

CS/IT Honours

Final Paper 2020

Title: Per Pixel Height Map Generation of Tree Orchards

Author: Daniel Bowden

Project Abbreviation: PLANER

Supervisor(s): Assoc. Prof. Patrick Marais

Category Min Max Chosen

Requirement Analysis and Design 0 20

Theoretical Analysis 0 25

Experiment Design and Execution 0 20 15

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 15

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Per Pixel Height Map Generation of Tree Orchards

Daniel Bowden
BWDDAN001@myuct.ac.za

University of Cape Town
Cape Town, South Africa

ABSTRACT
Determining the heights of trees from a heightmap is a useful

tool for agricultural farmers. A heightmap is an image

representing a collection of the height values distributed evenly

across a landscape. The heights of trees in an on orchard can be

estimated, given such a heightmap, through using image

processing methods. This involves the removal of the ground

plane values from height data of farmland to leave you with a

heightmap containing height information for just the trees. One

issue that arises when implementing this process is the lack of

ground truth data sets containing the known heights of the

landscape that a particular orchard of trees is grown upon.

Without knowing the true height of the ground below a tree one

cannot evaluate whether image processing methods estimating

the height of a tree were accurate or not.

We explore methods to create synthetic digital heightmaps

which are sufficiently complex to capture the variation present

in a broad range of tree orchards. Using these synthetic

heightmaps we can store all the sufficient data for the land and

the trees produced in order to rigorously test methods used for

estimating the height of the land and the trees. It was found

during this research that simulating features of landscapes and

generating heightmap landscapes proved an effective way of

evaluating the various methods involved with the process of

estimating the height of trees in a farm orchard. Various pitfalls

and improvements to the methods themselves became apparent

as testing was undertaken using the maps we generated.

CCS CONCEPTS

• Computing methodologies → Computer Graphics, Modelling

and simulation

KEYWORDS

Digital Elevation Model, GIS, Heightmap

1. INTRODUCTION
Knowing the heights of trees is an important factor in managing

tree farmland. Tree height information can be used to monitor

growth metrics, areas in danger of soil erosion and keep farms

within possible greening regulations [1]. Many farmers would

benefit greatly from being able to track the height of their tree

orchards, however manual collection of tree height data is a

slow tedious process. Many farmers instead monitor their

farmland with drones commonly referred to as UAVs

(Unmanned Aerial Vehicle). drones can quickly and efficiently

gather large amounts of imagery and GIS (Geographic

Information System) data that is useful to farmers in analysis

of their crops, time saving and helping improve the yield of

their farms [2]. One form of GIS data that can be recorded

efficiently using UAVs is height data in the form of a

heightmap. Height values of a landscape can be represented by

an image of height values per pixel, a heightmap or DEM

(Digital Elevation Model). Such a DEM recorded via UAV

simply contains the highest value at each pixel in the image of

land. This means this height could be the canopy of a tree, the

ground around trees or any other object on the surface of the

landscape. The height value found at the location of a tree

canopy is therefore the height of the tree plus the height of the

ground below it. Therefore, one can determine the height of

each tree in such a DEM by subtracting the height of the ground

from a height value where a tree resides in the image.

Image processing algorithms can be developed to implement

this process, but without truly knowing the height of the ground

below each tree these algorithms cannot be properly tested for

their accuracy. More specifically, this research explores

methods to generate sufficiently complex and variable DEMs

to represent tree orchards with known height values in order to

aid testing of ground and tree height estimation. We explore

methods to algorithmically create different types of landscapes

and store the resultant height data for testing. We then add

simulated trees in a variety of ways, storing the position of each

tree and their shapes for further testing. The generated DEMs

need not fully simulate the realism of a tree orchard, but need

to be complex enough to ‘stress’ test the robustness and fidelity

of image processing algorithms developed to extract the height

of the trees and ground.

Two types of image processing algorithms are tested using

these synthetically produced heightmaps. Firstly, tree

segmentation algorithms which determine whether a pixel on

an image represents a tree or ground. Such algorithms produce

a mask of the original image indicating where trees are present.

Secondly, ground height estimation algorithms which estimate

the height of the ground below a tree pixel are tested. These

height estimation algorithms take the mask produced

previously and interpolate the height of the ground where the

tree canopies occlude the ground. As the second algorithm uses

output from the first it is important that each is tested

independently, so that errors in the mask from the first

algorithm do not affect testing the second. There are several

variables and requirements that our generated DEMs need to

satisfy in order to produce sufficient variability of orchards,

such as varying ground elevations and surface smoothness of

the landscape. Other characteristics are also considered such as

the pattern of growth of tree rows and the shapes and sizes of

tree canopies. Tree orchards that are analyzed using the

algorithms we aim to test will typically be grown on relatively

even land surfaces and in neat rows however we aim to create

quite extreme versions of these characteristics to stress the

algorithms rigorously.

This paper is laid out as follows. Section 2 provides background

information about DEMs and producing procedural landscapes.

Section 3 provides information on where previously height

estimation has been undertaken in related work using DEMs.

Section 4 describes the structure and implementation of our

DEM generation system and our evaluation system that

analyzes the results of tree and ground height estimation using

the DEMs we generate. Section 5 provides insight into the

design of the entire experiment. Details are provided here about

what source data we were given the hardware used to conduct

the experiment and a high-level view of the process involved in

generating and analyzing our results. Section 6 provides

significant results found when evaluating our DEMs and

provides a discussion about the effect these results had and why

they occurred. Section 7 we provide conclusions derived from

the results and discussion had in section 6.

2. BACKGROUND
In this section we discuss the various aspects to the process of

creating synthetic DEMs that simulate features found on a farm

orchard. DEMs and how they are produced are discussed. We

further explore methods to create DEM landscapes as well as

tree vegetation for them.

2.1 Digital Elevation Models
Heightmaps in GIS are typically represented by either a

Triangular Irregular Network (TIN) or a Digital Elevation

Model (DEM). TIN models are computationally expensive, but

highly accurate [3]. However, for our level of accuracy and

efficiency they were deemed infeasible for our purposes. We

therefore will be generating DEMs to represent our

heightmaps. DEMs are images, typically top down greyscale

images of landscapes, where each pixel in the image represents

a height value of the landscape. Data can be recorded in

different ways to produce a DEM.

The method used to capture our source data was that of LiDAR

(Light Detection and Ranging) survey. LiDAR is a method for

measuring distances and geographical data using an infrared

laser light being aimed at a point on the ground and the

reflection of this light being measured by a sensor. LiDAR is

constantly improving in the potential resolution and amount of

additional data that it can record[4] and thus is an effective way

to record DEM data. A DEM can be stored digitally using the

.tif format, otherwise known as a TIFF file. This is a computer

file format which is widely supported for image manipulation

and GIS to store raster graphics data for images.

2.2 Landscape Generation
For developing natural landscapes various methods can be

explored using procedural generation [5]. Fractal generation,

physical simulation and example-based learning can be used to

create realistic varieties of landscape. However, the aim of this

project does not require the level of realism that these methods

produce, and such complexity will be a hinderance to the speed

in which we generate images.

L-systems provide another procedural method that can be used

to model forest or tree models. Lindenmayer systems or L-

systems can efficiently be performed in parallel [6] to model

geometric shapes that simulate natural features such as

vegetation and the positioning of natural vegetation on

landscapes. Again, however these methods provide a level of

realism that we don’t require to merit implementing for our

purposes.

3. RELATED WORK
Much of the research that has gone into height extraction

algorithms from heightmaps has been focused on urban areas.

Edge detection and ground plane removal can be used to find

the heights of buildings where there is a significant difference

between the ground and non-ground objects and you have clear

visibility of the ground in the majority of the image [7]. Our

source images of tree orchards lack the defined shapes and

visibility that urban areas have. This makes it more difficult for

tree estimation methods to process these images accurately. We

discuss below the two core parts to the tree and ground height

estimation process, tree segmentation and ground estimation.

3.1 Tree segmentation
There is a two-part process that can be used for tree

segmentation. Firstly, Simple Linear Iterative Clustering

(SLIC), can prepare given DEM data by efficiently clustering

adjacent pixels in the image of similar height [8] and for each

cluster a second method, Watershed, finds whether a region in

this cluster fits a tree canopy shape and creates a mask of this

canopy indicating which are tree pixels and which are not.

SLIC is an efficient pre-processing method that simplifies an

image into a number of similar regions, with it you can set a

desired number of pixels to cluster together and initializes the

cluster centres uniformly to make it easier for the watershed to

analyze each region. This works well for orchard trees as they

will roughly be the same size across an orchard. The Watershed

method operates by dividing an image up into catchment basins

with each basin associated with a local minima [9]. Similarly,

it can be used for hills with a local maxima as it simply divides

by a change in the height gradient in areas in an image. For our

purposes pixels that decrease gradually as you move away from

a local maximum and then drop off drastically at a certain point,

resemble a tree canopy and then a drop off to ground. The

Watershed method is highly sensitive to small changes in pixel

heights so the SLIC pre-processing is vital to improving the

results of the watershed [10].

3.2 Ground Height Estimation
Interpolating the ground heights for a DEM can be done using

inverse-distance weighting (IDW) interpolation which is a

popular spatial interpolation model used in Geosciences [11].

IDW calculates a desired locations values based on a weighted

average of neighboring points. This weighted average is based

on the inverse of the distance to each point given to the

weighting calculation [12]. As the weighting is based on these

inverses it is more heavily influenced by the weights of pixels

closer to a desired location than further away making this an

effective technique for interpolating pixel values in DEMs with

many small gaps between known pixels. Our tree pixels in our

DEMs will have many gaps in between which are ground pixels

and so can be effectively interpolated using this method.

4. DESIGN AND IMPLEMENTATION
In this section we outline the overall design of our system

producing our DEMs and our system evaluating the

effectiveness of these generated DEMs. We describe what

additional development tools were used in developing our

research. We also describe in detail how we implement each

part of the DEM generation and evaluation process as well as

the requirements that our software must meet in order for us to

produce results that are sufficiently complex and variable to test

tree height estimation of a DEM.

4.1 Design
The goal of our software is to produce synthetic DEMs in the

form of .tif files and to process these .tif files using external

image segmentation algorithms and ground height estimation

algorithms. Our produced DEMs will be created by first

creating a landscape DEM with different surface elevations and

bumpiness to emulate the irregularity of the ground that our

source orchards are grown on. Secondly, trees will be added to

the DEM to simulate various features found in a typical real-

world orchard. We will be growing groups trees either in neat

rows or along contour lines found in the DEM. Our DEMs are

represented by 8bit floating point greyscale images where each

pixel is a floating-point value of 0 to 255.We implement our

methods using C++ with the aid of the OpenCV library. We

produce varying ground elevations using mathematical

functions to create smooth gradients and hills for our

landscapes.

4.2 System Design

Figure 1: Architecture design for experiment system

The overall structure of the experiment system will be split up

into a DEM Generation layer and a DEM Evaluation layer. The

DEM generation layer contains the functionality to create

landscapes and from the produced landscape imposes groups of

trees to produce a final image.

DEM Generation steps:

1) We produce, using the landGen class, the underlying

landscape.tif DEM containing the true ground

heights for the DEM.

2) Using the treeGen class, groups of tree positions are

produced. In the case of growing trees on contours

the landscape.tif DEM is used to find contour lines

and these contour lines are passed to treeGen.

3) Using the tree positions generated by treeGen, our

main program draws trees on the landscape.tif DEM

4) Additionally, our main program produces a

centres.tif DEM, containing the centres of each tree

and a mask.tif DEM indicating exactly which pixels

are tree pixels. These two DEMs are used for

evaluation later.

From external tree segmentation methods, we receive a

watershed.tif image containing the estimated positions of the

trees given final.tif. The watershed.tif image is our only non-

greyscale DEM and contains different colour values for each

tree it finds. From external ground estimation methods, we

receive an estimate.tif image of our estimated ground heights

using the mask.tif and final.tif DEMs.

The DEM evaluation layer compares the outputs of the

estimation methods as follows:

1) For tree segmentation, the watershed.tif DEM is

compared against the centres.tif DEM. Bounding

boxes are drawn from each centre pixel in centres.tif

and these are compared with the bounding boxes for

each colour in the watershed.tif image.

2) For ground estimation, the estimate.tif DEM and the

landscape.tif DEM have their height differences

compared. The ideal estimate.tif has as little

difference to landscape.tif as possible.

4.3 Development Tools
The OpenCV library was used to edit, read and write our .tif

file data. OpenCV provides a library of image editing functions

that we make use of to format and process the raster data in our

images, it also allows us to view the images we are working

with in 2D. Aerialod is a viewing library we used for

visualizing DEMs in 3D to better assess our progress and the

look of the DEMs we produced in our research. DEMs can be

read by most image editing software programs. We used GNU

Image Manipulation Program (GIMP) for quick image edits

and pixel colour probing for experimentation when developing

our methods. QGIS is an open source GIS tool which we used

to view our various source and generated data in 2D. QGIS also

provides additional GIS details about the DEMs such as the full

ranges of height values in each image and the number of layers

in our source data, which had multiple layers. See the Software

Links section for URL references for the software used.

4.4 DEM Feature Requirements
The trees and landscape of orchards have multiple important

features that needed to be reproduced as they directly affect and

test the strength of image processing algorithms. It is required

that our landscapes simulated both flat land and gradual hilly

slopes. We also developed steeper and more irregular land for

experimentation purposes. Trees must have the ability to both

be spread and overlap in their tree canopies. This overlapping

of tree canopies creates a difficulty for the tree segmentation

algorithm that must be overcome as well as reducing ground

visibility for the ground height estimation algorithms. Trees

added to the images resemble the tree canopy characteristics

displayed in our source DEMs. Typically canopies in these

DEMs are circular with some roughness around the edges that

was reproduced in our generated canopies. The heights in the

source canopies are highest at a point roughly in the middle of

the canopy and reducing in height gradually moving outwards

from the centres. This creates a semi-circular shape when seen

from a side on view and our generated canopies resemble this.

Trees are natural and therefore there needs to be some

irregularity in the shapes of our generated trees, so a small

amount of randomness was added to the height values

produced. The way rows of trees are grown in our source

images are of two varieties, a straight-line row of a trees and

trees grown along contour lines. We therefore generated two

variations of tree groupings to emulate these two patterns.

4.5 Implementation
The following describes how we implement the generation of a

tree orchard landscape DEM. This DEM is created in stages

where first a landscape DEM is generated for just the ground

height values. Then we generate positions for each tree we want

to add to this landscape. Using these tree positions we finally

calculate and draw the tree height values onto the landscape.

4.5.1 Landscape Generation

In producing our variations of land, we create an empty image

of 500x500 pixels and change each pixel height in this grid by

a calculated amount to produce an effect we desire such as a

sloping hill or bumpy land. A resolution of 500x500 was

chosen as this produces a sufficiently large enough image to

contain a large area of landscape pixels as well as space for a

tree orchard region within that which is sufficiently large

enough to place enough trees to evaluate our generated DEMs.

For simple variations we create flat and linear gradient slopes.

More complicated variations make use of sin and cos functions

to produce hills and ditches in the landscape.

4.5.2 Tree Positioning

In positioning our groups of trees, we implemented two

methods. One to generate neat rows of trees in straight lines and

another for producing trees along contour lines. Both methods

involved a small amount of jitter in the positioning of trees to

simulate the irregularity found in real life orchards. In

generating our neat rows grid of trees, we simply loop through

the available orchard area and based on the specified gap

between trees and a random offset to represent jitter in its

position we store set positions at which to spawn trees. The

following pseudocode shows how we choose where to place

trees for our neat rows:

The distances between trees are adjusted by a randomDist

variable for both X and Y as well as a set minimum gap to

divide the trees into spaced rows. these randomDist variables

are based on the width of the tree to be able to dynamically

work for different sized trees. Positions of trees are based on

these randomDist variables as well as the incremented integer

variables in each for loop for X and Y.

In order to generate trees along contours we first find contour

lines in a given landscape image. OpenCV provides a

findContours() function which returns a data structure

containing the start and end points for each vector making up

the contour lines in the image. A straight-line contour across

the image found using findContours() would result in a single

vector containing start and end points of this line while

contours on a non-straight line contour would result in multiple

vectors making up small lines that make up the total contour

curve.

In order to detect neat contour lines, the image first needs to be

Gaussian blurred and then normalized. The Gaussian blur acts

as a low pass filter that we use to reduce the amount of noise

which would otherwise produce unwanted contours lines by the

findContour() function. We picked a normalization range of

between 0 and 10 for our generated landscapes. Without

normalizing the number of contours found is too sensitive

because most DEMs contain large amounts of varying heights

and the resultant contour data structure contains too many

contours to realistically use as almost every pixel in the image

becomes its own contour grouping. Once the contour lines have

been found for the image, the following pseudocode shows how

we add trees along contour lines:

A group of tree positions is created by looping through the

contours vector<vector<Point>> data structure and for each

contour point checking if the position is available to spawn a

tree. If the position is free to spawn a tree then we make the

surrounding pixels unavailable to spawn another tree and store

this postion as the position for the tree. The surrounding pixels

chosen to be made unavailable is based on the width of a tree

and the desired gap. The irregular spacing we desire comes by

virtue of the found contour vectors being of different distances.

The ‘gap’ value prevents trees from being too close if there is

a high density of contour line vectors.

Figure 2: The contour lines for a hill landscape and the

resultant added trees

Additionally, we add a random chance to drop a tree leaving a

gap in the orchard to stress the image processing methods. For

example, if the tree segmentation algorithm was designed in

such a way that it relied on the distance being consistent

between trees then this randomly dropped tree would allow us

to see this downfall in the algorithm during evaluation of the

results.

4.5.2 Tree Creation

The desired tree shape which resembles our source image is a

circular tree shape with a local maximum that decreases as you

move away from the centre. We generated images with two

types of trees, a ‘simple’ case and a ‘complex’ case.

The complex case for our trees will have a small degree of

randomness to the canopy heights as well as gaps in the canopy

close to the boundaries of the tree. This is to simulate

irregularity of height values in the tree canopy as well as change

the shape from being perfectly circular for each tree canopy.

The simple case type tree has no holes in their canopy and a

smooth linear decrease in the canopy heights from the centre to

the boundary of the tree. For an additional case we developed

trees of much smaller size. Our simple and complex cases used

trees roughly of a diameter of 30 pixels while our smaller tree

case had trees with a diameter of 15 pixels. The following

pseudocode represents how we generated our simple case tree.

A circular two-dimensional tree grid is created based on the

width of the tree. The circular shape comes from checking

whether a pixel is within a circle based on the difference

between the treewidth/2 for a radius and the current pixel being

assigned (i, j). In the treeHeight calculation a logarithmic

function is used based on a fraction of the tree radius and the

value of 50 is chosen as a quotient as it was found through

experimentation that this value would produce the smooth

flattening out shape that we desired for the centres of our tree.

The whole function is multiplied by the radius/2 to further

improve the shape we produce in our tree.

The following pseudocode represents how we generated our

complex case tree:

The implementation of the complex case has the added

canopyVariance value which produces irregular heights for the

tree canopy. The canopyHoleChance variable is designed to

only produce holes for pixels at a distance away from the centre

that pass a set threshold value meaning there are no holes in the

tree until this threshold is reached. Basing the random

canopyHoleChance variable from zero to the current distance

from the centre means a pixel further from the centre has a

higher chance to be a hole in the canopy, an effect we desire.

For our smaller trees a much simpler tree is generated as with

less pixels the gradient of the tree canopy cannot contain too

much variation due to the space limitation. This pseudocode

indicates the generation of our smaller tree (complex case):

The small tree generation has both the ‘simple’ and ‘complex’

cases mentioned previously, but the treeHeight calculation is a

simple linear calculation based on the distance from the centre

of the tree.

4.6 Evaluation Implementation
4.6.1 Evaluation by Segmentation

In evaluation the effectiveness of our DEMs to stress our

segmentation algorithms we use a combination of the Jaccard

Index otherwise known as Intersection over Union (IOU) and

visual comparisons of the final watershed result from our

segmentation. IOU tests are used to compare similarity and

diversity in set of data [13] and can be implemented simply for

our purposes by knowing the bounding box for our predicted

tree pixels produced by our segmentation and the true bounding

box for a particular tree in our generated image. IOU is

computed by taking the area of an intersection box between two

bounding boxes and dividing this by the union of the boxes.

The intersection box is an area of overlap between the predicted

bounding box and the true bounding box. The union of the two

boxes can be found by adding the area of each box and

subtracting the intersection area found previously. Our IOU

calculation is done as follows:

I = Intersection Area, U = Union Area,

BAA = Box Area A, BAB = Box Area B,

IOU = Intersection over Union, n = current tree box index,

We can define:

I(n) = BAA(n) ∩ BAB(n)

U(n) = BAA(n) + BAB(n) - I(n)

IOU(n) =
I(n)

U(n)

4.6.2 Evaluation by Ground Estimation

For evaluating the effectiveness of our generated DEMs in

testing the ground estimation methods we look at the average

difference in heights between the true height values stored in

our landscape.tif map versus the estimated heights for each

estimated pixel in the output of our ground estimation

(estimated.tif). We assess the height difference by looking at

the average height difference over all the estimated pixels and

its standard deviation as well as a visual comparison displaying

how well each patch of ground below each tree was estimated.

The ground estimation methods estimate the ground for which

each tree in the image occludes the ground, therefore the

underlying patches of ground occluded by each tree are the

pixel areas we are interested in assessing.

To obtain each patch of ground, we first load all the pixels for

each tree into a data structure (vector<vector<Point>> trees),

where each tree vector contains a group of pixel positions

associated with it. For each of the pixel positions the

corresponding pixel heights in both the estimated.tif map and

the landscape.tif map are obtained. For each patch of ground an

average height is calculated based on the average height of each

of its pixels. Using the average height for each patch we

compute the average difference between the estimated ground

heights and the true landscape heights and the standard

deviation of this average difference. For our visual assessment

we draw each patch to an image. We indicate using colours how

accurately the ground was estimated. Green for a low

difference between the heights (less than 0.5 difference),

orange for moderate difference (between 0.5 and 2) and red for

a high difference (above 2). These values were chosen through

experimentation with the results being evaluated to show the

significant areas in the DEMs where ground estimation failed.

5. EXPERIMENT DESIGN
Here we outline the background details for our research

experiment such as the source data for tree orchards provided

by Aerobotics, the hardware we use to perform our research

and the high-level view of evaluating our results produced.

5.1 Hardware
Generation of test DEMs and evaluations were done on Ubuntu

19.10, intel i7-8550U (1.8 GHz x 8) and 12 GB RAM.

5.2 Source Data
For the overall project of tree height estimation source data was

provided to us by Aerobotics, which conducts drone surveys of

agricultural land for productivity monitoring and analysis. The

images provided by Aerobotics are all 32-bit floating point

uncompressed .tif images with multiple layers of resolutions.

The resolutions given ranged from 10662x8520 down to

167x134, so a high level of precision was available to us. As

the external image processing algorithms are to be used on

these images the test DEMs we produce needed to emulate

certain features that are displayed in our source data. For the

most part our source data contains neat uniform rows of trees.

Trees in the images are of a similar diameter and gaps between

them are relatively uniform for a natural collection of objects.

Figure 3: Aerobotics sourced heightmap and reference

image.

5.3 Evaluation Design
The produced final images that represent our synthetically

created tree orchards are accompanied by the underlying

landscape heights (without the trees added). Additionally, the

positions of each tree placed on the landscape is stored and a

mask showing exactly which pixels in the final image are part

of tree canopies. Using these accompanying images and the

outputs of the external image processing methods we evaluate

the effectiveness of our generated DEMs in testing image

processing methods.

5.3.1 Evaluation of Testing Tree Segmentation

In evaluating the effectiveness of our test DEMs in testing tree

segmentation algorithms we look at the number of trees flagged

in segmentation versus the actual number of trees in our final

image and compare the IOU values for the segmentation result

versus the true image. Our DEM _Evaluation class reads in the

centre positions from the centres.tif image and computes the

bounding boxes for each tree based on these centres and the

width of the tree we’re working with in the current final.tif. We

then read in the watershed.tif image produced by our tree

segmentation and compute the bounding boxes for each unique

colour in the watershed. Each watershed.tif grows regions of

unique colour for each tree it has predicted which we can use

to find its bounding box. We then compare each predicted

bounding box against every true bounding box to find the

highest IOU value for the predicted box and calculate the mean

and standard deviation for the IOU’s. Mean IOU values of

above 0.75 are considered a successful prediction by

segmentation with values of below 0.5 being low and indicating

a failure to correctly segment the trees.

5.3.2 Evaluation of Ground Height Estimation

In predicting ground truth values, we compare the original land

DEM (before adding trees), to the images produced by the

ground height estimation. The height difference for each patch

of ground occluded by a tree in the final image is analyzed. The

average height of each patch is calculated for both the

generated DEMs ground truth values and the estimated ground

heights. The height difference between these averages is

evaluated.

Additionally, we draw a DEM for visual evaluation where we

display using colour coding which patches of ground were

correctly estimated with a low average difference in heights and

which were badly estimated with a high difference. Green for a

good estimated patch, orange for acceptable and red for badly

estimated patch.

6 RESULTS AND DISCUSSION
Here we list the most significant results and compare how well

the tree estimation methods did for both tree segmentation and

ground estimation.

Table 1: Summary of added tree variations.
Variation

Type

Tree Diameter

(pixels)

Tree Type (see

section 4.5.2)

Overlapping

Tree Canopies

Simple 30 Simple Yes

Complex 30 Complex Yes

Complex and

Spread

30 Complex No

Simple and

Small

15 Simple Yes

Complex and

Small

15 Complex Yes

Table 1 summarizes the differences between our five standard

variations of added trees that we added to each landscape type.

For example, the ‘Complex’ variation adds trees that are 30

pixels in diameter have a canopy shape and height distribution

of the ‘Complex’ type tree described in section 4.5.2 and have

trees who touch and sometimes overlap. These variations in

combination with each of the landscape types we produced

resulted in our final generated DEMs. See Appendix A to see

3D views of each landscape type for a better understanding on

how the underlying landscape types look.

(A) (B)

Figure 4: final.tif DEM generated using the “Complex”

variation on the “Steep Slope” landscape (A). 3D view of

this DEM (B)

6.1 RESULTS
We produced a total of 30 different DEMs based on varying

versions of landscapes and different variants of tree types.

Additionally, we generated DEMs for experimentation which

were not used in the recording of results and evaluation of

external estimation methods. See Appendix B for all generated

DEM resultant final.tif maps. Some examples of resultant

final.tif DEM maps are displayed below:

Figure 5: Example results of generated final.tif DEMs

Figure 5 shows some of the variety in our resultant segmented

DEMs. Later we compare how these various generated DEMs

‘stress’ tested various tree and ground estimation methods.

DEMs viewed in this way can be understood as lighter areas

being of a higher height value and darker being lower height

values. Circular brighter patches indicate trees and jagged

edges to the trees indicate a ‘complex’ tree type being used.

6.1.1 Testing Tree Segmentation by IOU

Figure 6: Graph showing IOU values averaged for each

landscape type.

Figure 6 shows how accurate the segmentation results were in

predicting which pixels were trees an which weren’t. Of the

landscapes two out of the six had their trees produced by our

contour generation technique (“Contour Hill” and “Contour

Hill Overlap”). Of the landscapes the one that segmentation had

the most difficulty with was the “Hills” landscape with the

lowest average IOU result of 0.39, while the most successful

segmentation was done on the “Flat” landscape with an average

IOU result of 0.54.

These IOU values are relatively low averaging 0.47. These low

may be due to falsely flagged trees or multiple small trees

predicted in a space where only one tree should be found.

(A) (B)

Figure 7: Final Test DEM image (A), Watershed tree

segmentation result (B)

Another problem which this generated final DEM (A) clearly

shows up is an issue with the watershed segmentation (B)

where even low-lying hills were detected as being trees. This

indicates the possible reason for such low mean IOU and an

overestimate in the total number of trees found in the “Hills”

type landscape .The dark grey larger pixels in figure 10 above

represent low hills while the brighter white pixels are the trees

who have significantly higher height values compared with the

rest of the image and so it is a problem that these dark grey

pixel groups were picked up as trees by our segmentation. This

is due to the low hills having their own a local maxima so tree

segmentation picks up each small hilltop as a grouping of

canopy pixels.

This leads us to an immediate improvement to the watershed

segmentation that can be done in thresholding the heights that

can be detected and labeled trees within a range. it can be

assumed that a similar issue occurs if there are large objects

such as mountains with a local maxima present in the image as

well.

Figure 8: Graph comparison of the IOU values for Simple

type trees versus Complex Trees.

Figure 8 shows the effect caused by using the more Complex

type trees versus the Simple type trees. Included in the results

are both small trees of diameter 15 and normal sized trees of

diameter 30. Each simple and complex pair corresponds to tree

images that were built with the exact same variables except

with different tree types used. On average an IOU for all simple

type trees was 0.6 with a standard deviation of 0.1 and for

complex type trees the average IOU was 0.4 with a standard

deviation of 0.06. Indicated in these results is a consistent

decrease in IOU when using ‘Complex’ trees whose canopy

varies greatly and who’s boundary is not easily defined. This

an ideal result which indicates a weakness in the tree

segmentation methods in dealing with variable and noisy data.

In most DEMs with any ‘complex’ tree type one can see

multiple watershed predicted trees within single trees. These

multiple trees would produce a low IOU when compared

against the final.tif DEM because these predicted trees have

smaller bounding boxes than the true bounding boxes. This

would also affect the number of trees estimated negatively.

This is an important problem that needs to be addressed in

segmentation as small variations in the tree canopy should not

result in multiple predicted trees within a single tree. In this

way our generated DEMs showed a significant problem with

tree segmentation that needs to be addressed. In figure 7 this

phenomenon can be seen where, when looking at the trees

predicted in the watershed (B), multiple colours are drawn for

a singular tree.

6.1.2 Testing Tree Segmentation by Number of Trees Found

Figure 9: Graph showing the true number of trees in the

final DEMs versus the estimated number of trees by each

watershed.

Figure 9 shows how close the total number of actual trees for

each landscape were to the predicted total number of trees for

each landscape. Each total tree count is averaged from the five

different variations of trees for each landscape type showed in

table 1. The largest difference was apparent in the ‘Hills’ type

landscape where there were 105 trees present, but tree

segmentation detected 128 trees.

We can notice in these results that estimated trees totals

(orange) for those grown along contours had less than the true

number of trees (blue) in the DEM while consistently spaced

row positioned tree groups had a higher estimated number of

trees versus the true number of trees. This may be due to the

fewer true number of trees in the contour images which were

on average around 42 trees while the normal row pattern trees

had on average 106 trees in their final.tif DEMs. The number

of trees in the contour Images was perhaps too low in our

resultant final DEMs and we should explore in the future a

more similar tree count to the row patterns.

What can be noted from the total tree numbers is that the

estimated number of trees was not affected too harshly by the

angle of the slope. This can be seen from the results of our

‘Flat’, ‘Gentle Slope’ and ‘Steep Slope’ landscape types. This

is not true for the IOU results which got significantly less as the

angle of the slope got more extreme. Ranging from 0.54 for

‘Flat’ to 0.48 for ‘Steep Slope. This indicates that tree

segmentation is more difficult as the slope increases and means

our generated DEMs successfully simulated this feature that

may be present in natural orchard landscape.

6.1.3 Testing Height Estimation Results

Figure 10: Graph showing the performance of ground

estimation through the average difference in heights

between the estimated ground and the true ground heights.

On average the differences in heights across all variations of

maps was 0.57 with a standard deviation of 0.65. This is a

relatively low difference and the ground estimation performed

highly in interpolating the true height of the ground in most

cases. Most successfully the spread-out tree DEMs (‘Complex

and Spread’ in figure 10) was estimated with an average

difference of 0.44 and a standard deviation of 0.54. This was

the expected result as DEMs where trees have more ground

between them allow for easier interpolation as there is more

ground to interpolate with on the boundaries of each tree. The

lowest performance was found with the ‘Simple’ tree type

variation with an average difference of 0.65 and a standard

deviation of 0.7 which was unexpected. While this is still a

relatively low average difference there are several possible

reasons for this. In the ‘Complex’ tree type there are holes near

the edges of the tree, this could lead to more correctly

interpolated ground if the ground estimation methods make use

of these holes. Additionally, more densely packed tree groups

could result in worse results for interpolation as there is less

ground to use to interpolate.

Figure 11: Graph showing the performance of ground

estimation by landscape type.

Figure 11 clearly shows that the most significant factor that

‘stressed’ the ground estimation methods was the landscape

type as the results vary greatly while figure 10 shows very

slight differences based on tree type. The ‘Flat’ and ‘Steep

Slope’ landscapes averaged differences of 0.12 and 0.08 with

standard deviations of 0.08 and 0.06 respectively. This low

average difference could be due to these landscapes having

linear based landscape gradients and this being easier for

interpolation in the ground estimation. This is highly likely as

ground estimation would be able to interpolate quite simply

using simple linear mathematical formulae.

Performing the worst by far was the ‘hills’ type landscape with

an average difference of 1.72 and a standard deviation of 0.22.

This landscape had the most varying and dynamic landscape so

it is understandable that ground estimation resulted so poorly.

Appendix 1 (Hills) displays this landscape type.

(A) (B) (C)

Figure 12: Piece of visual DEM indicating low average

differences for interpolated area in green (A), normalized

final.tif image with added green lines (B), full visual DEM

indicating effectiveness of interpolation (C).

Figure 12 (C), displays in green, patches of pixels areas where

average difference in ground was below 0.5 indicating a low

difference. This interpolation is for the ‘Simple and Small’

(Table 1) tree variation on the ‘Hills’ landscape (Appendix A).

There seems to be a pattern where interpolation is effective in

straight lines along edges of the hills and ditches as displayed

by figure 12 (B) where light patches are hills and dark areas in

between are ditches. The green lines mark the corresponding

green pixels in figure 12 (A).

Interpolation clearly struggles when the ground is more

irregular and one cannot interpolate simply from checking one

gradient angle. An average of multiple passes for ground

estimation taken at different angles may improve the results for

each patch of ground. The contour landscapes also have a

significantly higher average difference when compared to

‘Flat’ and ‘Steep Slope’, but still much less than ‘Hills’. The

contour landscapes however are still very large sloping hills

and so they don’t create as much irregularity as the ‘Hills’

landscape does. While real world orchards will typically not be

grown on such varying surfaces as ‘Hills’ they are still possibly

grown on more irregular surfaces than the other four landscapes

we compared.

(A) (B) (C)

Figure 13: Average differences visual DEM for spread trees

on contours (A), average differences visual DEM for

overlapping trees (B), underlying landscape.tif for each

DEM (C)

In figure 12 we can see another example of a sudden change or

irregular ground being a difficulty for the ground estimation. In

figure 12 (A) and (B) the orange and red patches occur along

the seam or dip between the two hills. We can see this in the

underlying landscape figure 12 (C) where the dark line shows

where the two hills dip down and meet. Interpolation clearly

picked up a gradient, but with the sudden change to a hill going

down to one going upwards the estimated ground height was

interpolated incorrectly.

7. CONCLUSIONS
Our generated DEMs were able to pick up deficiencies in the

image processing algorithms and so were an effective way to

evaluate our image processing methods, however more

rigorous testing could have been done by generating more

variations of maps and adding more variability to each map

produced. Other pitfalls include the lack of realism in our

DEMs as they are still quite crude mathematically synthetic

landscapes, and much could be done to further simulate natural

features. There are many variables involved in natural

landscapes even for areas as neat and uniform as tree orchards.

In tree segmentation our generated DEMs were able to pick up

issues that arise with low lying hills and varying slope

steepness in landscapes as well as the difficulty with detecting

tree boundaries for densely packed trees versus spread trees. In

ground estimation our generated DEMs showed that irregular

hilly landscapes cause the greatest difficulty for interpolation

and more densely packed trees also make it harder than spread

trees to interpolate the ground.

Several pre-processing methods were used in preparing our

synthetic DEMs. The normalizing of the image before finding

contours using OpenCV made it significantly easy to find neat

similar height contours in the image even when a large amount

of noise was present. The range that you normalize by can

greatly simplify the DEM so that you can reproduce contours

that fit the landscape at many levels of precision.

8. LIMITATIONS
Our source DEMs from Aerobotics were of tree orchards

limited to specific small selection of tree types and farming

techniques. With more varying source images we could have

explored additional ways to generate DEMs that test image

segmentation and interpolation techniques on more general tree

orchards. With more time we also could have produced more

variety in our landscapes and tree types. As tree segmentation

and ground estimation was done externally, evaluating our

generated DEMs by these methods relied on a third party to

return the results of processing the generated DEMs. Another

limitation was the unavailability of ground truth data in our

source DEMs. If we wanted to generate DEMs we did not have

access to the true ground values to accurately re-create a tree

found in the source images.

9. FUTURE WORK
There are several features which are lacking in our

implementation in our DEM Generation. How we draw a tree

specifically can be improved upon and made to draw a tree that

is more similar to those found in the source DEMs provided by

Aerobotics as well as other tree types found typically in

orchards. Testing with different sizes of trees can be more

extensive as well as producing DEMs with much more trees in

the added orchard. There are many more variations of

landscape that can be produced. Landscapes of different types

may discover more pitfalls with tree estimation methods and

lead to more improvements of them. Finally, much more

extensive variations using different resolutions can be done. It

would be interesting to see how much higher or lower

resolutions fair when processed by tree estimation methods.

With larger resolutions the efficiency of these methods may be

another factor of image processing that can be tested more

harshly.

ACKNOWLEDGEMENTS
I would like to thank my project partners for their support

throughout this project, Lynolan Moodley, who implemented

the tree segmentation algorithms and Chiadika Emeruem, who

implemented the ground estimation algorithms. I further thank

Associate Professor Patrick Marais, my supervisor, for his

essential guidance and insight throughout the project and

Professor Hussein Suleman as our second reader. Additional

thanks go to Michael Malahe and Aerobotics for the source

DEM data and for detailed information on the source data and

how it was obtained.

This work is based on the research supported wholly / in part

by the National Research Foundation of South Africa.

SOFTWARE LINKS

OpenCV: https://opencv.org/

Aerialod: https://ephtracy.github.io/index.html?page=aerialod

GIMP: https://www.gimp.org/

QGIS: https://www.qgis.org/en/site/

REFERENCES

[1] Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V. and Loudjani, P.

Tree height quantification using very high resolution imagery
acquired from an unmanned aerial vehicle (UAV) and automatic 3D

photo-reconstruction methods. European Journal of Agronomy, 55

(2014/04/01/ 2014), 89-99.
[2] Puri, V., Nayyar, A. and Raja, L. Agriculture drones: A modern

breakthrough in precision agriculture. Journal of Statistics and

Management Systems, 20, 4 (2017/07/04 2017), 507-518.
[3] Chen, Z. T. Systematic selection of very important points (VIP)

from digital terrain model for constructing triangular irregular

network. Proceedings of AUTO-CARTO, 8 (1987 1987).
[4] Lemmens, M. The Fierce Rise of Airborne Lidar (11/01/2017).

Retrieved 19 September, 2020 from https://www.gim-

international.com/content/article/the-fierce-rise-of-airborne-lidar
[5] Crause, J. Fast, realistic terrain synthesis. University of Cape

Town, City, 2015.

[6] Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P. and Godin,
C. L-Py: An L-System Simulation Framework for Modeling Plant

Architecture Development Based on a Dynamic Language. Frontiers

in Plant Science, 3, 76 (2012-May-30 2012).
[7] Weidner, U. and Förstner, W. Towards automatic building

extraction from high-resolution digital elevation models. ISPRS

Journal of Photogrammetry and Remote Sensing, 50, 4 (1995/08/01/
1995), 38-49.

[8] Xie, X., Xie, G. and Xu, X. High precision image segmentation

algorithm using SLIC and neighborhood rough set. Multimedia Tools
and Applications, 77, 24 (2018/12/01 2018), 31525-31543.

[9] Tarabalka, Y., Chanussot, J. and Benediktsson, J. A. Segmentation

and classification of hyperspectral images using watershed
transformation. Pattern recognition, 43, 7 (2010), 2367-2379.

[10] Haris, K., Efstratiadis, S. N., Maglaveras, N. and Katsaggelos, A.

K. Hybrid image segmentation using watersheds and fast region
merging. IEEE Transactions on Image Processing, 7, 12 (1998),

1684-1699.

[11] Lu, G. Y. and Wong, D. W. An adaptive inverse-distance
weighting spatial interpolation technique. Computers & Geosciences,

34, 9 (2008/09/01/ 2008), 1044-1055.

[12] Mei, G., Xu, L. and Xu, N. Accelerating adaptive inverse
distance weighting interpolation algorithm on a graphics processing

unit. Royal Society Open Science, 4, 9 (170436.

[13] Efendi, R., Samsudin, N. A., Deris, M. M. and Ting, Y. G. Flu
Diagnosis System Using Jaccard Index and Rough Set Approaches.

City, 2018.

https://opencv.org/
https://ephtracy.github.io/index.html?page=aerialod
https://www.gimp.org/
https://www.qgis.org/en/site/

Appendix A: Landscape Type 3D Views

Flat

Gentle Slope

Steep Slope

Hills

Contour Hill

Contour Hill Overlap

Appendix B: All Generated DEMs
The five common variation types in section 6 table 1 are displayed for each landscape in the following order:

Simple, Complex, Complex and Spread, Simple and Small, Complex and Small.

Flat:

Gentle Slope:

Steep Slope:

Hills:

Contour Hill:

Contour Hill Overlap:

Additional Experimental DEMS:

