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ABSTRACT 
Determining the heights of trees from a heightmap is a useful 

tool for agricultural farmers. A heightmap is an image 

representing a collection of the height values distributed evenly 

across a landscape. The heights of trees in an on orchard can be 

estimated, given such a heightmap, through using image 

processing methods. This involves the removal of the ground 

plane values from height data of farmland to leave you with a 

heightmap containing height information for just the trees. One 

issue that arises when implementing this process is the lack of 

ground truth data sets containing the known heights of the 

landscape that a particular orchard of trees is grown upon. 

Without knowing the true height of the ground below a tree one 

cannot evaluate whether image processing methods estimating 

the height of a tree were accurate or not.  

We explore methods to create synthetic digital heightmaps 

which are sufficiently complex to capture the variation present 

in a broad range of tree orchards. Using these synthetic 

heightmaps we can store all the sufficient data for the land and 

the trees produced in order to rigorously test methods used for 

estimating the height of the land and the trees. It was found 

during this research that simulating features of landscapes and 

generating heightmap landscapes proved an effective way of 

evaluating the various methods involved with the process of 

estimating the height of trees in a farm orchard. Various pitfalls 

and improvements to the methods themselves became apparent 

as testing was undertaken using the maps we generated. 

CCS CONCEPTS 

• Computing methodologies → Computer Graphics, Modelling 

and simulation 
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1. INTRODUCTION 
Knowing the heights of trees is an important factor in managing 

tree farmland. Tree height information can be used to monitor 

growth metrics, areas in danger of soil erosion and keep farms 

within possible greening regulations [1]. Many farmers would 

benefit greatly from being able to track the height of their tree 

orchards, however manual collection of tree height data is a 

slow tedious process. Many farmers instead monitor their 

farmland with drones commonly referred to as UAVs 

(Unmanned Aerial Vehicle). drones can quickly and efficiently 

gather large amounts of imagery and GIS (Geographic 

Information System) data that is useful to farmers in analysis 

of their crops, time saving and helping improve the yield of 

their farms [2]. One form of GIS data that can be recorded 

efficiently using UAVs is height data in the form of a 

heightmap. Height values of a landscape can be represented by 

an image of height values per pixel, a heightmap or DEM 

(Digital Elevation Model). Such a DEM recorded via UAV 

simply contains the highest value at each pixel in the image of 

land. This means this height could be the canopy of a tree, the 

ground around trees or any other object on the surface of the 

landscape. The height value found at the location of a tree 

canopy is therefore the height of the tree plus the height of the 

ground below it. Therefore, one can determine the height of 

each tree in such a DEM by subtracting the height of the ground 

from a height value where a tree resides in the image.  

 

Image processing algorithms can be developed to implement 

this process, but without truly knowing the height of the ground 

below each tree these algorithms cannot be properly tested for 

their accuracy. More specifically, this research explores 

methods to generate sufficiently complex and variable DEMs 

to represent tree orchards with known height values in order to 

aid testing of ground and tree height estimation. We explore 

methods to algorithmically create different types of landscapes 

and store the resultant height data for testing. We then add 

simulated trees in a variety of ways, storing the position of each 

tree and their shapes for further testing. The generated DEMs 

need not fully simulate the realism of a tree orchard, but need 

to be complex enough to ‘stress’ test the robustness and fidelity 

of image processing algorithms developed to extract the height 

of the trees and ground.  

 

Two types of image processing algorithms are tested using 

these synthetically produced heightmaps. Firstly, tree 

segmentation algorithms which determine whether a pixel on 

an image represents a tree or ground. Such algorithms produce 

a mask of the original image indicating where trees are present. 

Secondly, ground height estimation algorithms which estimate 

the height of the ground below a tree pixel are tested. These 

height estimation algorithms take the mask produced 

previously and interpolate the height of the ground where the 

tree canopies occlude the ground. As the second algorithm uses 

output from the first it is important that each is tested 

independently, so that errors in the mask from the first 

algorithm do not affect testing the second. There are several 

variables and requirements that our generated DEMs need to 

satisfy in order to produce sufficient variability of orchards, 

such as varying ground elevations and surface smoothness of 

the landscape. Other characteristics are also considered such as 

the pattern of growth of tree rows and the shapes and sizes of 

tree canopies. Tree orchards that are analyzed using the 

algorithms we aim to test will typically be grown on relatively 

even land surfaces and in neat rows however we aim to create 



 

quite extreme versions of these characteristics to stress the 

algorithms rigorously. 

 

This paper is laid out as follows. Section 2 provides background 

information about DEMs and producing procedural landscapes. 

Section 3 provides information on where previously height 

estimation has been undertaken in related work using DEMs. 

Section 4 describes the structure and implementation of our 

DEM generation system and our evaluation system that 

analyzes the results of tree and ground height estimation using 

the DEMs we generate. Section 5 provides insight into the 

design of the entire experiment. Details are provided here about 

what source data we were given the hardware used to conduct 

the experiment and a high-level view of the process involved in 

generating and analyzing our results. Section 6 provides 

significant results found when evaluating our DEMs and 

provides a discussion about the effect these results had and why 

they occurred. Section 7 we provide conclusions derived from 

the results and discussion had in section 6. 

2. BACKGROUND 
In this section we discuss the various aspects to the process of 

creating synthetic DEMs that simulate features found on a farm 

orchard. DEMs and how they are produced are discussed. We 

further explore methods to create DEM landscapes as well as 

tree vegetation for them. 

2.1 Digital Elevation Models 
Heightmaps in GIS are typically represented by either a 

Triangular Irregular Network (TIN) or a Digital Elevation 

Model (DEM). TIN models are computationally expensive, but 

highly accurate [3]. However, for our level of accuracy and 

efficiency they were deemed infeasible for our purposes. We 

therefore will be generating DEMs to represent our 

heightmaps. DEMs are images, typically top down greyscale 

images of landscapes, where each pixel in the image represents 

a height value of the landscape. Data can be recorded in 

different ways to produce a DEM.  

 

The method used to capture our source data was that of LiDAR 

(Light Detection and Ranging) survey. LiDAR is a method for 

measuring distances and geographical data using an infrared 

laser light being aimed at a point on the ground and the 

reflection of this light being measured by a sensor. LiDAR is 

constantly improving in the potential resolution and amount of 

additional data that it can record[4] and thus is an effective way 

to record DEM data. A DEM can be stored digitally using the 

.tif format, otherwise known as a TIFF file. This is a computer 

file format which is widely supported for image manipulation 

and GIS to store raster graphics data for images.  

2.2 Landscape Generation 
For developing natural landscapes various methods can be 

explored using procedural generation [5]. Fractal generation, 

physical simulation and example-based learning can be used to 

create realistic varieties of landscape. However, the aim of this 

project does not require the level of realism that these methods 

produce, and such complexity will be a hinderance to the speed 

in which we generate images.  

 

L-systems provide another procedural method that can be used 

to model forest or tree models. Lindenmayer systems or L-

systems can efficiently be performed in parallel [6] to model 

geometric shapes that simulate natural features such as 

vegetation and the positioning of natural vegetation on 

landscapes. Again, however these methods provide a level of 

realism that we don’t require to merit implementing for our 

purposes. 

3. RELATED WORK 
Much of the research that has gone into height extraction 

algorithms from heightmaps has been focused on urban areas. 

Edge detection and ground plane removal can be  used to find 

the heights of buildings where there is a significant difference 

between the ground and non-ground objects and you have clear 

visibility of the ground in the majority of the image [7]. Our 

source images of tree orchards lack the defined shapes and 

visibility that urban areas have. This makes it more difficult for 

tree estimation methods to process these images accurately. We 

discuss below the two core parts to the tree and ground height 

estimation process, tree segmentation and ground estimation. 

3.1 Tree segmentation 
There is a two-part process that can be used for tree 

segmentation. Firstly, Simple Linear Iterative Clustering 

(SLIC), can prepare given DEM data by efficiently clustering 

adjacent pixels in the image of similar height [8] and for each 

cluster a second method, Watershed, finds whether a region in 

this cluster fits a tree canopy shape and creates a mask of this 

canopy indicating which are tree pixels and which are not. 

SLIC is an efficient pre-processing method that simplifies an 

image into a number of similar regions, with it you can set a 

desired number of pixels to cluster together and initializes the 

cluster centres uniformly to make it easier for the watershed to 

analyze each region. This works well for orchard trees as they 

will roughly be the same size across an orchard. The Watershed 

method operates by dividing an image up into catchment basins 

with each basin associated with a local minima [9]. Similarly, 

it can be used for hills with a local maxima as it simply divides 

by a change in the height gradient in areas in an image. For our 

purposes pixels that decrease gradually as you move away from 

a local maximum and then drop off drastically at a certain point, 

resemble a tree canopy and then a drop off to ground. The 

Watershed method is highly sensitive to small changes in pixel 

heights so the SLIC pre-processing is vital to improving the 

results of the watershed [10]. 

3.2 Ground Height Estimation 
Interpolating the ground heights for a DEM can be done using 

inverse-distance weighting (IDW) interpolation which is a 

popular spatial interpolation model used in Geosciences [11]. 

IDW calculates a desired locations values based on a weighted 

average of neighboring points. This weighted average is based 

on the inverse of the distance to each point given to the 

weighting calculation [12]. As the weighting is based on these 

inverses it is more heavily influenced by the weights of pixels 

closer to a desired location than further away making this an 

effective technique for interpolating pixel values in DEMs with 

many small gaps between known pixels. Our tree pixels in our 

DEMs will have many gaps in between which are ground pixels 

and so can be effectively interpolated using this method. 

4. DESIGN AND IMPLEMENTATION 
In this section we outline the overall design of our system 

producing our DEMs and our system evaluating the 

effectiveness of these generated DEMs. We describe what 

additional development tools were used in developing our 

research. We also describe in detail how we implement each 

part of the DEM generation and evaluation process as well as 

the requirements that our software must meet in order for us to 



 

produce results that are sufficiently complex and variable to test 

tree height estimation of a DEM. 

4.1 Design 
The goal of our software is to produce synthetic DEMs in the 

form of .tif files and to process these .tif files using external 

image segmentation algorithms and ground height estimation 

algorithms. Our produced DEMs will be created by first 

creating a landscape DEM with different surface elevations and 

bumpiness to emulate the irregularity of the ground that our 

source orchards are grown on. Secondly, trees will be added to 

the DEM to simulate various features found in a typical real-

world orchard. We will be growing groups trees either in neat 

rows or along contour lines found in the DEM. Our DEMs are 

represented by 8bit floating point greyscale images where each 

pixel is a floating-point value of 0 to 255.We implement our 

methods using C++ with the aid of the OpenCV library. We 

produce varying ground elevations using mathematical 

functions to create smooth gradients and hills for our 

landscapes.  

4.2 System Design 

 
 

Figure 1: Architecture design for experiment system 

 

The overall structure of the experiment system will be split up 

into a DEM Generation layer and a DEM Evaluation layer. The 

DEM generation layer contains the functionality to create 

landscapes and from the produced landscape imposes groups of 

trees to produce a final image. 

DEM Generation steps: 

1) We produce, using the landGen class, the underlying 

landscape.tif DEM containing the true ground 

heights for the DEM. 

2) Using the treeGen class, groups of tree positions are 

produced. In the case of growing trees on contours 

the landscape.tif DEM is used to find contour lines 

and these contour lines are passed to treeGen. 

3) Using the tree positions generated by treeGen, our 

main program draws trees on the landscape.tif DEM 

4) Additionally, our main program produces a 

centres.tif DEM, containing the centres of each tree 

and a mask.tif DEM indicating exactly which pixels 

are tree pixels. These two DEMs are used for 

evaluation later. 

 

From external tree segmentation methods, we receive a 

watershed.tif image containing the estimated positions of the 

trees given final.tif. The watershed.tif image is our only non-

greyscale DEM and contains different colour values for each 

tree it finds. From external ground estimation methods, we 

receive an estimate.tif image of our estimated ground heights 

using the mask.tif and final.tif DEMs.  

The DEM evaluation layer compares the outputs of the 

estimation methods as follows: 

1) For tree segmentation, the watershed.tif DEM is 

compared against the centres.tif DEM. Bounding 

boxes are drawn from each centre pixel in centres.tif 

and these are compared with the bounding boxes for 

each colour in the watershed.tif image. 

2) For ground estimation, the estimate.tif DEM and the 

landscape.tif DEM have their height differences 

compared. The ideal estimate.tif has as little 

difference to landscape.tif as possible.  

4.3 Development Tools 
The OpenCV library was used to edit, read and write our .tif 

file data. OpenCV provides a library of image editing functions 

that we make use of to format and process the raster data in our 

images, it also allows us to view the images we are working 

with in 2D. Aerialod is a viewing library we used for 

visualizing DEMs in 3D to better assess our progress and the 

look of the DEMs we produced in our research. DEMs can be 

read by most image editing software programs. We used GNU 

Image Manipulation Program (GIMP) for quick image edits 

and pixel colour probing for experimentation when developing 

our methods. QGIS is an open source GIS tool which we used 

to view our various source and generated data in 2D. QGIS also 

provides additional GIS details about the DEMs such as the full 

ranges of height values in each image and the number of layers 

in our source data, which had multiple layers. See the Software 

Links section for URL references for the software used. 

4.4 DEM Feature Requirements 
The trees and landscape of orchards have multiple important 

features that needed to be reproduced as they directly affect and 

test the strength of image processing algorithms. It is required 

that our landscapes simulated both flat land and gradual hilly 

slopes. We also developed steeper and more irregular land for 

experimentation purposes. Trees must have the ability to both 

be spread and overlap in their tree canopies. This overlapping 

of tree canopies creates a difficulty for the tree segmentation 

algorithm that must be overcome as well as reducing ground 

visibility for the ground height estimation algorithms. Trees 

added to the images resemble the tree canopy characteristics 

displayed in our source DEMs. Typically canopies in these 

DEMs are circular with some roughness around the edges that 

was reproduced in our generated canopies. The heights in the 

source canopies are highest at a point roughly in the middle of 

the canopy and reducing in height gradually moving outwards 

from the centres. This creates a semi-circular shape when seen 

from a side on view and our generated canopies resemble this. 

Trees are natural and therefore there needs to be some 

irregularity in the shapes of our generated trees, so a small 

amount of randomness was added to the height values 

produced. The way rows of trees are grown in our source 



 

images are of two varieties, a straight-line row of a trees and 

trees grown along contour lines. We therefore generated two 

variations of tree groupings to emulate these two patterns. 

4.5 Implementation 
The following describes how we implement the generation of a 

tree orchard landscape DEM. This DEM is created in stages 

where first a landscape DEM is generated for just the ground 

height values. Then we generate positions for each tree we want 

to add to this landscape. Using these tree positions we finally 

calculate and draw the tree height values onto the landscape. 

  

4.5.1 Landscape Generation 

In producing our variations of land, we create an empty image 

of 500x500 pixels and change each pixel height in this grid by 

a calculated amount to produce an effect we desire such as a 

sloping hill or bumpy land. A resolution of 500x500 was 

chosen as this produces a sufficiently large enough image to 

contain a large area of landscape pixels as well as space for a 

tree orchard region within that which is sufficiently large 

enough to place enough trees to evaluate our generated DEMs. 

For simple variations we create flat and linear gradient slopes. 

More complicated variations make use of sin and cos functions 

to produce hills and ditches in the landscape.  

 

4.5.2 Tree Positioning 

In positioning our groups of trees, we implemented two 

methods. One to generate neat rows of trees in straight lines and 

another for producing trees along contour lines. Both methods 

involved a small amount of jitter in the positioning of trees to 

simulate the irregularity found in real life orchards. In 

generating our neat rows grid of trees, we simply loop through 

the available orchard area and based on the specified gap 

between trees and a random offset to represent jitter in its 

position we store set positions at which to spawn trees. The 

following pseudocode shows how we choose where to place 

trees for our neat rows: 

 

 
 

The distances between trees are adjusted by a randomDist 

variable for both X and Y as well as a set minimum gap to 

divide the trees into spaced rows. these randomDist variables 

are based on the width of the tree to be able to dynamically 

work for different sized trees. Positions of trees are based on 

these randomDist variables as well as the incremented integer 

variables in each for loop for X and Y. 

 

In order to generate trees along contours we first find contour 

lines in a given landscape image. OpenCV provides a 

findContours() function which returns a data structure 

containing the start and end points for each vector making up 

the contour lines in the image. A straight-line contour across 

the image found using findContours() would result in a single 

vector containing start and end points of this line while 

contours on a non-straight line contour would result in multiple 

vectors making up small lines that make up the total contour 

curve.  

 

In order to detect neat contour lines, the image first needs to be 

Gaussian blurred and then normalized. The Gaussian blur acts 

as a low pass filter that we use to reduce the amount of noise 

which would otherwise produce unwanted contours lines by the 

findContour() function. We picked a normalization range of 

between 0 and 10 for our generated landscapes. Without 

normalizing the number of contours found is too sensitive 

because most DEMs contain large amounts of varying heights 

and the resultant contour data structure contains too many 

contours to realistically use as almost every pixel in the image 

becomes its own contour grouping. Once the contour lines have 

been found for the image, the following pseudocode shows how 

we add trees along contour lines:  

 

 
 

A group of tree positions is created by looping through the 

contours vector<vector<Point>> data structure and for each 

contour point checking if the position is available to spawn a 

tree. If the position is free to spawn a tree then we make the 

surrounding pixels unavailable to spawn another tree and store 

this postion as the position for the tree. The surrounding pixels 

chosen to be made unavailable is based on the width of a tree 

and the desired gap. The irregular spacing we desire comes by 

virtue of the found contour vectors being of different distances. 

The ‘gap’ value prevents trees from being too close if there is 

a high density of contour line vectors. 

 

 
Figure 2: The contour lines for a hill landscape and the 

resultant added trees 

 

Additionally, we add a random chance to drop a tree leaving a 

gap in the orchard to stress the image processing methods. For 

example, if the tree segmentation algorithm was designed in 

such a way that it relied on the distance being consistent 

between trees then this randomly dropped tree would allow us 

to see this downfall in the algorithm during evaluation of the 

results.  

 

4.5.2 Tree Creation 

The desired tree shape which resembles our source image is a 

circular tree shape with a local maximum that decreases as you 



 

move away from the centre. We generated images with two 

types of trees, a ‘simple’ case and a ‘complex’ case.  

 

The complex case for our trees will have a small degree of 

randomness to the canopy heights as well as gaps in the canopy 

close to the boundaries of the tree. This is to simulate 

irregularity of height values in the tree canopy as well as change 

the shape from being perfectly circular for each tree canopy. 

 

The simple case type tree has no holes in their canopy and a 

smooth linear decrease in the canopy heights from the centre to 

the boundary of the tree. For an additional case we developed 

trees of much smaller size. Our simple and complex cases used 

trees roughly of a diameter of 30 pixels while our smaller tree 

case had trees with a diameter of 15 pixels. The following 

pseudocode represents how we generated our simple case tree.  

 
A circular two-dimensional tree grid is created based on the 

width of the tree. The circular shape comes from checking 

whether a pixel is within a circle based on the difference 

between the treewidth/2 for a radius and the current pixel being 

assigned (i, j). In the treeHeight calculation a logarithmic 

function is used based on a fraction of the tree radius and the 

value of 50 is chosen as a quotient as it was found through 

experimentation that this value would produce the smooth 

flattening out shape that we desired for the centres of our tree. 

The whole function is multiplied by the radius/2 to further 

improve the shape we produce in our tree.  

 

The following pseudocode represents how we generated our 

complex case tree: 

 
The implementation of the complex case has the added 

canopyVariance value which produces irregular heights for the 

tree canopy. The canopyHoleChance variable is designed to 

only produce holes for pixels at a distance away from the centre 

that pass a set threshold value meaning there are no holes in the 

tree until this threshold is reached. Basing the random 

canopyHoleChance variable from zero to the current distance 

from the centre means a pixel further from the centre has a 

higher chance to be a hole in the canopy, an effect we desire.  

 

For our smaller trees a much simpler tree is generated as with 

less pixels the gradient of the tree canopy cannot contain too 

much variation due to the space limitation. This pseudocode 

indicates the generation of our smaller tree (complex case): 

 
The small tree generation has both the ‘simple’ and ‘complex’ 

cases mentioned previously, but the treeHeight calculation is a 

simple linear calculation based on the distance from the centre 

of the tree. 

 

4.6 Evaluation Implementation 
4.6.1 Evaluation by Segmentation 

In evaluation the effectiveness of our DEMs to stress our 

segmentation algorithms we use a combination of the Jaccard 

Index otherwise known as Intersection over Union (IOU) and 

visual comparisons of the final watershed result from our 

segmentation. IOU tests are used to compare similarity and 

diversity in set of data [13] and can be implemented simply for 

our purposes by knowing the bounding box for our predicted 

tree pixels produced by our segmentation and the true bounding 

box for a particular tree in our generated image. IOU is 

computed by taking the area of an intersection box between two 

bounding boxes and dividing this by the union of the boxes. 

The intersection box is an area of overlap between the predicted 

bounding box and the true bounding box. The union of the two 

boxes can be found by adding the area of each box and 

subtracting the intersection area found previously. Our IOU 

calculation is done as follows: 

 

I = Intersection Area, U = Union Area, 

BAA = Box Area A, BAB = Box Area B, 

IOU = Intersection over Union, n = current tree box index, 

We can define:   

I(n) = BAA(n) ∩ BAB(n) 

U(n) = BAA(n) + BAB(n) - I(n) 

IOU(n)  =
I(n)

U(n)
 

 

4.6.2 Evaluation by Ground Estimation 

For evaluating the effectiveness of our generated DEMs in 

testing the ground estimation methods we look at the average 

difference in heights between the true height values stored in 

our landscape.tif map versus the estimated heights for each 

estimated pixel in the output of our ground estimation 

(estimated.tif). We assess the height difference by looking at 

the average height difference over all the estimated pixels and 

its standard deviation as well as a visual comparison displaying 

how well each patch of ground below each tree was estimated. 

The ground estimation methods estimate the ground for which 

each tree in the image occludes the ground, therefore the 

underlying patches of ground occluded by each tree are the 

pixel areas we are interested in assessing.  



 

 

To obtain each patch of ground, we first load all the pixels for 

each tree into a data structure (vector<vector<Point>> trees), 

where each tree vector contains a group of pixel positions 

associated with it. For each of the pixel positions the 

corresponding pixel heights in both the estimated.tif map and 

the landscape.tif map are obtained. For each patch of ground an 

average height is calculated based on the average height of each 

of its pixels. Using the average height for each patch we 

compute the average difference between the estimated ground 

heights and the true landscape heights and the standard 

deviation of this average difference. For our visual assessment 

we draw each patch to an image. We indicate using colours how 

accurately the ground was estimated. Green for a low 

difference between the heights (less than 0.5 difference), 

orange for moderate difference (between 0.5 and 2) and red for 

a high difference (above 2). These values were chosen through 

experimentation with the results being evaluated to show the 

significant areas in the DEMs where ground estimation failed. 

5. EXPERIMENT DESIGN 
Here we outline the background details for our research 

experiment such as the source data for tree orchards provided 

by Aerobotics, the hardware we use to perform our research 

and the high-level view of evaluating our results produced. 

5.1 Hardware 
Generation of test DEMs and evaluations were done on Ubuntu 

19.10, intel i7-8550U (1.8 GHz x 8) and 12 GB RAM.  

5.2 Source Data 
For the overall project of tree height estimation source data was 

provided to us by Aerobotics, which conducts drone surveys of 

agricultural land for productivity monitoring and analysis. The 

images provided by Aerobotics are all 32-bit floating point 

uncompressed .tif images with multiple layers of resolutions. 

The resolutions given ranged from 10662x8520 down to 

167x134, so a high level of precision was available to us. As 

the external image processing algorithms are to be used on 

these images the test DEMs we produce needed to emulate 

certain features that are displayed in our source data. For the 

most part our source data contains neat uniform rows of trees. 

Trees in the images are of a similar diameter and gaps between 

them are relatively uniform for a natural collection of objects. 

 

 
 

Figure 3: Aerobotics sourced heightmap and reference 

image. 

5.3 Evaluation Design 
The produced final images that represent our synthetically 

created tree orchards are accompanied by the underlying 

landscape heights (without the trees added). Additionally, the 

positions of each tree placed on the landscape is stored and a 

mask showing exactly which pixels in the final image are part 

of tree canopies. Using these accompanying images and the 

outputs of the external image processing methods we evaluate 

the effectiveness of our generated DEMs in testing image 

processing methods. 

 

5.3.1 Evaluation of Testing Tree Segmentation   

In evaluating the effectiveness of our test DEMs in testing tree 

segmentation algorithms we look at the number of trees flagged 

in segmentation versus the actual number of trees in our final 

image and compare the IOU values for the segmentation result 

versus the true image. Our DEM _Evaluation class reads in the 

centre positions from the centres.tif image and computes the 

bounding boxes for each tree based on these centres and the 

width of the tree we’re working with in the current final.tif. We 

then read in the watershed.tif image produced by our tree 

segmentation and compute the bounding boxes for each unique 

colour in the watershed. Each watershed.tif grows regions of 

unique colour for each tree it has predicted which we can use 

to find its bounding box. We then compare each predicted 

bounding box against every true bounding box to find the 

highest IOU value for the predicted box and calculate the mean 

and standard deviation for the IOU’s. Mean IOU values of 

above 0.75 are considered a successful prediction by 

segmentation with values of below 0.5 being low and indicating 

a failure to correctly segment the trees.  

 

5.3.2 Evaluation of Ground Height Estimation 

In predicting ground truth values, we compare the original land 

DEM (before adding trees), to the images produced by the 

ground height estimation. The height difference for each patch 

of ground occluded by a tree in the final image is analyzed. The 

average height of each patch is calculated for both the 

generated DEMs ground truth values and the estimated ground 

heights. The height difference between these averages is 

evaluated.  

 

Additionally, we draw a DEM for visual evaluation where we 

display using colour coding which patches of ground were 

correctly estimated with a low average difference in heights and 

which were badly estimated with a high difference. Green for a 

good estimated patch, orange for acceptable and red for badly 

estimated patch. 

6 RESULTS AND DISCUSSION 
Here we list the most significant results and compare how well 

the tree estimation methods did for both tree segmentation and 

ground estimation.  

 

Table 1: Summary of added tree variations. 
Variation 

Type 

Tree Diameter 

(pixels) 

Tree Type (see 

section 4.5.2) 

Overlapping 

Tree Canopies 

Simple 30 Simple Yes 

Complex 30 Complex Yes 

Complex and 

Spread 

30 Complex No 

Simple and 

Small 

15 Simple Yes 

Complex and 

Small 

15 Complex Yes 

 

Table 1 summarizes the differences between our five standard 

variations of added trees that we added to each landscape type. 

For example, the ‘Complex’ variation adds trees that are 30 



 

pixels in diameter have a canopy shape and height distribution 

of the ‘Complex’ type tree described in section 4.5.2 and have 

trees who touch and sometimes overlap. These variations in 

combination with each of the landscape types we produced 

resulted in our final generated DEMs. See Appendix A to see 

3D views of each landscape type for a better understanding on 

how the underlying landscape types look. 

 

  
(A)            (B) 

Figure 4: final.tif DEM generated using the “Complex” 

variation on the “Steep Slope” landscape (A). 3D view of 

this DEM (B) 

6.1 RESULTS 
We produced a total of 30 different DEMs based on varying 

versions of landscapes and different variants of tree types. 

Additionally, we generated DEMs for experimentation which 

were not used in the recording of results and evaluation of 

external estimation methods. See Appendix B for all generated 

DEM resultant final.tif maps. Some examples of resultant 

final.tif DEM maps are displayed below: 

 

  
Figure 5: Example results of generated final.tif DEMs 

Figure 5 shows some of the variety in our resultant segmented 

DEMs. Later we compare how these various generated DEMs 

‘stress’ tested various tree and ground estimation methods. 

DEMs viewed in this way can be understood as lighter areas 

being of a higher height value and darker being lower height 

values. Circular brighter patches indicate trees and jagged 

edges to the trees indicate a ‘complex’ tree type being used.  

6.1.1 Testing Tree Segmentation by IOU 

 
Figure 6: Graph showing IOU values averaged for each 

landscape type. 

Figure 6 shows how accurate the segmentation results were in 

predicting which pixels were trees an which weren’t. Of the 

landscapes two out of the six had their trees produced by our 

contour generation technique (“Contour Hill” and “Contour 

Hill Overlap”). Of the landscapes the one that segmentation had 

the most difficulty with was the “Hills” landscape with the 

lowest average IOU result of 0.39, while the most successful 

segmentation was done on the “Flat” landscape with an average 

IOU result of 0.54.  

 

These IOU values are relatively low averaging 0.47. These low 

may be due to falsely flagged trees or multiple small trees 

predicted in a space where only one tree should be found.  

 

 
 

(A)       (B) 

Figure 7: Final Test DEM image (A), Watershed tree 

segmentation result (B) 

 

Another problem which this generated final DEM (A) clearly 

shows up is an issue with the watershed segmentation (B) 

where even low-lying hills were detected as being trees. This 

indicates the possible reason for such low mean IOU and an 

overestimate in the total number of trees found in the “Hills” 

type landscape .The dark grey larger pixels in figure 10 above 

represent low hills while the brighter white pixels are the trees 

who have significantly higher height values compared with the 

rest of the image and so it is a problem that these dark grey 

pixel groups were picked up as trees by our segmentation. This 

is due to the low hills having their own a local maxima so tree 

segmentation picks up each small hilltop as a grouping of 

canopy pixels.  

 

This leads us to an immediate improvement to the watershed 

segmentation that can be done in thresholding the heights that 

can be detected and labeled trees within a range. it can be 

assumed that a similar issue occurs if there are large objects 

such as mountains with a local maxima present in the image as 

well. 

 

 

 



 

 
Figure 8: Graph comparison of the IOU values for Simple 

type trees versus Complex Trees. 

 

Figure 8 shows the effect caused by using the more Complex 

type trees versus the Simple type trees. Included in the results 

are both small trees of diameter 15 and normal sized trees of 

diameter 30. Each simple and complex pair corresponds to tree 

images that were built with the exact same variables except 

with different tree types used. On average an IOU for all simple 

type trees was 0.6 with a standard deviation of 0.1 and for 

complex type trees the average IOU was 0.4 with a standard 

deviation of 0.06. Indicated in these results is a consistent 

decrease in IOU when using ‘Complex’ trees whose canopy 

varies greatly and who’s boundary is not easily defined. This 

an ideal result which indicates a weakness in the tree 

segmentation methods in dealing with variable and noisy data. 

 

In most DEMs with any ‘complex’ tree type one can see 

multiple watershed predicted trees within single trees. These 

multiple trees would produce a low IOU when compared 

against the final.tif DEM because these predicted trees have 

smaller bounding boxes than the true bounding boxes. This 

would also affect the number of trees estimated negatively. 

This is an important problem that needs to be addressed in 

segmentation as small variations in the tree canopy should not 

result in multiple predicted trees within a single tree. In this 

way our generated DEMs showed a significant problem with 

tree segmentation that needs to be addressed.  In figure 7 this 

phenomenon can be seen where, when looking at the trees 

predicted in the watershed (B), multiple colours are drawn for 

a singular tree. 

6.1.2 Testing Tree Segmentation by Number of Trees Found 

 
Figure 9: Graph showing the true number of trees in the 

final DEMs versus the estimated number of trees by each 

watershed. 

 

Figure 9 shows how close the total number of actual trees for 

each landscape were to the predicted total number of trees for 

each landscape. Each total tree count is averaged from the five 

different variations of trees for each landscape type showed in 

table 1. The largest difference was apparent in the ‘Hills’ type 

landscape where there were 105 trees present, but tree 

segmentation detected 128 trees. 

 

We can notice in these results that estimated trees totals 

(orange) for those grown along contours had less than the true 

number of trees (blue) in the DEM while consistently spaced 

row positioned tree groups had a higher estimated number of 

trees versus the true number of trees. This may be due to the 

fewer true number of trees in the contour images which were 

on average around 42 trees while the normal row pattern trees 

had on average 106 trees in their final.tif DEMs. The number 

of trees in the contour Images was perhaps too low in our 

resultant final DEMs and we should explore in the future a 

more similar tree count to the row patterns. 

 

What can be noted from the total tree numbers is that the 

estimated number of trees was not affected too harshly by the 

angle of the slope. This can be seen from the results of our 

‘Flat’, ‘Gentle Slope’ and ‘Steep Slope’ landscape types. This 

is not true for the IOU results which got significantly less as the 

angle of the slope got more extreme. Ranging from 0.54 for 

‘Flat’ to 0.48 for ‘Steep Slope. This indicates that tree 

segmentation is more difficult as the slope increases and means 

our generated DEMs successfully simulated this feature that 

may be present in natural orchard landscape. 

6.1.3 Testing Height Estimation Results 

 
Figure 10: Graph showing the performance of ground 

estimation through the average difference in heights 

between the estimated ground and the true ground heights. 

 

On average the differences in heights across all variations of 

maps was 0.57 with a standard deviation of 0.65. This is a 

relatively low difference and the ground estimation performed 

highly in interpolating the true height of the ground in most 

cases. Most successfully the spread-out tree DEMs (‘Complex 

and Spread’ in figure 10) was estimated with an average 

difference of 0.44 and a standard deviation of 0.54. This was 

the expected result as DEMs where trees have more ground 

between them allow for easier interpolation as there is more 

ground to interpolate with on the boundaries of each tree. The 

lowest performance was found with the ‘Simple’ tree type 

variation with an average difference of 0.65 and a standard 

deviation of 0.7 which was unexpected. While this is still a 

relatively low average difference there are several possible 

reasons for this. In the ‘Complex’ tree type there are holes near 

the edges of the tree, this could lead to more correctly 

interpolated ground if the ground estimation methods make use 



 

of these holes. Additionally, more densely packed tree groups 

could result in worse results for interpolation as there is less 

ground to use to interpolate.  

 

 
Figure 11: Graph showing the performance of ground 

estimation by landscape type. 

 

Figure 11 clearly shows that the most significant factor that 

‘stressed’ the ground estimation methods was the landscape 

type as the results vary greatly while figure 10 shows very 

slight differences based on tree type. The ‘Flat’ and ‘Steep 

Slope’ landscapes averaged differences of 0.12 and 0.08 with 

standard deviations of 0.08 and 0.06 respectively. This low 

average difference could be due to these landscapes having 

linear based landscape gradients and this being easier for 

interpolation in the ground estimation. This is highly likely as 

ground estimation would be able to interpolate quite simply 

using simple linear mathematical formulae.  

 

Performing the worst by far was the ‘hills’ type landscape with 

an average difference of 1.72 and a standard deviation of 0.22. 

This landscape had the most varying and dynamic landscape so 

it is understandable that ground estimation resulted so poorly. 

Appendix 1 (Hills) displays this landscape type. 

 

 
(A)       (B)     (C) 

Figure 12: Piece of visual DEM indicating low average 

differences for interpolated area in green (A), normalized 

final.tif image with added green lines (B), full visual DEM 

indicating effectiveness of interpolation (C). 

 

Figure 12 (C), displays in green, patches of pixels areas where 

average difference in ground was below 0.5 indicating a low 

difference. This interpolation is for the ‘Simple and Small’ 

(Table 1) tree variation on the ‘Hills’ landscape (Appendix A). 

There seems to be a pattern where interpolation is effective in 

straight lines along edges of the hills and ditches as displayed 

by figure 12 (B) where light patches are hills and dark areas in 

between are ditches. The green lines mark the corresponding 

green pixels in figure 12 (A).  

 

Interpolation clearly struggles when the ground is more 

irregular and one cannot interpolate simply from checking one 

gradient angle. An average of multiple passes for ground 

estimation taken at different angles may improve the results for 

each patch of ground. The contour landscapes also have a 

significantly higher average difference when compared to 

‘Flat’ and ‘Steep Slope’, but still much less than ‘Hills’. The 

contour landscapes however are still very large sloping hills 

and so they don’t create as much irregularity as the ‘Hills’ 

landscape does. While real world orchards will typically not be 

grown on such varying surfaces as ‘Hills’ they are still possibly 

grown on more irregular surfaces than the other four landscapes 

we compared. 

 

 
(A)   (B)         (C) 

Figure 13: Average differences visual DEM for spread trees 

on contours (A), average differences visual DEM for 

overlapping trees (B), underlying landscape.tif for each 

DEM (C) 

 

In figure 12 we can see another example of a sudden change or 

irregular ground being a difficulty for the ground estimation. In 

figure 12 (A) and (B) the orange and red patches occur along 

the seam or dip between the two hills. We can see this in the 

underlying landscape figure 12 (C) where the dark line shows 

where the two hills dip down and meet. Interpolation clearly 

picked up a gradient, but with the sudden change to a hill going 

down to one going upwards the estimated ground height was 

interpolated incorrectly. 

 

7. CONCLUSIONS 
Our generated DEMs were able to pick up deficiencies in the 

image processing algorithms and so were an effective way to 

evaluate our image processing methods, however more 

rigorous testing could have been done by generating more 

variations of maps and adding more variability to each map 

produced. Other pitfalls include the lack of realism in our 

DEMs as they are still quite crude mathematically synthetic 

landscapes, and much could be done to further simulate natural 

features. There are many variables involved in natural 

landscapes even for areas as neat and uniform as tree orchards.  

 

In tree segmentation our generated DEMs were able to pick up 

issues that arise with low lying hills and varying slope 

steepness in landscapes as well as the difficulty with detecting 

tree boundaries for densely packed trees versus spread trees. In 

ground estimation our generated DEMs showed that irregular 

hilly landscapes cause the greatest difficulty for interpolation 

and more densely packed trees also make it harder than spread 

trees to interpolate the ground. 

 

Several pre-processing methods were used in preparing our 

synthetic DEMs. The normalizing of the image before finding 

contours using OpenCV made it significantly easy to find neat 

similar height contours in the image even when a large amount 



 

of noise was present. The range that you normalize by can 

greatly simplify the DEM so that you can reproduce contours 

that fit the landscape at many levels of precision. 

8. LIMITATIONS 
Our source DEMs from Aerobotics were of tree orchards 

limited to specific small selection of tree types and farming 

techniques. With more varying source images we could have 

explored additional ways to generate DEMs that test image 

segmentation and interpolation techniques on more general tree 

orchards. With more time we also could have produced more 

variety in our landscapes and tree types. As tree segmentation 

and ground estimation was done externally, evaluating our 

generated DEMs by these methods relied on a third party to 

return the results of processing the generated DEMs. Another 

limitation was the unavailability of ground truth data in our 

source DEMs. If we wanted to generate DEMs we did not have 

access to the true ground values to accurately re-create a tree 

found in the source images.  

9. FUTURE WORK 
There are several features which are lacking in our 

implementation in our DEM Generation. How we draw a tree 

specifically can be improved upon and made to draw a tree that 

is more similar to those found in the source DEMs provided by 

Aerobotics as well as other tree types found typically in 

orchards. Testing with different sizes of trees can be more 

extensive as well as producing DEMs with much more trees in 

the added orchard. There are many more variations of 

landscape that can be produced. Landscapes of different types 

may discover more pitfalls with tree estimation methods and 

lead to more improvements of them. Finally, much more 

extensive variations using different resolutions can be done. It 

would be interesting to see how much higher or lower 

resolutions fair when processed by tree estimation methods. 

With larger resolutions the efficiency of these methods may be 

another factor of image processing that can be tested more 

harshly. 

ACKNOWLEDGEMENTS 
I would like to thank my project partners for their support 

throughout this project, Lynolan Moodley, who implemented 

the tree segmentation algorithms and Chiadika Emeruem, who 

implemented the ground estimation algorithms. I further thank 

Associate Professor Patrick Marais, my supervisor, for his 

essential guidance and insight throughout the project and 

Professor Hussein Suleman as our second reader. Additional 

thanks go to Michael Malahe and Aerobotics for the source 

DEM data and for detailed information on the source data and 

how it was obtained.  

This work is based on the research supported wholly / in part 

by the National Research Foundation of South Africa. 

 

SOFTWARE LINKS 

OpenCV: https://opencv.org/  

Aerialod: https://ephtracy.github.io/index.html?page=aerialod  

GIMP: https://www.gimp.org/  

QGIS: https://www.qgis.org/en/site/  
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Appendix A: Landscape Type 3D Views 
 

Flat 

 
 

Gentle Slope 

 
 

Steep Slope 

 
 

 

 

Hills  

 
 

Contour Hill 

 
 

Contour Hill Overlap 

 

  



 

Appendix B: All Generated DEMs 
The five common variation types in section 6 table 1 are displayed for each landscape in the following order:  

Simple, Complex, Complex and Spread, Simple and Small, Complex and Small.

 

Flat: 

 

Gentle Slope:  

 

Steep Slope: 

 

Hills: 

 

Contour Hill:  

 

 

 



 

Contour Hill Overlap: 

 

Additional Experimental DEMS:  

 


