
Materializing deductions inferred by reasoning on a
conceptual data model

Mandisa Baleni

Computer Science
University of Cape Town
blnman002@myuct.ac.za

ABSTRACT
The Semantic Web among other platforms are
looking to represent knowledge in an ontology or
conceptual data model in a way that the knowledge
represented is expressive about the subject domain
of which it interprets. Conceptual models need
tools and methods to allow domain experts to
encompass the features of the universe of discourse
[1]. There are many benefits to having an
expressive ontology conveys knowledge about a
subject domain. Users can query data efficiently,
knowing what they can query instead of taking on
the task to discover the data of the domain and how
its stored among other things. We need an
intelligent system to properly capture such
knowledge in such a way that all the implications
of the subject domain are made explicit in the
resultant ontology or conceptual data model. There
have been several attempts at implementations of
this yet there are no fully-automated systems able
to do this effectively where knowledge is
represented with full expressiveness.

CCS CONCEPTS
• Ontology • Conceptual data model• Extended
Entity-Relationship model → EER

KEYWORDS
reasoner, formalisation, materialization of
deductions

1 Introduction
In order to provide a better way of informed
decision making, information systems need
techniques for conceptual data modelling and
handling ontologies [2]. New theories and
techniques as well as tools have emerged to put
forward using conceptual models at runtime with
data storage [2] as a part of a larger system for the
purpose of providing means to users making
requests or queries about data. This makes it easier
for a user to make queries about data because it
reduces the task of having to find out what data
exists and how it is stored and instead shows what
they can query [2]. Some architectures of
intelligent systems that provide the functionality of

querying in such a way have been proposed. These
include Ontology-Based Data Access and
Knowledge-driven Information and Data access
(KnowID) [2]. Such architectures include a
component that manages knowledge where a given
ontology or conceptual data model must be
formalised, then a process of inferring implicit
knowledge must take place and lastly those
inferences must then be appended to the ontology
or conceptual data model. The final step hereby
referred to as materialisations of deductions will be
the primary concern of this paper. In KnowID,
favourability of materialising deductions in the
knowledge layer is so that reasoning does not
happen at runtime and this is suitable since
conceptual models or ontologies do not change
regularly [2].

Conceptual models can take on the form of Entity
Relationship models (ER) used to represent the
semantics of an application by employing entity
constraints, attributes and relationships to represent
a subject domain. We would then want to make this
representation as expressive as can be so that many
features of the reality being modelled can be
interpreted [3].

There have been tools that have been able to
implement materialisation of deductions of some
formalised conceptual data models and ontologies
such as an early version of Protégé and Intelligent
Conceptual Modelling tool and methodology
(ICOM). Whilst other tools like Crowd paired with
reasoners have assisted users with the process with
limitations.

Section 2 will discuss processes and the
formalisation of ontologies necessary before
reasoning. Section 3 will discuss all matters
concerning reasoning including reasoning tasks and
reasoners. Section 4 will discuss some tool
implementations of materialisation of deductions
and Section 5 will discuss an algorithmic approach
for it. Section 6 will them discuss and compare the
approaches mentioned and finally conclusions will
be drawn.

2 Preliminaries

2.1 Priors to reasoning over a conceptual data
model
For interpreting knowledge of a subject domain, an
ontology or conceptual data model could be used to
encapsulate the concepts of the subject domain and
how they relate to each other. We must consider
formally representing knowledge based on logic[2]
in order to reason over it later. Before checking
conceptual models for inconsistencies and
abnormalities, the model must be formalised into a
logic and then later sent to a reasoner that can
query its properties [1]. There are however
property-based differences between what is
regarded as ontologies and conceptual data models.
Conceptual models like Unified Modelling
Language (UML), Object Relational Mapping
(ORM) and (Enhanced) Entity Relationship model
(EER) need to be formalised to express an ontology
and do not have the reasoning capabilities of
ontology languages like Web Ontology languages
(OWL) which are rooted in logic [4]. However, it
has been indication that both EER and ORM 2 can
be formalised in Description Logics (DL).
Description logics is a family of logics that are
suited for representing information rooted in class
structures [3]. EER can be formalised specifically
in ALNI DL which can ensure tractable reasoning
over it [4]. This is quite useful as EER has become
most common for conceptually modelling
relational databases [5].

For the purpose of this paper, the modelling
language features of EER are the ones we look to
explore in terms of being formalised in a logic. The
features are: weak and strong entity type, n-ary
relationship, attributes, basic cardinality constraints
(0..n, 0..1, 1, 1..n) and identifiers, entity type
subsumption, disjointness and covering constraints.
DLRifd is the most appropriate logic for formalising
these features [2]. DLRifd additionally encompasses
identification constraints and functional
dependencies [6] but unfortunately, there are no
existing tools for this logic so we would want
something close to this sort of logic. We also know
that EER can be formalised in several different
logics but they all employ OWA for automated
reasoning [2].

The World Wide Web Consortium (W3C) designed
OWL to formalise ontologies [7]. OWL is now a
family of ontology languages that includes other
iterations such as OWL 2 DL. An option we could
take for formalising knowledge is having an
ontology expressed in OWL 2 DL and then later
using a DL reasoner for reasoning since there are
tools for this. However features like n-aries and
multi-attribute identifiers aren’t catered to [2] but
OWL 2 DL can otherwise be reasoned over [8]
OWL files are difficult to manage and using them

to process queries are not efficient. OWL is
becoming increasingly useful to transform into
EER models so it can be merged with relational
databases easily. This is desirable because EER
represents relational databases conceptually [5].
Rules have been developed to translate them into
the EER model so that they map better onto
relational databases and furthermore, there is also a
methodology for mapping OWL full constructs to
EER [5]. Bagui have shown how to map entities,
attribute keys, relationships, super-classes and
subclasses, cardinalities, as well as disjoint and
covering relationships from OWL to EER. The
methodology proposed here is intended to be
implemented in case tools to automate this process
[5].

3 Reasoning

When we consider the expressiveness of a
language, the interactions between the different
parts of the model become complex and issues of
consistency arise [3] The more expressive and large
it is.

3.1 Automated reasoning
We can have a language as a formalised subject
domain but another engaging aspect is being able to
reason over the language so that implicit
knowledge can be deduced. Automated reasoning
is about having systems automate the process of
making inferences. This is done by implementing a
formal language in which we can write conclusions
and make assumptions about a problem as well as
solving it, having implemented an algorithm to do
so [9]. The idea is to have a number of premises
that conclude to a hypothesis or generalize facts to
an assumption. Computer scientists have done this
formally in a logic, using rules and axiom as
premises so that conclusions can be made in a
depicted knowledge. It becomes tricky when we try
to formally prove the conclusion we arrive at using
the premises when we have a larger number of
axioms [9] and so we look to automated reasoning.
The explicit and implicit constraints of the
conceptual model need to have automated
reasoning done over them particularly when models
become big and may have complicated interactions
inside them [3] Primary considerations of
automated reasoning include reasoning tasks and
the formal language being reasoned over as well as
choosing to optimise the algorithms that do the
reasoning or restricting the language for lower
complexity [9]. Reasoning tasks can include
checking for consistency and classification of
concepts in a hierarchy otherwise referred to as
subsumption. The language being reasoned over
may have fewer or more features like cardinality

constraints to express the subject domain
knowledge [9].

3.2 Reasoning tasks
3.1.1 Entity and relationship Subsumption
One of the reasoning tasks is checking to see if an
entity subsumes another or likewise if a
relationship subsumes another relationship for
every legal database state [3]. If a class turns out to
be a subclass of another and it is not explicitly
implicated in the model, automated reasoning
becomes essential [3].

3.1.2 Entity and relationship Consistency
An entity can be inconsistent in the sense that there
is no database state where the entity has at least one
object. Similarly, a relationship is found
inconsistent if there is no database state where it
has at least on object [3].

3.1.3 Satisfiability
Entity Satisfiability and entity subsumption are
generally considered equivalent [3].

Many implementations of reasoning are restricted
by computational complexity [9] Generally, we
would have to choose between limiting the
expressiveness of a language or otherwise trade off
computational complexity. Description Logics is a
logic that focuses on languages with good
computational behaviour [9]. Ontology languages
such as OWL and OWL 2 are based on description
logics but lack expressiveness [9].

3.3 Reasoners
There are a number of automated reasoners that
take in different languages and provide different
reasoning services and thus may have different
purposes. First-order and higher-order languages
include Prover9, Vampire among others. DL
reasoners used for OWL ontologies have these
reasoning capabilities: satisfiability, consistency
and instance classification (subsumption) [9]. One
example of this is RacerPro.

3.3.1 Vampire is a tool that is a theorem prover for
first-order (FO) logic but is flexible enough to be
used as a reasoner for ontologies. First-order
theorem provers and DL reasoners both provide
reasoning capabilities but FO provers work with
logic that is undecidable. FO provers use an
invariable inference mechanism, meaning they are
more flexible and can be tuned to different
applications if processing algorithms are taken to
task [10]. Vampire can check for consistency on
ontologies but does not work well for large
ontologies [10]. Vampire can deal with three
datatypes namely, integers; real numbers and
strings but it is not suitable for reasoning tasks such
as satisfiability and in turn proving non-

subsumption which is problematic because for most
ontologies, concept pairs tend to be satisfiable and
not in a subsumption relationship [10].

4 Tool implementations for

Materialisation of Deductions

Materialization of deductions refers to editing a
conceptual data model such as EER by adding all
accepted inferences computed by a reasoner. And
to verify the modifications made, a re-classification
of it can be done where no new deductions are
returned [2].

4.1 Crowd
Crowd is a web tool used for ontology engineering
[4]. Crowd has multi-views and allows users to edit
ontologies on a graphical platform with languages
UML, EER and ORM. It provides DL reasoning for
ontology engineering support [11]. The intention of
this tool is to provide graphical methods to
compose conceptual models and ontologies
utilising logic-based reasoning services to describe
a domain conceptually [1]. The main takeaways
from this tool is that it allows modelling with
graphical support, formalises models into logic-
based formalisms and interacts with an off-the-
shelf reasoner. It checks for satisfiability and
implicit constraints which are then displayed using
whatever language was being used as the initial
graphical language. The first prototype has an
OWLlink communication standard protocol that
communicates with UML diagrams and the
prototype also checks the satisfiability for the UML
which is formalised to ALCQI description logics
[1]. This also means users will get to see a
graphical interpretation of the conceptual data
model that was presented originally with the new
deductions [1].

Crowd’s server has an OWLlink translator that
takes the graphical model as an OWL 2 file and
sends it to the reasoner. It takes a JSON file of the
conceptual model diagram and produces the
equivalent OWLlink file. It has a module called
query generator which sends queries to the
reasoner. The reasoning is done by an off-the-shelf
inference engine and results are given back to the
front-end part of the system and shown [1]. When
an inconsistency is found, it highlights the
inconsistency and displays red traffic light.

The prototype currently uses the Racer DL
reasoning server and allows one to create and edit
UML diagrams. The reasoner checks for
satisfiability for each class. The reasoner outputs
false and highlights inconsistencies when a
class/classes are unsatisfiable [1]. It is then up to
the user to solve for the inconsistencies.

4.2 Early Protégé
Materialising deductions was available in an earlier
version of Protégé [2]. Protégé offers a wide
variation of modelling structures but inferencing is
limited due to the OWL reasoners used for it. They
are restricted to is-a relationships by using pulg-ins
such as OWLViz and OntoGraf [1].

4.2.1 Protégé owl plugin
An OWL Plugin was extened for Protégé in order
to modify OWL ontologies and make use of
description logic reasoners. It provided services
such as classification and checking for consistency
[12]. The owl plugin can directly access DL
reasoners like Racer. The user interface of the
plugin supports reasoning services such as
checking for consistency and subsumption. Users
have the option to check consistency amongst all
classes or selected classes. The protégé OWL API
can access an API called Jena to infer any
possibilities for subsumption. For files that are
OWL full, they can be converted to OWL DL,
otherwise only after an OWL DL file is checked for
consistency will it then be checked for
subsumption. The plug in will graphically show the
subsumptions inferred in a hierarchy. Users will
need to assert assumptions in order for them to be
stored in OWL files but the two versions are shown
side by side in the tool. [12].

4.3 ICOM

Intelligent Conceptual Modelling tool and
methodology (ICOM) is a conceptual modelling
tool that has a reasoner that is capable of
confirming specifications, deducing inferences, re-
evaluating constraints that can be stricter and
detecting inconsistencies. It has a description logic
reasoning server. The class diagrams are formalised
using class-based logic. ICOM’s conceptual
modelling language is able to express an EER,
entailing modelling features such as disjointness
and covering constraints, classes (entities) and
relations that can be defined as view expressions
over other classes and relationships [13]. The tool
goes beyond the implementation reasoning tasks
subsumption and consistency. It also aims to
employ more complex automated reasoning tasks
to infer implicit deductions [13]. It Can deduce an
inconsistent entity and can deduce an inconsistent
relationship as well. ICOM is able to do all of this
through reasoning with disjoint ness and covering
constraints (partitioning of entities part of covering
and disjoint Is-A hierarchy), cardinality constraints
(mandatory participation, exactly one participation,
at most one participation), subsumption of entities,
subsumption of relationships. Through this same

reasoning, it is able to edit cardinalities to make
them stricter [13]. Additionally, it is able to deduce
equivalence of classes [13].

The tool displays question marks where it finds
inconsistencies, adds or edits arrows appropriately
scripted by constraint numbers and labels for
cardinalities, subsumption and equivalence. It’s
grounded in providing reasoning support for a
graphical class-diagram that’s deduction-complete.
It gives users a deduction-complete ontology in
graphical form after being given an ontology and
reasoning over it to satisfy consistency,
subsumption, cardinality and any other implied fact
[13].

ICOM also makes a point to be interoperable by
allowing one to import and export any ontology
languages based on Description Logics and
employs a mechanism to communicate with a
description logic reasoner like RACER via its DIG
protocol [13]. When using ICOM, the user must
provide a URL of the DIG-suitable reasoning
server and it does not have to be installed in the
ontology editor. After the ontology is encoded in
description logics, it is sent to the reasoner where
class and association satisfiability are checked for,
equivalance and subsumption amongst classes and
associations, and calculating stricter maximum and
minimum cardinality constraints, the system
queries the system for deductions and results are
given to the ontology editor to edit with the
deductions. The editor displays unsatisfiable
objects in red, non-explicit deductions are added in
green, equivalance found is added using links, and
likewise subsumption is shown using specific links
and as well as stricter cardinalities added. The user
can then decide if they want to keep the changes if
they are happy with the deductions [13]. If ICOM
detects a data reconciliation problem, where it may
find a class that cannot have any instances, it
displays a question mark on said class to notify
user [13].

5 Algorithmic Materialisation of

Deductions

Object programming languages are easier to use to
modify an ontology than APIs like OWLAPI [7].
OWLready is a python module designed for
ontology-oriented programming to support OWL 2
ontologies where entities can be accessed like
objects in programming languages. A syntax is
provided to manage classes and their constraints
using this syntax, one is able to manipulate classes
and do closed world reasoning. The syntax is based
on Protégé’s editor notations [7]. An algorithm to
perform simple closed world reasoning tasks has
also been implemented. OWLready can express

OWL 2 constructs such as classes, individuals
(instances), disjointness, attributes (object
properties) and datatypes. Methods are provided to
map OWL to python object model in OWLready
[7]. Python only uses an all-Disjoint mechanism as
opposed to OWL that encompasses pairwise
disjointness. OWLready also considers equivalence
in the attributes of classes, checks for subclasses
considering equivalent classes, features attributes in
classes and supports datatypes boolean, float and
string among more. OWLready provides functions
to access and edit entities and constraints [7]. The
user needs to call on the reasoner for inferences to
be deduced using a sync_reasoner() function. It
runs a HermiT reasoner on the file. The function
returns the output produced by the reasoner and
updates the ontology accordingly, modifying it in
accordance to the inferences deduced by HermiT.
Moreover, there is a closed_world function that
will consider all classes and subclasses, and check
for constraints to update which depend on existing
relations and restrictions [7].

There are other management mechanisms
employed for OWL like OWLLink. OWLLink is
an interface that allows one to access OWL
reasoner functionality [15]. OWLlink can be used
to communicate with off-the-shelf reasoners [11].

6 Discussion

Bringing together visual modelling and reasoning is
somewhat provided by ICOM and thus makes it a
desireable end-user tool to use for materializing
deductions. Reasoning services are provided by it
including subsumptions m..n and n=1 cardinalities,
disjunctions as well as equivalence whereas other
tools do not currently have said architecture [4].
This suits some but not all of the features included
in EER which would merge well onto relational
databases. The approach ICOM takes in bringing
together reasoning and graphical interpretation is
not taken by Protégé-OWL editor. It instead makes
edits on what is represented as a hierarchy of
concepts in a panel and a hierarchy of properties in
another panel and the deductions are shown in
another tab panel not shown graphically. Moreover,
the deductions panel is only provided for single
concepts and not properties [13]. Moreover, ICOM
employs more advanced and complex reasoning
services compared to Protégé. ICOM intelligently
may make considerations about lower and upper
bounds about cardinalities through more complex
reasoning than just is-A notions and inconsistencies
that Protégé does. ICOM is so robust, it puts an
isolated class in context and takes all constraints
related to it into account. It has even been proved to
derive all correct constraints [13] and his hence a
suitable consideration for materialising deductions
of a conceptual data model formalised in

description logics. Furthermore, its deductions
afford the ability of user validation. Once the
derivation happens and the deductions are
materialised on the ontology, the user can pick up
their conceptual error or oversight and change
accordingly [13]. ICOM uses DIG protocol instead
of OWL API because the language is independent
whereas API’s are tied to a language like the OWL
API being Java-based [13]. DIG protocol is
however not actively developing and new reasoners
are not supporting it.

Crowd’s integration of graphical assistance and
reasoning is not strong [1]. Crowd currently only
provides means to edit UML with modelling
features that include classes, attributes,
generalisation and binary associations having n..m
cardinalities when n, m>=1 [4]. The inference
engine provides support for satisfiability checking
when it comes to reasoning and the user can
materialize and modify accordingly.

A worthwhile issue worth considering when it
comes to editing ontologies is validation which is
about the accuracy of ontology in its representation
of the subject domain. Is it accurately interpreting
the reality of the domain. It allows for the user to
verify changes and cancel them if they don’t
represent the truthfulness of the domain. A problem
with this is reversibility which is undoing the
changes that have been made which is not always
the same as inverting the change. An example is
deleting a class in a hierarchy where the subclasses
of that class must either also be deleted or
reattached to a parent of the class. Reversing a
change like this would require readjusting the
hierarchy as opposed to just recreating the deleted
element. Hence evolution logs can be used to
manage such information about edits made [15].
Moreover, sometimes editing an ontology can
introduce new inconsistencies. To prevent such
undesired changes from occurring, a list of possible
issues that may arise from changes should be
shown to the user for their approval and be given
the choice to cancel the changes and leave the
ontology as is should they wish [15]. A tool like
ICOM allows flexibility in this regard.

In the bigger picture, the problem with taking a
user-interactive approach with materialising
deductions and validating them goes against
automating the whole process from formalisation to
materialization of deductions so that the resultant
conceptual data model is not generated at run time
when used in conjunction or as a sub-process of a
larger architecture. Hence, tools like Crowd would
not work well for such an environment. Managing
mechanisms such as OWLready would be better
suited for such a task since it employs constructs in

a module to manage OWL files and communicate
with a reasoner to check for reasoning services and
edit accordingly. We would ideally want the OWL
to have features suited to EERs so that reasoning
over it happens in closed world assumption.

7 Conclusions

This review looked at ways of interpreting
knowledge expressed as an ontology or conceptual
data model in a way that expresses the knowledge
of a subject domain as much as possible. Doing this
meant that implications often not explicitly shown
in the model would need to be inferred and
appended to the model. There have been some tools
that have been able to do this given a model
formalised in a suitable logic. Others have been
able to make the inferences and leave it up to the
user to edit the model accordingly if
inconsistencies or subclasses were found.
Additional to tools, a programming module was
also created to automate this process by creating
constructs to manage the file of the model and
contact a reasoner to deduce inferences and edit
accordingly with methods implemented in the
module. Something important to note is that not
any one implementation suited the features of those
in the conceptual data model EER which are great
for mapping of relational databases and posing
queries that operate under closed world
assumption.

REFERENCES

[1] Germán Braun, Laura Cecchi, Pablo Fillottrani,
and Christian Gimenez. 2016. crowd: A Tool for
Conceptual Modelling assisted by Automated
Reasoning. In Preliminary Report, 2016,
Argentina, 29-41.

[2] Pablo R. Fillotrani and C. Maria Keet. 2020.
KnowID: An architecture for efficient Knowledge-
driven Information and Data access. Universidad
Nacional del Sur, Bah´ıa Blanca, Argentina.
University of Cape Town, South Africa.

[3] Alessandro Artale, Diego Calvanese, Roman
Kontchakov, Vladislav Ryzhikov, and Michail
Zakharyaschev. 2007. Reasoning over Extended
ER Models. In 26th International Conference on
Conceptual Modeling (ER 2007), November 5 - 9,
2007, Auckland, New Zealand. Springer, Berlin,
Heidelberg, 277-292.

[4] Germán Braun, Elsa Estevez, and Pablo
Fillottrani. 2019. A Reference Architecture for
Ontology Engineering Web Environments. Journal
of Computer Science & Technology 19, 1 (April
2016) 22-31.

[5] Sikha Bagui. 2009. Mapping OWL to the Entity
Relationship and Extended Entity Relationship
Models. In International Journal of Knowledge and
Web Intelligence 1, 1-2 (September 2009), 125-
149.

[6] Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini. 2001. Identification
Constraints and Functional Dependencies in
Description Logics. In Proceedings of the 17th
international joint conference on Artificial
Intelligence (IJCAI’01), August, 2001, Seattle,
Washington. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 155-160.

[7] Jean-Baptiste Lamy. 2017. Owlready:
Ontology-oriented programming in Python with
automatic classification and high level constructs
for biomedical ontologies. Artificial Intelligence in
Medicine 80, 11-28.

[8] Boris Motik, Peter F. Patel-Schneider. 2009.
OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax
(September 2001). Retrieved May 1, 2020 from
https://www.w3.org/2007/OWL/draft/ED-owl2-
syntax-20090914/.

[9] C. Maria Keet. 2020. An Introduction to
Ontology Engineering. Vol 20. College
Publications.
[10] Ian Horrocks and Andrei Voronkov. 2006.
Reasoning Support for Expressive Ontology
Languages Using a Theorem Prover. In
Foundations of Information and Knowledge
Systems 4th International Symposium (FolKS
2006), February 14 – 17, 2006, Budapest, Hungary.
Springer, Berlin, Heidelberg, 201-218.

[11] Germán Braun, Laura Cecchi, Pablo
Fillottrani, and Angela Oyarzun. 2018. A
GraphicalWeb Tool with DL-based Reasoning
Support over Orthogonal Variability Models. In
XXIV Congreso Argentino de Ciencias de la
Computación (CACIC 2018), October 8 - 12, 2018,
Tandil Argentina, 867-876.

[12] Holger Knublauch, Ray W. Fergerson, Natalya
F. Noy, and Mark A. Musen. 2004. The Protégé
OWL Plugin: An Open Development Environment
for Semantic Web Applications. In Third
International Semantic Web Conference (ISWC
2004), November 7 – 11, 2004, Hiroshima, Japan.
Springer, Berlin, Heidelberg, 229-243.

[13] Pablo R. Fillottrani, Enrico Franconi, and
Sergio Tessaris. 2012. The ICOM 3.0 Intelligent
Conceptual

Modelling tool and methodology. Semantic Web 3,
3 (2012), 293-306.

[14] Sean Bechhofer, Diego Calvanese, Matthew
Horridge, Thorsten Liebig, Marko Luther, Olaf
Noppens, Ralf Möller, Mariano Rodriguez ,
Michael Wessel, Evren Sirin, and Dmitry Tsarkov.
2008. OWLlink: DIG for OWL 2. In Proceedings
of the Fifth OWLED Workshop on OWL:

Experiences and Directions, collocated with the 7th
International Semantic Web Conference (ISWC-
2008), October 26 – 27, 2008, Karlsruhe, Germany.

[15] Alexander Maedche, Boris Motik, Ljiljana
Stojanovic, Rudi Studer, and Raphael Volz. 2003
Ontologies for Enterprise Knowledge Management.
IEEE Intelligent Systems 18, 2 (March-April 2003),
26-33.

