
Visual Query Formulation: A Review of Visual Query Systems

Bradley Malgas
 Computer Science Department

 University of Cape Town

 South Africa

 mlgbra002@myuct.ac.za

ABSTRACT

Data access has always been limited by a user’s technical

expertise. Professionals who may be considered experts in their

domain but may not be skilled in structured query languages

require IT professionals to assist with their query construction

needs. The ability to provide end users with easy and simple query

formulation is a topic that still needs to be explored in depth. We

will be reviewing some approaches taken as well as the systems

which utilize these approaches.

KEYWORDS

Visual query systems, Visual Query Formulation, Ontology-based

data access, Graph database

1 Introduction

Relational databases are the standard when it comes to storing

large amounts of data. Accessing this information becomes

increasingly difficult as the size of the database increases. Making

useful and powerful queries of the database without understanding

the internal structure and the relationships that exist between the

data proves very difficult. Ontology-based data access (OBDA)

makes this easier by hiding these details from the user and

allowing them to use vocabulary from the ontology to create

queries. The KnowID architecture [7] that the topic of this

literature review was inspired from, makes use of OBDA to allow

querying at the conceptual layer. The users’ interactions with the

querying environment are further simplified using visual queries.

Visual queries make use of graphical elements to allow users

with less technical experience in traditional query languages like

SQL (Structured Query Language) to formulate queries. Visual

queries are achieved by implementing a Visual Query Language

that will be used in conjunction with the query environment.

These two components together form a Visual Query System

(VQS) which we will be exploring in more detail.

2 Visual Query Systems

Visual query systems (VQS) are systems that query databases

and visually represent the data as well as any requests. They are a

resulting of applying HCI principles in the design of query

languages. VQSs are aimed at users with limited technical

knowledge about the internal working of a database.

[3] Sets the foundations for early classifications of VQSs and

more specifically those that work with relational databases. Query

languages are analysed based on two key criteria: functional

capabilities and usability. Additionally, criteria can also be

introduced. [1] Introduces a taxonomy that can be used to classify

VQSs. The taxonomy is based on 3 criteria namely the limitations

on what can be expressed, ease-of-use and types of users it can

accommodate. We will use this in the Discussion section of the

review paper to analyse the approaches taken by VQSs.

In a VQS, the visual representations used for the query can

differ from that used for the query result. Both of these can be

visually represented in a number of ways. We will explore some

of the approaches identified in [3]. The first of which is form-

based. This method is meant to resemble a paper-based form.

Users input values to specify constraints. This approach is limited

as there is no way to understand the relationship between the data.

The form-based query result is a table. The advantage of using

this structure is that it the same as what’s used to show data in the

relational model.

The second approach is diagram based and this will be the

focus of our paper. In VQSs, the most common diagram

components used to display information are geometric objects

with lines being used to display the logical relationships between

data components. This approach allows the user to have a better

understanding of the data. Querying can be done using a range of

approaches one of which is used in the X-VIQU system. Users

can select objects to begin the query and add constraints as

necessary. At each step, a “tree” representing the query is

formulated and is added onto as the query becomes more

complex. As with the query, the query result can also be

represented using different diagrams although it is common to see

the same representation used in query and query result.

The strategies used in the query formulation are also classified

into classes. One strategy class proposed is that of schema

navigation where the user can select which components will be

used in the query by choosing a starting concept and building a

“path” to other related concepts whilst specifying constraints.

Other mentioned strategies include subqueries and pattern

matching.

2.1 Graph Based Query Systems

Graphs are a very common mechanism used to represented

data. A graph database is simply a collection of graphs where the

nodes represent data and edges represent the relationship between

mailto:mlgbra002@myuct.ac.za

ACM Conference Bradley Malgas

the nodes. This style of data representation is common in the

scientific research fields of biology and chemistry.

Queries can be applied to explore and retrieve information

from these graphs. The query is represented differently in

different graph query languages. The most common approach is to

represent the query as a subgraph although graph queries can also

be represented as a regular expression over the alphabet of edges

[13].

In [9], we begin with a query subgraph. The graph database is

then searched to find all graphs in the database that contain the

query subgraph. When a subgraph exists in the database it is said

to be a fragment of the database. Certain fragments appear in

graphs more often than others. Based on the frequency of its

appearance, a fragment can either be frequent or infrequent. The

proposed GBLENDER system uses fragments and graph

matching for graph queries with the use of action-aware indexing.

The two types of indexing methods, action-aware frequent

indexing (A2F) and action-aware infrequent indexing (A2I) match

frequent and infrequent query fragments. The system increases

performance by allowing the graph query construction and

processing to happen simultaneously. This is achieved by using

the indexing mechanisms to retrieve partial results while the query

is being formulated.

[10] Introduces project ARIANE - a conceptual model of

querying medical databases using a graph query. The ARIANE

system is aimed at producing results that satisfy users’ needs and

minimizing any extra or unnecessary information. The project

uses the Unified Medical Language System (UMLS) as an

ontology as it contains much of the terms used in the medical

domain. This works well since knowledge in the UMLS is

organized in a data structure. The UMLS structure is rather

complex and is modelled conceptually using a hierarchy. The

Semantic network is on the top layer, the context in the middle

and the concepts are at the lowest layer. Unlike GBLENDER

which uses indexing, ARIANE uses projection in order to match

queries. Once a user has formulated the query graph, it needs to be

able to be ‘projected’ onto the data graph for there to be a match

in the data structure.

In order to formulate a query, the user needs to interact with an

environment that will be used to construct the query. The user

interface of GBLENDER allows users to drag labels from a label

pane into a graph query pane. Edges can be added to link together

different labels. While the user adds more and more labels, the

current query gets classified as being either frequent or infrequent.

The query is processed using the GBLENDER algorithm which

builds on Ullman’s algorithm. The user interface for ARIANE

functions in a similar way of GBLENDER. In order to build a

query graph, a user will firstly have to select a concept and a

context for node, a relationship that will be involved and then a

context and concept of a secondary node. This will then build a

conceptual graph that links these two nodes. This process can be

repeated to create bigger queries.

[6] Introduces an aspect of databases that is not seen with the

two VQSs mentioned above, the idea of temporality being a part

of the database. A temporal database stores information about

time instances. This includes when data is considered valid, when

this validity was established and when the data was stored. The

existing graph model can be extended to include temporal aspects

of data structures.

Queries are constructed in the same way as with the previous

Graph Based VQSs with the added difference being the ability to

use temporal operators namely Snapshot which is used for

temporal selection and Slice which is used for temporal

projection. Temporal selection is a logical condition that must be

true of the time associated with the data. The result of applying

this temporal selection, is the actual time values returned - the

temporal projection.

Queries of this type are formulated using the entire graph

database shown in the ‘Schema Window’. This window shows the

user all the various classes and the relationships between them.

The user will then select one schema to focus on. Once this has

been obtained, the user selects a classes and relationship types that

will be used in the query. The query generation process is handled

similar to those seen before, but users can now create Snapshot or

Slice queries where Snapshot queries will return results pertaining

to one time-interval and Slice queries return results pertaining to

more than one time-interval.

2.2 Ontology Based Query Systems (using

SPARQL)

Ontology-based data access is based on the concept of data

virtualization [11]. This means all data remains where it is an

ontology is an added layer to provide a knowledge base. In this

system, the database is used for the retrieving of data and the

ontology is used for the retrieval of implicit facts about the data.

OptiqueVQS [12] is an ontology based visual query system.

The focus of this system is to make querying simpler for end-

users who have minimal technical experience. This system does

not have any formal syntax for the query representation and

instead opts to project the ontology onto a graph and use this to

assist with querying.

In OptiqueVQS, user queries are constructed in the form of a

tree-like structure and the user is able to link classes and

properties. In order to create suggestions, the system uses a

technique call ed ’graph navigation’ which involves projecting an

OWL2 ontology onto a graph and suggesting properties that are

accessible within one step.

The WONDER system [2] uses similar graph properties. In the

WONDER system, queries are comprised of a query graph as well

as a constraint expression. The query graph, which is almost

identical to the ontology graph, relies on users dragging nodes

from the ontology graph and then joining them as desired in a

query pane. In order to specify the constraints, the system runs the

query using DL-Lite and then applies constraints on top of this

using an EQL-Lite query. In order to have an interactive

environment to display the visual queries, the WONDER system

uses Scalable Vector Graphics (SVG).

[5] Introduces a different way to represent the user queries.

ViziQuer uses a UML styled notation to represent the visual

queries. Each node represents a data instance. Each data instance

Visual Query Formulation: Generating SQLP queries from

EER/ARM diagrams

contains instance attributes and can also contain additional

conditions. Between each node there is a connecting edge which

represents the relationship between the two instances. The

resulting “UML graph” query must always contain a main query

node that serves as the root of each query.

Each VQS also provides users the ability of saving queries.

The ViziQuer system in particular, makes use of projects to save a

user’s queries. Each project can contain multiple query graphs

which themselves can contain multiple queries within them. To

start a project, a user needs to supply a data schema with a

SPARQL endpoint. Each project also needs SPARQL engine to

assist with the query translation. Functionality is made available

to extract the scheme from an OWL ontology.

Visual query systems will always stay behind SPARQL in

terms of expressive abilities due to the lack of certain selection

queries [5]. The ViziQuer tool helps facilitate the creation of

visual queries on SPARQL data. It builds upon previous work [4]

and extends basic visual query generation to include more

complex tasks like subqueries and aggregation.

2.3 Conceptual Queries using Visual Query

Languages

A Visual Query System differs from a Visual Query Language

(VQL). A VQS is a system that users interact with to generate

queries, a VQL is a language that has pre-defined syntax and

formal semantics [11]. Visual Query Systems are not as

expressive as the Visual Query Languages that they are based on

[5]. This trade-off is a result of keeping them usable. Developing

an expressive visual query language will result in a system that is

too complicated for end users and less efficient than regular

structured query languages for IT experts.

To assist with this dilemma, we can make use of a conceptual

schema. A conceptual schema is expressed using concepts that

may be familiar to end-users. It is different from SQL in that in

these queries don’t need to be updated if there is a change made to

the underlying schema.

The Query by Diagram System [10] makes use of this idea.

Before query formulation, the user is able to browse the

conceptual schema. Users will then extract any subschema which

contains the information that will be used in the query. The

system makes use of graphical primitives which are functions that

map the database to the required structure.

While some systems use existing VQLs to assist with queries,

others create a new language entirely. The ConQuer-II [5]

language is a conceptual query language allowing users to

formulate queries in terms of relationships using operators such as

“and”, “or” and even “not” (negation) avoiding the need for

understanding the details of relational databases. Unlike the

previously mentioned VQS systems, ConQuer-II is based on

Object-role Modelling (ORM).

ORM is a modelling approach that revolves around the

concept of objects whereby every component in the model is

object that has a specific role. For example, while reading this

review, you are assuming the role of reader while this review is

assuming the role of being read. ORM makes not explicit use of

attributes [8]. ORM models result in queries that are more stable

and also more expressive than Entity-Relationship Modelling.

In ORM, object types are shown as labelled ovals. Entity types

has a solid outline while value types have a dotted outline. Each

role is represented as a box. Each box forms part of a relationship

that can an n-ary relationship type. This forms the basis for

ConQuer queries, but users need not be familiar with this schema

although it differs from the ER schema used in the QBD system.

3 Discussion

After understanding the approaches taken by the various

systems in order to create Visual queries, we need to analyse the,

The criteria we will use to analyse the discussed VQSs are:

limitations on what can be expressed, ease-of-use and types of

users it can accommodate.

3.1 Limitations

Some of the problems that VQSs are faced with are the ability

to address more complex problems such as cyclic and disjunctive

queries as well as negation. Apart from query formulation other

related concerns are being able to efficiently deal with large

ontologies.

Certain VQSs also have limitations that may not be present in

others. OptiqueVQS does not provide the ability to generate

complex queries since it heavily focused on end-users and their

typical use cases. Users are able to delete nodes in the event of a

mistake during the query process, a feature which is not present in

the graph-based querying in GBLENDER.

3.2 Ease of Use

One of the best ways to demonstrate the ease-of-use of VQSs

is to compare one with a great user interface and one with one that

isn’t that user friendly.

The user interface of OptiqueVQS contains multiple UI

elements that have been linked together. The benefits if this

approach provides modularity and leaves room for flexibility [12].

The first widget element is the used for representing queries.

Users add nodes and edges, which represent objects and object

properties respectively, onto this pane. The second widget

contains a list of all objects and the third, a list of all properties.

These widgets are updated dynamically as the query is formulated

providing the user with suggestions based on the current query.

We were able to see this system in practice and the time taken to

learn the system is relatively low.

On the other hand, the query formulation in ConQuer is textual

based. The user begins by picking object. Once the object is

placed in the query pane, the system displays the roles played by

that object. The user can then choose a relationship. Object

contained within each relationship can also be clicked and the

system will then display the roles played by that object. Through

ACM Conference Bradley Malgas

this process, the user can generate a query path. This path is

displayed in a few lines as an outline of the internal structure. This

means users will need some understanding on the outline in order

to generate meaningful queries. Internally the queries are

represented as syntax trees that get transformed into SQL, which

would have been a better approach for representing the queries

visually.

3.3 User Types

ConQuer-II is backend independent and can be used with

multiple databases. It can allow the user the ability to express

powerful, complex queries. This does however limit the types of

users that can use the tool since it is very difficult to understand as

an end user without some technical knowledge. Having to be able

to differentiate between Location, Navigation or Replacing

primitives does not line up with the use of conceptual queries

which is essentially to use concept which are familiar to users.

4 Conclusions

In the topic of Visual Query Formulation there many

approaches that can be taken to achieve the desired results. Graph-

based queries make use of graph databases and attempt to match

subgraphs. Ontology-based data access allow the use of

ontologies as a knowledge layer data access mechanism that can

be leveraged for query formulation. Sometimes it is even common

for developers to create their own Visual Query Language to help

facilitate the query formulation process. Each approach has

produced a number of systems. Each system also has its own

flaws and drawbacks. The best approach will be explored in the

Project Proposal.

REFERENCES

[1] Batini, C., Catarci, T., Costabile, M. F. and Levialdi, S.

Visual Query Systems: A Taxonomy. City, 1991.

[2] Calvanese, D., Keet, C. M., Nutt, W., Rodríguez-Muro,

M. and Stefanoni, G. Web-based graphical querying of

databases through an ontology: the WONDER system.

City, 2010.

[3] Catarci, T., Costabile, M. F., Levialdi, S. and Batini, C.

Visual query systems for databases: A survey. Journal of

Visual Languages & Computing, 8, 2 (1997), 215-260.

[4] Čerāns, K., Bārzdiņš, J., Šostaks, A., Ovčiņņikova, J.,

Lāce, L., Grasmanis, M. and Sproģis, A. Extended UML

class diagram constructs for visual SPARQL queries in

ViziQuer/web. Voila, City, 2017.

[5] Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J.,

Lāce, L., Grasmanis, M., Romāne, A., Sproģis, A. and

Bārzdiņš, J. ViziQuer: a web-based tool for visual

diagrammatic queries over RDF data. Springer, City, 2018.

[6] Fernandes, S., Schiel, U. and Catarci, T. Visual query

operators for temporal databases. IEEE, City, 1997.

[7] Fillottrani, P. R. and Keet, C. M. An architecture for

efficient knowledge-driven information and data access

(2019).

[8] Halpin, T. Object-role modeling (ORM/NIAM).

Springer, City, 1998.

[9] Jin, C., Bhowmick, S. S., Xiao, X., Cheng, J. and Choi,

B. GBLENDER: towards blending visual query formulation

and query processing in graph databases. City, 2010.

[10] Joubert, M., Fieschi, M., Robert, J.-J., Volot, F. and

Fieschi, D. UMLS-based conceptual queries to biomedical

information databases: an overview of the project

ARIANE. Journal of the American Medical Informatics

Association, 5, 1 (1998), 52-61.

[11] Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov,

E., Zheleznyakov, D. and Horrocks, I. Ontology-based end-

user visual query formulation: Why, what, who, how, and

which? Universal Access in the Information Society, 16, 2

(2017), 435-467.

[12] Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-

Ruiz, E., Giese, M. and Horrocks, I. Ontology-based visual

query formulation: An industry experience. Springer, City,

2015.

[13] Wood, P. T. Query languages for graph databases.

ACM Sigmod Record, 41, 1 (2012), 50-60.

