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ABSTRACT 
The Semantic Web among other platforms are 
looking to represent knowledge in an ontology or 
conceptual data model in a way that the knowledge 
represented is expressive about the subject domain 
of which it interprets.  Conceptual models need 
tools and methods to allow domain experts to 
encompass the features of the universe of discourse 
[1]. There are many benefits to having an 
expressive ontology conveys knowledge about a 
subject domain. Users can query data efficiently, 
knowing what they can query instead of taking on 
the task to discover the data of the domain and how 
its stored among other things. We need an 
intelligent system to properly capture such 
knowledge in such a way that all the implications 
of the subject domain are made explicit in the 
resultant ontology or conceptual data model. There 
have been several attempts at implementations of 
this yet there are no fully-automated systems able 
to do this effectively where knowledge is 
represented with full expressiveness.  
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1   Introduction 
In order to provide a better way of informed 
decision making, information systems need 
techniques for conceptual data modelling and 
handling ontologies [2]. New theories and 
techniques as well as tools have emerged to put 
forward using conceptual models at runtime with 
data storage [2] as a part of a larger system for the 
purpose of providing means to users making 
requests or queries about data. This makes it easier 
for a user to make queries about data because it 
reduces the task of having to find out what data 
exists and how it is stored and instead shows what 
they can query [2].  Some architectures of 
intelligent systems that provide the functionality of 

querying in such a way have been proposed. These 
include Ontology-Based Data Access and 
Knowledge-driven Information and Data access 
(KnowID) [2]. Such architectures include a 
component that manages knowledge where a given 
ontology or conceptual data model must be 
formalised, then a process of inferring implicit 
knowledge must take place and lastly those 
inferences must then be appended to the ontology 
or conceptual data model. The final step hereby 
referred to as materialisations of deductions will be 
the primary concern of this paper. In KnowID, 
favourability of materialising deductions in the 
knowledge layer is so that reasoning does not 
happen at runtime and this is suitable since 
conceptual models or ontologies do not change 
regularly [2]. 
 
Conceptual models can take on the form of Entity 
Relationship models (ER) used to represent the 
semantics of an application by employing entity 
constraints, attributes and relationships to represent 
a subject domain. We would then want to make this 
representation as expressive as can be so that many 
features of the reality being modelled can be 
interpreted [3]. 

 
There have been tools that have been able to 
implement materialisation of deductions of some 
formalised conceptual data models and ontologies 
such as an early version of Protégé and Intelligent 
Conceptual Modelling tool and methodology 
(ICOM). Whilst other tools like Crowd paired with 
reasoners have assisted users with the process with 
limitations.  

 
 

Section 2 will discuss processes and the 
formalisation of ontologies necessary before 
reasoning. Section 3 will discuss all matters 
concerning reasoning including reasoning tasks and 
reasoners. Section 4 will discuss some tool 
implementations of materialisation of deductions 
and Section 5 will discuss an algorithmic approach 
for it. Section 6 will them discuss and compare the 
approaches mentioned and finally conclusions will 
be drawn. 
 

2 Preliminaries 



 
2.1 Priors to reasoning over a conceptual data 
model 
For interpreting knowledge of a subject domain, an 
ontology or conceptual data model could be used to 
encapsulate the concepts of the subject domain and 
how they relate to each other. We must consider 
formally representing knowledge based on logic[2]  
in order to reason over it later. Before checking 
conceptual models for inconsistencies and 
abnormalities, the model must be formalised into a 
logic and then later sent to a reasoner that can 
query its properties [1]. There are however 
property-based differences between what is 
regarded as ontologies and conceptual data models. 
Conceptual models like Unified Modelling 
Language (UML), Object Relational Mapping 
(ORM) and (Enhanced) Entity Relationship model 
(EER) need to be formalised to express an ontology 
and do not have the reasoning capabilities of 
ontology languages like Web Ontology languages 
(OWL) which are rooted in logic [4]. However, it 
has been indication that both EER and ORM 2 can 
be formalised in Description Logics (DL). 
Description logics is a family of logics that are 
suited for representing information rooted in class 
structures [3]. EER can be formalised specifically 
in ALNI  DL which can ensure tractable reasoning 
over it [4]. This is quite useful as EER has become 
most common for conceptually modelling 
relational databases [5]. 
 
For the purpose of this paper, the modelling 
language features of EER are the ones we look to 
explore in terms of being formalised in a logic. The 
features are: weak and strong entity type, n-ary 
relationship, attributes, basic cardinality constraints 
(0..n, 0..1, 1, 1..n) and identifiers, entity type 
subsumption, disjointness and covering constraints. 
DLRifd is the most appropriate logic for formalising 
these features [2]. DLRifd additionally encompasses 
identification constraints and functional 
dependencies [6]  but unfortunately, there are no 
existing tools for this logic so we would want 
something close to this sort of logic. We also know 
that EER can be formalised in several different 
logics but they all employ OWA for automated 
reasoning [2]. 
 
The World Wide Web Consortium (W3C) designed 
OWL to formalise ontologies [7]. OWL is now a 
family of ontology languages that includes other 
iterations such as OWL 2 DL. An option we could 
take for formalising knowledge is having an 
ontology expressed in OWL 2 DL and then later 
using a DL reasoner for reasoning since there are 
tools for this. However features like n-aries and 
multi-attribute identifiers aren’t catered to [2] but 
OWL 2 DL can otherwise be reasoned over [8] 
OWL files are difficult to manage and using them 

to process queries are not efficient. OWL is 
becoming increasingly useful to transform into 
EER models so it can be merged with relational 
databases easily. This is desirable because EER 
represents relational databases conceptually [5]. 
Rules have been developed to translate them into 
the EER model so that they map better onto 
relational databases and furthermore, there is also a 
methodology for mapping OWL full constructs to 
EER [5].  Bagui have shown how to map entities, 
attribute keys, relationships, super-classes and 
subclasses, cardinalities, as well as disjoint and 
covering relationships from OWL to EER. The 
methodology proposed here is intended to be 
implemented in case tools to automate this process 
[5]. 

 
3 Reasoning 

 
When we consider the expressiveness of a 
language, the interactions between the different 
parts of the model become complex and issues of 
consistency arise [3] The more expressive and large 
it is. 
 
3.1 Automated reasoning 
We can have a language as a formalised subject 
domain but another engaging aspect is being able to 
reason over the language so that implicit 
knowledge can be deduced. Automated reasoning 
is about having systems automate the process of 
making inferences. This is done by implementing a 
formal language in which we can write conclusions 
and make assumptions about a problem as well as 
solving it, having implemented an algorithm to do 
so [9]. The idea is to have a number of premises 
that conclude to a hypothesis or generalize facts to 
an assumption. Computer scientists have done this 
formally in a logic, using rules and axiom as 
premises so that conclusions can be made in a 
depicted knowledge. It becomes tricky when we try 
to formally prove the conclusion we arrive at using 
the premises when we have a larger number of 
axioms [9] and so we look to automated reasoning. 
The explicit and implicit constraints of the 
conceptual model need to have automated 
reasoning done over them particularly when models 
become big and may have complicated interactions 
inside them [3] Primary considerations of 
automated reasoning include reasoning tasks and 
the formal language being reasoned over as well as 
choosing to optimise the algorithms that do the 
reasoning or restricting the language for lower 
complexity [9]. Reasoning tasks can include 
checking for consistency and classification of 
concepts in a hierarchy otherwise referred to as 
subsumption. The language being reasoned over 
may have fewer or more features like cardinality 



constraints to express the subject domain 
knowledge [9]. 
  
3.2 Reasoning tasks 
3.1.1 Entity and relationship Subsumption 
One of the reasoning tasks is checking to see if an 
entity subsumes another or likewise if a 
relationship subsumes another relationship for 
every legal database state [3]. If a class turns out to 
be a subclass of another and it is not explicitly 
implicated in the model, automated reasoning 
becomes essential [3]. 
 
3.1.2 Entity and relationship Consistency 
An entity can be inconsistent in the sense that there 
is no database state where the entity has at least one 
object. Similarly, a relationship is found 
inconsistent if there is no database state where it 
has at least on object [3]. 
 
3.1.3 Satisfiability 
Entity Satisfiability and entity subsumption are 
generally considered equivalent [3]. 
 
Many implementations of reasoning are restricted 
by computational complexity [9] Generally, we 
would have to choose between limiting the 
expressiveness of a language or otherwise trade off 
computational complexity. Description Logics is a 
logic that focuses on languages with good 
computational behaviour [9]. Ontology languages 
such as OWL and OWL 2 are based on description 
logics but lack expressiveness [9]. 

 
3.3 Reasoners 
There are a number of automated reasoners that 
take in different languages and provide different 
reasoning services and thus may have different 
purposes. First-order and higher-order languages 
include Prover9, Vampire among others. DL 
reasoners used for OWL ontologies have these 
reasoning capabilities: satisfiability, consistency 
and instance classification (subsumption) [9]. One 
example of this is RacerPro. 

 
3.3.1 Vampire is a tool that is a theorem prover for 
first-order (FO) logic but is flexible enough to be 
used as a reasoner for ontologies. First-order 
theorem provers and DL reasoners both provide 
reasoning capabilities but FO provers work with 
logic that is undecidable. FO provers use an 
invariable inference mechanism, meaning they are 
more flexible and can be tuned to different 
applications if processing algorithms are taken to 
task [10]. Vampire can check for consistency on 
ontologies but does not work well for large 
ontologies [10]. Vampire can deal with three 
datatypes namely, integers; real numbers and 
strings but it is not suitable for reasoning tasks such 
as satisfiability and in turn proving non-

subsumption which is problematic because for most 
ontologies, concept pairs tend to be satisfiable and 
not in a subsumption relationship [10]. 

 
4 Tool implementations for 

Materialisation of Deductions  
 
Materialization of deductions refers to editing a 
conceptual data model such as EER by adding all 
accepted inferences computed by a reasoner. And 
to verify the modifications made, a re-classification 
of it can be done where no new deductions are 
returned [2]. 
 
4.1 Crowd 
Crowd is a web tool used for ontology engineering 
[4]. Crowd has multi-views and allows users to edit 
ontologies on a graphical platform with languages 
UML, EER and ORM. It provides DL reasoning for 
ontology engineering support [11]. The intention of 
this tool is to provide graphical methods to 
compose conceptual models and ontologies 
utilising logic-based reasoning services to describe 
a domain conceptually [1]. The main takeaways 
from this tool is that it allows modelling with 
graphical support, formalises models into logic-
based formalisms and interacts with an off-the-
shelf reasoner. It checks for satisfiability and 
implicit constraints which are then displayed using 
whatever language was being used as the initial 
graphical language. The first prototype has an 
OWLlink communication standard protocol that 
communicates with UML diagrams and the 
prototype also checks the satisfiability for the UML 
which is formalised to ALCQI description logics 
[1]. This also means users will get to see a 
graphical interpretation of the conceptual data 
model that was presented originally with the new 
deductions [1]. 

 
Crowd’s server has an OWLlink translator that 
takes the graphical model as an OWL 2 file and 
sends it to the reasoner. It takes a JSON file of the 
conceptual model diagram and produces the 
equivalent OWLlink file. It has a module called 
query generator which sends queries to the 
reasoner. The reasoning is done by an off-the-shelf 
inference engine and results are given back to the 
front-end part of the system and shown [1]. When 
an inconsistency is found, it highlights the 
inconsistency and displays red traffic light. 

 
The prototype currently uses the Racer DL 
reasoning server and allows one to create and edit 
UML diagrams. The reasoner checks for 
satisfiability for each class. The reasoner outputs 
false and highlights inconsistencies when a 
class/classes are unsatisfiable [1]. It is then up to 
the user to solve for the inconsistencies. 



 
 

 
4.2 Early Protégé 
Materialising deductions was available in an earlier 
version of Protégé [2]. Protégé offers a wide 
variation of modelling structures but inferencing is 
limited due to the OWL reasoners used for it. They 
are restricted to is-a relationships by using pulg-ins 
such as OWLViz and OntoGraf [1]. 
 
4.2.1 Protégé owl plugin 
An OWL Plugin was extened for Protégé in order 
to modify OWL ontologies and make use of 
description logic reasoners. It provided services 
such as classification and checking for consistency 
[12]. The owl plugin can directly access DL 
reasoners like Racer. The user interface of the 
plugin supports reasoning services such as 
checking for consistency and subsumption. Users 
have the option to check consistency amongst all 
classes or selected classes. The protégé OWL API 
can access an API called Jena to infer any 
possibilities for subsumption. For files that are 
OWL full, they can be converted to OWL DL, 
otherwise only after an OWL DL file is checked for 
consistency will it then be checked for 
subsumption. The plug in will graphically show the 
subsumptions inferred in a hierarchy. Users will 
need to assert assumptions in order for them to be 
stored in OWL files but the two versions are shown 
side by side in the tool. [12]. 

 
4.3  ICOM 

 
Intelligent Conceptual Modelling tool and 
methodology (ICOM) is a conceptual modelling 
tool that has a reasoner that is capable of 
confirming specifications, deducing inferences, re-
evaluating constraints that can be stricter and 
detecting inconsistencies. It has a description logic 
reasoning server. The class diagrams are formalised 
using class-based logic. ICOM’s conceptual 
modelling language is able to express an EER, 
entailing modelling features such as disjointness 
and covering constraints, classes (entities) and 
relations that can be defined as view expressions  
over other classes and relationships [13]. The tool 
goes beyond the implementation reasoning tasks 
subsumption and consistency. It also aims to 
employ more complex automated reasoning tasks 
to infer implicit deductions [13]. It Can deduce an 
inconsistent entity and can deduce an inconsistent 
relationship as well. ICOM is able to do all of this 
through reasoning with disjoint ness and covering 
constraints (partitioning of entities part of covering 
and disjoint Is-A hierarchy), cardinality constraints 
(mandatory participation, exactly one participation, 
at most one participation), subsumption of entities, 
subsumption of relationships. Through this same 

reasoning, it is able to edit cardinalities to make 
them stricter [13]. Additionally, it is able to deduce 
equivalence of classes [13]. 

 
The tool displays question marks where it finds 
inconsistencies, adds or edits arrows appropriately 
scripted by constraint numbers and labels for 
cardinalities, subsumption and equivalence. It’s 
grounded in providing reasoning support for a 
graphical class-diagram that’s deduction-complete. 
It gives users a deduction-complete ontology in 
graphical form after being given an ontology and 
reasoning over it to satisfy consistency, 
subsumption, cardinality and any other implied fact 
[13]. 

 
ICOM also makes a point to be interoperable by 
allowing one to import and export any ontology 
languages based on Description Logics and 
employs a mechanism to communicate with a 
description logic reasoner like RACER via its DIG 
protocol [13]. When using ICOM, the user must 
provide a URL of the DIG-suitable reasoning 
server and it does not have to be installed in the 
ontology editor. After the ontology is encoded in 
description logics, it is sent to the reasoner where 
class and association satisfiability are checked for, 
equivalance and subsumption amongst classes and 
associations, and calculating stricter maximum and 
minimum cardinality constraints, the system 
queries the system for deductions and results are 
given to the ontology editor to edit with the 
deductions. The editor displays unsatisfiable 
objects in red, non-explicit deductions are added in 
green, equivalance found is added using links, and 
likewise subsumption is shown using specific links 
and as well as stricter cardinalities added. The user 
can then decide if they want to keep the changes if 
they are happy with the deductions [13]. If ICOM 
detects a data reconciliation problem, where it may 
find a class that cannot have any instances, it 
displays a question mark on said class to notify 
user [13]. 
 
5 Algorithmic Materialisation of 

Deductions 
 
Object programming languages are easier to use to 
modify an ontology than APIs like OWLAPI [7]. 
OWLready is a python module designed for 
ontology-oriented programming to support OWL 2 
ontologies where entities can be accessed like 
objects in programming languages. A syntax is 
provided to manage classes and their constraints 
using this syntax, one is able to manipulate classes 
and do closed world reasoning. The syntax is based 
on Protégé’s editor notations [7]. An algorithm to 
perform simple closed world reasoning tasks has 
also been implemented. OWLready can express 



OWL 2 constructs such as classes, individuals 
(instances), disjointness, attributes (object 
properties) and datatypes. Methods are provided to 
map OWL to python object model in OWLready 
[7]. Python only uses an all-Disjoint mechanism as 
opposed to OWL that encompasses pairwise 
disjointness. OWLready also considers equivalence 
in the attributes of classes, checks for subclasses 
considering equivalent classes, features attributes in 
classes and supports datatypes boolean, float and 
string among more. OWLready provides functions 
to access and edit entities and constraints [7]. The 
user needs to call on the reasoner for inferences to 
be deduced using a sync_reasoner() function. It 
runs a HermiT reasoner on the file. The function 
returns the output produced by the reasoner and 
updates the ontology accordingly, modifying it in 
accordance to the inferences deduced by HermiT. 
Moreover, there is a closed_world function that 
will consider all classes and subclasses, and check 
for constraints to update which depend on existing 
relations and restrictions [7]. 
 
There are other management mechanisms 
employed for OWL like OWLLink. OWLLink is 
an interface that allows one to access OWL 
reasoner functionality [15]. OWLlink can be used 
to communicate with off-the-shelf reasoners [11]. 
 
6 Discussion 
 
Bringing together visual modelling and reasoning is 
somewhat provided by ICOM and thus makes it a 
desireable end-user tool to use for materializing 
deductions. Reasoning services are provided by it 
including subsumptions m..n and n=1 cardinalities, 
disjunctions as well as equivalence whereas other 
tools do not currently have said architecture [4]. 
This suits some but not all of the features included 
in EER which would merge well onto relational 
databases. The approach ICOM takes in bringing 
together reasoning and graphical interpretation is 
not taken by Protégé-OWL editor. It instead makes 
edits on what is represented as a hierarchy of 
concepts in a panel and a hierarchy of properties in 
another panel and the deductions are shown in 
another tab panel not shown graphically. Moreover, 
the deductions panel is only provided for single 
concepts and not properties [13]. Moreover, ICOM 
employs more advanced and complex reasoning 
services compared to Protégé. ICOM intelligently 
may make considerations about lower and upper 
bounds about cardinalities through more complex 
reasoning than just is-A notions and inconsistencies 
that Protégé does. ICOM is so robust, it puts an 
isolated class in context and takes all constraints 
related to it into account. It has even been proved to 
derive all correct constraints [13] and his hence a 
suitable consideration for materialising deductions 
of a conceptual data model formalised in 

description logics. Furthermore, its deductions 
afford the ability of user validation. Once the 
derivation happens and the deductions are 
materialised on the ontology, the user can pick up 
their conceptual error or oversight and change 
accordingly [13]. ICOM uses DIG protocol instead 
of OWL API because the language is independent 
whereas API’s are tied to a language like the OWL 
API being Java-based [13]. DIG protocol is 
however not actively developing and new reasoners 
are not supporting it. 

 
Crowd’s integration of graphical assistance and 
reasoning is not strong [1]. Crowd currently only 
provides means to edit UML with modelling 
features that include classes, attributes, 
generalisation and binary associations having n..m 
cardinalities  when n, m>=1 [4]. The inference 
engine provides support for satisfiability checking 
when it comes to reasoning and the user can 
materialize and modify accordingly.  

 
  
A worthwhile issue worth considering when it 
comes to editing ontologies is validation which is 
about the accuracy of ontology in its representation 
of the subject domain. Is it accurately interpreting 
the reality of the domain. It allows for the user to 
verify changes and cancel them if they don’t 
represent the truthfulness of the domain. A problem 
with this is reversibility which is undoing the 
changes that have been made which is not always 
the same as inverting the change. An example is 
deleting a class in a hierarchy where the subclasses 
of that class must either also be deleted or 
reattached to a parent of the class. Reversing a 
change like this would require readjusting the 
hierarchy as opposed to just recreating the deleted 
element. Hence evolution logs can be used to 
manage such information about edits made [15]. 
Moreover, sometimes editing an ontology can 
introduce new inconsistencies. To prevent such 
undesired changes from occurring, a list of possible 
issues that may arise from changes should be 
shown to the user for their approval and be given 
the choice to cancel the changes and leave the 
ontology as is should they wish [15]. A tool like 
ICOM allows flexibility in this regard.  
 
In the bigger picture, the problem with taking a 
user-interactive approach with materialising 
deductions and validating them goes against 
automating the whole process from formalisation to 
materialization of deductions so that the resultant 
conceptual data model is not generated at run time 
when used in conjunction or as a sub-process of a 
larger architecture. Hence, tools like Crowd would 
not work well for such an environment. Managing 
mechanisms such as OWLready would be better 
suited for such a task since it employs constructs in 



a module to manage OWL files and communicate 
with a reasoner to check for reasoning services and 
edit accordingly. We would ideally want the OWL 
to have features suited to EERs so that reasoning 
over it happens in closed world assumption. 

 
7 Conclusions 
 
This review looked at ways of interpreting 
knowledge expressed as an ontology or conceptual 
data model in a way that expresses the knowledge 
of a subject domain as much as possible. Doing this 
meant that implications often not explicitly shown 
in the model would need to be inferred and 
appended to the model. There have been some tools 
that have been able to do this given a model 
formalised in a suitable logic. Others have been 
able to make the inferences and leave it up to the 
user to edit the model accordingly if 
inconsistencies or subclasses were found. 
Additional to tools, a programming module was 
also created to automate this process by creating 
constructs to manage the file of the model and 
contact a reasoner to deduce inferences and edit 
accordingly with methods implemented in the 
module. Something important to note is that not 
any one implementation suited the features of those 
in the conceptual data model EER which are great 
for mapping of relational databases and posing 
queries that operate under closed world 
assumption. 
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