard.

3.3 Device Specifications
– OS: Ubuntu 18.04.5 LTS

– Architecture: x86_64

– Processor: Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz

– RAM: 8GB (7.87 GB usable)

– GPU: Intel(R) HD Graphics 630

3.4 Implementation
The ground plane removal subsystem, uses the c++ libraries opencv

and libtiff to read and store the image data in the orchard DEM

and tree mask tiff images—both tiff images are expected to have

Figure 2: Test landscapes
(from top left to bottom right) Oblique aerial perspective of (a) flat terrain,
(b) gentle sloping and (c) steep sloping DTM landscapes. Side view of (a), (b)

and (c). Oblique perspective of (d) hill slope, (e) spur between two hills and

(f) Hügelland DTM landscapes. Alternative oblique view of (d), (e) and (f).

the same dimensions. The mask is converted to a matrix of 8-bit

unsigned values, and it is assumed that non-zero values represent

the grid positions of tree canopies. To ensure that tree boundary

pixels are removed from the orchard DEM, the mask is dilated. The

driver applies the mask to the orchard DEM then stretches the

masked DEM vertically by a scale of 1000 to pronounce the terrain

features.

3.4.1 Inverse Distance Weighting. The inverse distance weighting
method used for interpolation in this module is the local modified

Shephard method[10, 15]. The algorithm goes through every grid

point in the DEM corresponding to a non-zero value in the binary

mask. At each missing point 𝑢, known points in a neighbourhood

𝑁𝑅 of radius 𝑅 are used to calculate the elevation value at 𝑢.

𝑢 =

∑
𝑃 𝑗 ∈𝑁𝑅

𝑊𝑃 𝑗
(𝑢)𝑃 𝑗∑

𝑃𝑖 ∈𝑁𝑅
𝑊𝑃𝑖 (𝑢)

𝑊𝑃𝑖 (𝑢) =
𝑚𝑎𝑥 (0, 𝑅 − 𝑑2 (𝑢, 𝑃𝑖 ))

𝑅𝑑2 (𝑢, 𝑃𝑖 )
In the program, the neighbourhood is retrieved by taking the

submatrix of size 2𝑅 by 2𝑅 centred at𝑢. To deal with sparse data, one

can increase the radius 𝑅, to ensure that enough known points are

used in the estimation of 𝑢. However, that increases computation

time and intensity. Points further awaywill also still have very small

weights. I attempted to alleviate this constraint by introducing a

threshold variable 𝛽 ∈ [0, 1) and making the process iterative. Let
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the number of known values in 𝑁𝑅 be 𝑛𝑁𝑅
, 𝑢 will be calculated on

this iteration if

𝑛𝑁𝑅

4𝑅2
> 𝛽 . Each iteration uses interpolated estimates

from previous iterations. This has the effect of filling in the images

from the boundaries of the voids to their centres with successive

iterations. This method achieved 3–4x speed-up on sparse data,

while allowing more flexibility with the radius.

3.4.2 Contextual Void Patching. The three steps of CVP that were

used in the programme were (i) identify and extract voids in the

DEM along the 4 direction curves, (ii) estimate the missing values

along each curve, and (iii) combine the solutions of each curve to

get the final interpolated DEM. The curve direction vectors are

𝑢=(0,1), 𝑣=(1,0),𝑤=(1,1) and 𝑡=(-1,1). Below is pseudocode for this

algorithm:

initialise vector of coordinate pairs for each curve direction (1)

(𝑉𝑢 ,𝑉𝑣,𝑉𝑤 ,𝑉𝑡 ) (2)

for each curve direction 𝑖 : (3)

for each curve j in direction 𝑖 on Image : (4)

𝑘 = 0 (5)

while not at the end of the curve : (6)

travel length of the curve until you find a void (7)

𝑘 = 𝑘 + 1; (8)

store the pixel coordinates beg𝑖 𝑗𝑘 (9)

continue down the curve until the end of the void (10)

store the pixel coordinates end𝑖 𝑗𝑘 (11)

add (beg𝑖 𝑗𝑘, end𝑖 𝑗𝑘) to 𝑉𝑖 (12)

end loop (13)

end loop (14)

for each coordinate pair in 𝑉𝑖 : (15)

use Hermite curves to create a smooth patch between (16)

the pair in direction 𝑖 (17)

end loop (18)

end loop (19)

(20)

for each missing point in Image : (21)

combine solution from 𝑉𝑢 ,𝑉𝑣,𝑉𝑤 and 𝑉𝑡 to get estimate (22)

end loop (23)

To combine the four direction curves, the inverse distance from

the nearest known point in each direction is used to weight the

individual curve solutions, which are then summed. Let 𝑃𝑢 , 𝑃𝑣 ,

𝑃𝑤 and 𝑃𝑡 be the minimum distances from point 𝑃 to a known

point in the subscripted directions. Let 𝑆𝑢 , 𝑆𝑣 , 𝑆𝑤 and 𝑆𝑡 be the

curve solutions at 𝑃 ’s pixel coordinates. The final CVP estimate is

obtained as follows:

𝑡𝑜𝑡𝑖𝑛𝑣 =
1

𝑃𝑢
+ 1

𝑃𝑣
+ 1

𝑃𝑤
+ 1

𝑃𝑡

𝑃 =
𝑆𝑢

𝑃𝑢 × 𝑡𝑜𝑡𝑖𝑛𝑣
+ 𝑆𝑣

𝑃𝑣 × 𝑡𝑜𝑡𝑖𝑛𝑣
+ 𝑆𝑤

𝑃𝑤 × 𝑡𝑜𝑡𝑖𝑛𝑣
+ 𝑆𝑡

𝑃𝑡 × 𝑡𝑜𝑡𝑖𝑛𝑣

The interpolated grids in both cases are saved as a greyscale tiff

file. The IDW interpolation results is subtracted from the original

DEM and the result—the normalised DEM—is saved as a tiff file.

3.5 Evaluation
To evaluate the performance of these algorithms, the system

as run using the dataset described in section 3.2 as input. The

interpolated images are evaluated qualitatively, by comparing them

against the expected landscape visually. An error map is also gener-

ated to show the distribution of the error for each landscape. This

can be used to identify patterns in the error as well as areas of

concentration[9].

Quantitatively, the following error test statistics are presented

and compared for each combination of terrain and canopy type:

• Root mean squared error (RMSE)√√√
1

𝑁

𝑁∑︁
𝑘=1

(𝐼𝑘 −𝑂𝑘 )2

where 𝑁 is the number of interpolated values, 𝐼𝑘 is the kth

interpolated value and 𝑂𝑘 is value of the corresponding

actual landscape pixel. The RMSE gives us an idea of the

magnitude of the error from the interpolation estimates. A

good algorithm will produce RMSE values close to zero.

• Variance (𝜎2) of the error tells us about the distribution/spread

of error from the mean and helps determine the confidence

of estimates—a smaller variance is preferable. The standard

deviation is the square root of the variance.

Finally, Cohen’s[5] Kappa statistic is averaged over the canopy

types to assess the overall performance of the algorithms on the

different terrain types. This is a measure of agreement between the

actual and interpolated terrain. It is a real value between -1 and 1,

with the value -1 indicating a strong disagreement and 1 indicating

strong agreement. A value of 0 suggests a chance agreement i.e.
success due to randomness.

4 RESULTS
4.1 Qualitative
Tables 1 (page 5) and 2 (page 5) show interpolation results for the

different test DEMs in the same orientations as in figure 2 (page 3).
Next to those are colour-coded error maps of the absolute differ-

ences between the original landscape and the results.

4.2 Statistics
Table 3 (page 6) shows the root mean squared error (RMSE) and

variance (𝜎2) for each terrain and canopy combination of test DEMs.

Table 4 (page 7) shows the average Kappa statistics for each land-

scape.

5 ANALYSIS AND DISCUSSION
5.1 Inverse Distance Weighting

Qualitatively the system produces DEMs that closely resemble

smoothed versions of the original landscapes in all cases but that of

the hügelland. The smoothing in the results contributes to the error.

On the gentle slope with small overlapping canopies (shown in table
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Table 1: Error maps for Inverse Distance Weighting interpo-
lated terrain

Original Terrain Interpolated Landscape Error Map
Flat:

Gentle:

Steep:

Hill slope:

Interlocking spur:

Hügelland:

Error Key:

1), the gradual changes in the neighbourhood combined with the

smoothing property of the algorithm leads to flatter interpolated

patches under each tree.

Hügelland terrain interpolation’s RMSE statistic is consistently

high, and it is the terrain type with the lowest Kappa statistic

(0.3136). The error map of the hügelland terrain shows the error to

be concentrated on the peaks of the knolls and at the bottom of the

valleys between them. This can be explained looking at the interpo-

lation result. The algorithm flattened the peaks obstructed by trees

and levelled out the valleys. There are thin spikes in the interpo-

lated image that hint at the correct elevations but they are few and

far apart, thus they do not influence the estimations greatly. The

algorithm aggregates values within a neighbourhood to determine

estimates. A consequence of this, and especially in the hügelland

result, is therefore that in terrains where there are repeated height

fluctuations in close proximity, the algorithm will always predict

values close to the centre of these fluctuations. This property of the

system, does not affect the other more stable slopes.

Table 2: Error maps for Contextual Void Patching interpo-
lated terrain

Original Terrain Interpolated Landscape Error Map
Flat:

Gentle:

Steep:

Hill slope:

Interlocking spur:

Hügelland:

Error Key:

The interlocking spur is another terrain type with concentrations

of higher magnitude error. This error is concentrated along the top

of the fold between the slopes, where the change in direction is

sharpest. The interpolated image shows that the fold is bridged

over in the result. The system visually appears to perform best

on the gradual non-planar slopes and worst on the gentle sloping

plane and hügelland terrain. However, the statistics reveal that the

strongest results are actually on the steep and flat planes, which

have the highest Kappa statistics (>0.6) and lowest RMSEs.

5.2 Contextual Void Patching
The results from CVP are generally worse than from IDW—

they have the higher RMSE and lower Kappa values. However

CVP’s statistics for the gentle slope are more consistent over the

canopy types and its results on the hügelland terrain are better.

CVP uses the gradients at known points in its attempts to estimate

underlying curves of the terrain surface. This contributes to the

improved accuracy on the hügelland terrain. The error map shows
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Table 3: Statistical performance on the test DEMs

Canopy: Wide Small, Overlap Small, Spaced

Inverse Distance Weighting (IDW)

Terrain RMSE 𝜎2 RMSE 𝜎2 RMSE 𝜎2

Flat 0.826 0.668 0.837 0.673 0.818 0.668

Gentle 0.820 0.667 7.247 12.082 0.819 0.670

Steep 0.818 0.668 0.841 0.672 0.817 0.666

Hill slope 0.906 0.684 0.975 0.703 0.936 0.703

Spur slope 1.293 1.658 1.082 1.157 0.914 0.828

Hügelland 6.292 6.288 6.148 6.140 6.148 6.140

Contextual Void Patching (CVP)

Terrain RMSE 𝜎2 RMSE 𝜎2 RMSE 𝜎2

Flat 0.930 0.864 0.925 0.855 0.970 0.940

Gentle 1.416 1.732 1.624 2.173 1.133 1.163

Steep 7.535 41.834 9.015 61.315 4.279 12.854

Hill slope 3.749 6.054 2.595 2.780 2.277 2.711

Spur slope 3.096 9.563 2.199 4.836 1.929 3.708

Hügelland 5.957 5.880 5.088 5.083 6.844 6.640

that the concentration of high magnitude errors reduces on the

knoll slopes but remains high at the peaks and valleys. Those are

areas where the gradient direction changes.

The steep slope results are the worst on CVP unlike IDW where

the results were best. Both algorithms have consistently low vari-

ances for the flat and hill slope interpolated results.On the gentle

and steep slopes, the error appears to increase diagonally (in a

north-easterly direction). The algorithm does its estimations in

that direction, so the further points use previously visited points

and this compounds the error. The error on the hill slope seems

to increase in a north-westerly direction instead. This is however,

more likely due to the west-facing slope being steeper then the

east-facing slope. The error still increases in the north direction for

all three.

Both algorithms perform better on wide canopies than small

overlapping canopies—spaces between wide canopies tend to be

bigger so there is more ground in the neighbourhoods for use in

estimation—and have best performance on small spaced canopies.

6 CONCLUSIONS AND FUTUREWORKS
The result accuracy across terrain types for IDW is for the most part

consistent with regards to RMSE and even the Kappa statistic. Its

performance is adequate for interpolating farm ground, as bumps

and height variations on the surface are minimal especially when

scaled. The Kappa statistic, while expressing moderate-to-strong

agreement for most terrain types, was lower than expected. The

performance of IDW on the hügelland terrain is something that

needs improvement. The in-painting technique, CVP is not com-

parable to IDW for most terrain types even though it outperforms

it on the hügelland terrain. Its Kappa statistics by terrain are very

low magnitudes (close to zero) and the RMSE values are almost all

greater than one, and with large variances. A positive note in their

favour however, is that the difference between their performances

on small spaced canopies and wider canopies was not large for

either algorithm.
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Table 4: Average Kappa statistic for each landscape

Terrain type: Flat Gentle Steep Hill slope Interlocking spur Hügelland

IDW: 0.6669 0.4639 0.6713 0.6638 0.6213 0.3136

CVP: 0.6536 0.5312 0.1682 0.2873 0.2054 0.2877
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