

Query formulation on a conceptual data model with explicit

inferences of knowledge

Mandisa Baleni
 Computer Science Department

 University of Cape Town

South Africa
 blnman002@myuct.ac.za

Bradley Malgas
 Computer Science Department

 University of Cape Town

 South Africa

 mlgabra002@myuct.ac.za

1 Introduction

Intelligent data access uses knowledge to efficiently manage data

and improve decision making. Data access is often restricted by

what a user knows about a database and how data is stored in it.

But this is not the only restriction to effective data access. In order

to optimize queries about data, users often need to be skilled in

structured query languages. To give users the ability to optimize

data access without the need to learn a query language, visual

query formulation can remove the restrictions on most data

systems which can be achieved by using a visual query system. A

visual query system is a visual programming environment that

uses user interaction in order to generate a query [1]. The visual

aspect of this system pertains to data represented as a map with

objects that express concepts in a subject and how they relate to

each other. These are more formally known as conceptual data

models like enhanced-entity relationship diagrams (EER) or

ontologies (see figure 1).

Figure 1: Arbitrary conceptual data model

Conceptual data models and ontologies need mechanisms to

display domain expert knowledge in such a way that is expressive

[2]. This happens when concepts and their interactions make the

nature of the subject domain completely clear. Part of achieving

this is explicitly capturing any implicit knowledge of the subject

domain in the data model. For example, in Figure 1, one would

implicitly acknowledge that an undergrad has a class since they

are a student. That is not always explicitly included in a model.

However, there are no effective mechanisms of doing this for

most models. The process of acknowledging this implicit

knowledge is known as reasoning and the process of explicitly

adding it (or sometimes removing) is the materialisation of

deductions.

 An architecture addressing called KnowID [3] has been proposed

with components that are meant to address the issues of query

formulation and the materialisation of deductions (see figure 2).

This project will dive into specification of KnowID’s proposal of

the circled components.

Figure 2: The KnowID architecture [3]

Our project focus is circled in red. Work allocation is equally

distributed between team members. Each member will focus on a

single component as follows:

1. Materialisation of deductions: Mandisa Baleni

2. Query formulation in SQLP: Bradley Malgas

1.1 Related Works

 1.1.1 Related works for Visual Query Formulation

Different systems take different approaches to achieve

visual query formulation. The GBLENDER system [4]

for example, uses graphs and subgraphs in order to

achieve visual querying. A query is represented as a

subgraph and the database is then searched to see

whether any graphs in the database contains this

particular subgraph (called a fragment). Another system

which employs graph strategies, is the OptiqueVQS

system [5]. Here, user queries are represented as a tree-

mailto:blnman002@myuct.ac.za
mailto:mlgabra002@myuct.ac.za

like structure while making suggestions of which nodes

to link while the user construct the query.

1.1.2 Related works for materialisation of deductions

The Intelligent Conceptual Modelling tool (ICOM) [6]

is a tool that can partially reason and materialise over all

EER’s features. It uses what is known as a DIG protocol

where the user must provide a URL for a reasoner that

“follows” said DIG protocol. There are APIs and

programming language modules for modifying

ontologies using reasoning services. A java-based API is

the OWL API [7] and a python-based programming

language module is OWLready [8]. Both require the

input ontology to be serialised in OWL 2 specification.

2 Problem Statement

2.1 The Query formulation problem

Experts in a specific domain need to use built-in queries or rely on

IT professionals to create them, resulting in an inefficiency to

create powerful and meaningful custom queries. Their main

challenge is a lack of technical experience with structured query

languages. Our main problem to address creating the ability to

generate visual queries using an EER diagram. Currently, no

existing tools allow users to provide EER diagrams or Abstract

Relational Models (ARM) and generate queries in SQLP over

them.

2.1.1 Issues with existing visual query system tools

The main issues of concern are:

1. Technical limitations: Some existing technical issues

regarding visual query systems are the ability to deal

with complex issues that involve cyclic or disjunctive

queries and those involving negation. Other issues

identified include not being able to undo or delete

during the querying process as identified in the

GBLENDER [4] visual query system. Another factor to

consider is that most of the existing solutions work with

SPARQL. There currently exists no support for SQLP.

2. User types: Each visual query system also targets

different users. Highly specialized system such as the

project ARIANE [9], which is exclusively for use

within medical databases, have the advantage of

leveraging existing ontologies to provide users with

familiar concepts. Consequently, this means it does not

cater for the broad, general user.

2.2 The materialisation of deductions problem

Fillotrani and Keet [3] propose a process that takes a logic-based

formalisation of a subject domain to reason over and deduce any

implicit facts in the model not captured in the diagram and then

materialise thosse deductions by altering the diagram with the

inferences made. However, there are no tools or algorithms that

can fully complete the materialisation of deductions over

ontologies and conceptual data models after being reasoned over

and especially for the conceptual model known as Enhanced

Entity Relationship diagram (EER) or an ontology encapsulated

with all of its features. Another issue on a smaller scale is that

most models and ontologies have materialisation of deductions

done by reasoning that operates under open world assumption

(assuming that a statement can be true whether it’s known or not)

as opposed to the more specific closed world assumption

(assuming a statement is true only if its known) [3].

2.2.1 Issues with existing Materialisation of deductions tools

Main issues with existing tools to materialise deductions can be

classified into 2 categories:

1. Compatibility: Some tools don’t have reasoners (and

subsequently inference capabilities) to imply knowledge

for all EER features supported by KnowID. ICOM is

not suited for EER’s following features: weak vs. strong

entity type, n-ary relationships, attributes and identifiers

since its conceptual modelling languages can only

express EER’s following features: disjointess

constraints, covering constraints, entities, and some

cardinality constraints (mandatory participation, exactly

one participation, at most one participation). Even

though the OWL API supports ontologies of various

syntaxes, it is not adjusted to any specific syntax or

model as classes (entities) and axioms are based on

OWL 2 Structural Specification [7]. Owlready also uses

OWL 2 specification which does not support all of the

EER features supported by KnowID. OWLready

supports classes (and subclasses), disjointness,

attributes, and datatypes (attributes) and object types

(relationships) [8] but limited for other EER features.

2. Technical limitations: There aren’t reasoners to express

the features needed by an EER in KnowID and operate

under closed world assumption (CWA). ICOM’s DIG

protocol is not actively developing meaning new

reasoners don’t support it [6]. The OWL API requires

OWL reasoners like Racer Pro for reasoning which may

not have the full reasoning capabilities we need for

EER. Owlready has a HermiT reasoner which has

limited reasoning capabilities for all of EER’s features

and OWL reasoners operates under open world

assumption. Editing ontologies with the OWL API is

also more complex than using object programming

languages to do so as done by Owlready.

2.2 Requirements

Some important requirements of the software system include:

▪ Creating accurate user queries in SQLP using EER

diagrams

▪ Allowing users to recover from mistakes in the querying

process (whether through deleting or undoing)

▪ Compliance with the already existing architecture

(current transformation rules)

▪ Allow a modular design that can be used in a variety of

use cases

▪ Reasoning suited for all of EER’s features

▪ EER formalized in an ontology in suitable logic like

OWL 2 DL

▪ Validation services after materialising deductions

2.3 Users

They are experts in the subject domain that the data interprets who

want to process queries but with limited understanding of query

languages and benefit from querying over a conceptual data

model encapsulating the knowledge of their domain. They want to

have the ability to create custom queries that suits their current

needs and capture the importance of the relationships between the

data contained without having the necessary technical knowledge.

2.4 Aims

1. Develop a visual query system that will allow users to

leverage their understanding of the data contained in the

database and use an EER diagram to create SQLP

queries. The query system will be easy-to-use and needs

to create correct and accurate SQLP queries.

2. Create an algorithm to facilitate with EER-to-SQLP

transformation.

3. Achieve materialisation of deductions with open world

assumption reasoning for the following reasoning tasks

(over most of EER’s listed features supported by

KnowID):

▪ Relationship subsumption

▪ Entity subsumption (closed world assumption

if there is enough time)

▪ Entity consistency

▪ Relationship consistency

4. Have a management tool that allows experts to approve

or deny certain deductions inferred by the reasoner

based on its sensibility in the real world and inform

users about inconsistencies in specified models and

choose what to do with them.

The first two aims will be achieved by the Visual Query

Formulation section by Bradley Malgas. The remaining two will

be achieved by the Materialisation of Deductions section by

Mandisa Baleni.

3 Procedures and Methods

3.1 Procedures for the materialisation of deductions

component

A python program will be implemented to materialise the

deductions inferred by a reasoner when it is given an OWL file

that encapsulates an EER model with all the features that KnowID

supports. The program will include the following features:

a. A simple text user interface used to navigate the

program. This will include services like file path

specification of OWL files and requesting reasoning and

materialisation of deductions. This will contribute to the

3rd and 4th aim listed in 2.4.

b. An extension of Owlready, a python-based module for

ontology engineering (see figure 2) [8]. It will extend

and modify the ontology modification algorithms

implemented in Owlready to closely suit the features of

EER. The module currently provides support for OWL

2 constructs. We will modify the ontology-specific

python source files that make modifications based on

reasoning and possibly the methods that map the OWL

files to the python object model so that it better supports

OWL 2 DL because it’s closest to OWL full (EER-

adjacent) [10]. The ontology will be sent to the HermiT

reasoner to do the general open world assumption

reasoning and the resulting inferences will be added to

the ontology This satisfies aim 3 in 2.4. If there’s time,

Owlready’s closed world algorithm will be used for

each of the classes in the ontology to do whatever

closed world reasoning it can do, the resulting

inferences will be added to a new ontology. This will

also address aim 3 in 2.4. We will analyse the

consequences of including the close world reasoning

and examine whether its worthwhile.

c. Wrapper management tool for verifying materialisation

of deductions that will allow users to choose what to do

with the deductions returned and inform them of the

consequences of their decisions. This addresses the 4th

aim in 2.4.

This aspect of our project will be implemented using an iterative

and incremental development approach that is test driven. It will

be done in three iterations with prioritized features addressed in

earlier stages. The first iteration will focus on core EER features,

the second iteration on the rest of EER features and the third

iteration on the wrapper management tool. Each iteration will start

of by (1) designing the test cases of sample models with expected

I/O first, (2) followed by code implementation, and lastly (3)

followed by testing. Steps 2 and 3 will be continuously repeated if

tests aren’t passed.

Figure 2: The architecture of Owlready [8]

3.2 Procedures for the query formulation component

A prototype of the software will be developed as a sub-component

of what the full software will be capable of. These are the key

features that will be prioritized in the protype design in order to

demonstrate that the research problem has been adequately

solved:

a. Visual querying ability: The users should be able to

make use of the querying environment to construct

queries. They will be shown the status of the query

through a “tree-graph” that represents the query. The

available queries in the prototype will only be a subset

of the availability and range of queries expected from

the final software.

b. SQLpath (SQLP) Query support: The system needs to be

able to generate queries in SQLP. The query running

will be simulated in the prototype for demonstration

purposes only.

c. Checking of EER using ARM transformation: Since our

queries operate on the EER diagrams, we will make use

of the existing algorithm to transform the EER diagram

to an ARM that will integrate with the rest of the

system. The classified information obtained from the

ARM will be associated with the EER diagram.

d. A widget-based visual query environment: While this

feature is not core to the desired outcome, if time

allows, we will provide an interface to users that will be

intuitive, easy-to-use while being modular in its design.

Each widget component serves as a separate application.

The implementation strategy will be to build a brand-new

application from the ground up. The reason for taking this

approach is due to the fact that there are currently no existing

tools that can achieve what we are aiming to solve with this

system. We will be using an Agile software development

methodology. This will allow us to optimize the development

process for rapid deployment. This decision lines up with the

milestone of software feasibility demonstration – having the

ability to make changes during the development process is why

the Agile methodology was chosen.

The entire application is to be developed in Python. We will begin

by designing a model that will be used to encapsulate the data

contained in the EER diagram. This will be done using the Model

representation in the Django Framework. Once we are able to

have a useful way to interact with the models, including the

relationships between them, we can extract this information. This

is needed in order allow it to be used during the querying process.

Each piece of extracted information will be classified as being

either: a table name or a variable name. This information will be

obtained easily from the ARM structure (Figure 3). We will be

working under the assumption that the provided ARM diagram

will be representative of information contained in the underlying

relational database.

Once the information has been classified accordingly, we then

able to link this information with EER diagram which will be used

as the basis for actual user interaction. Users will then be able to

design a query that uses will be matched according to the actual

SQLP format. This can be achieved by designing an EER-to-

SQLP query algorithm that will be based around the grammar

shown in Figure 4.

Figure 3: ARM Structure [11]

This structure as demonstrated by the grammar will be visually

represented as a tree-like structure that will have nodes added to

it, each time that a user adds a new element. In following this

procedure, we will have completed designed a Visual query

System.

Figure 4: SQLP Grammar [11]

3.3 Evaluation

We take several different testing methodologies to evaluate

materialisation of deductions and query formulation respectively.

3.3.1. UI testing

We will begin with UI testing by assessing that each GUI

component functions individually during each step of the querying

process. This includes tests such as: checking that every button

responds to presses in different scenarios, ensuring that resizing

the window does impact on the ability to use the interface etc.

3.3.2. Performance testing

The system addressing query formulation will make use of

performance testing. The way in which we will analyse the

performance of the system is the speed at which queries are

generated and how resource intensive the software is. This test

will be performed on at least 2 different PC setups. Performance

testing will only be conducted for the query formulation since this

is the only component within our scope done at runtime.

3.3.3. Acceptance testing

Lastly, we will also employ acceptance testing. Since our main

aim is to generate accurate queries, we will do acceptance tests on

the generated queries against the query that was expected from the

system.

3.3.4. System testing

To test the materialisation of deductions, we will use the sample

model examples with EER features compatible to OWL 2 DL

from a guide on mapping OWL full to EER [1l] and tweek them

to test for correct subsumption and consistency modifications. We

will introduce subclasses, sub relationships, and possible

inconsistencies to test across most of EER’s features supported by

KnowID namely:

a. entity type (strong)

c. attributes

d. basic cardinality constraints

e. identifier

f. entity type subsumption

g. dis-jointness constraint

h. covering constraint

4 Ethical, Professional and Legal Issues

Extending Owlready is permissible. It is available under GNU

GPL v3 license which is a free and copyleft license for software

which aims to give freedom to share and change all versions of a

program. Django is a Python-based free and open-source web

framework released publicly under a BSD license. Both

components will also be developed under GNU. Our programs

will be open-sourced so that others are free to use and develop

further for free.

5 Anticipated Outcomes

5.1 System

Our overall system will be modular so both components can be

developed independently, but still able to be used together and in

KnowID. We will speak more about the software and its key

features as well as any design challenges.

5.1.1 Visual Query Environment

Based on approaches taken by related systems (see Section 5.2),

the visual query environment will allow users to interact with a

graph representation of the query being formulated. The system

needs to allow users to link data elements from the database to

form a query. Each element is represented as a node in the overall

query graph. Data element to be used in the query will be pre-

selected from the provided EER diagram. This approach presents

a design.

5.1.2 Materialisation of deductions system

A major result is a system able to compute EER diagrams with

explicit inferences that make sense to the logic of the reasoner and

to the reality of the subject domain.

5.2 Impact

The impact of the results of the visual query formulation will be

substantial and can go a long way into simplifying querying for

the inexperienced users. We would be able to compare the time

taken to construct a query using a structured query language vs

using the visual querying environment.

If the materialisation of deductions can be realized for more

features of EER, ontologies and conceptual data models can

express knowledge more expressively and better suited to use

over relational databases. Moreover, if that entire component of

the project is successful, more reasoning and materialisation of

deductions can be done under the closed world assumption.

5.3 Key success factors

In order to ensure that we have a successful project we will

determine whether it can achieve the most basic tasks. These can

be measured as completed or not using the following the

following criteria:

▪ Can we load an EER diagram?

▪ Can we use the loaded diagram for queries?

▪ Can we generate an SQLP query using the visual query

environment?

▪ Is the generated SQLP query an accurate representation

of the visual query?

▪ Can materialisation of deductions be performed with

open world reasoning on an ontology with classes and

sub classes (entities), attributes, relationships and sub-

relationships, cardinalities, disjoint relationship?

▪ Can a user make decisions about what to do with added

features in an ontology?

If we can achieve all of the above tasks, then the project cab be

deemed successful as these are the core requirements to solving

the initial problem statement.

6 Project Plan

6.1 Risks

The risks for this project are shown in a risk matrix in Appendix

B. It shows mitigation and management strategies for risks along

with their impact and likelihood of taking place. The risk of the

Covid-19 pandemic may greatly limit with access to

communication amongst us as developers which may interfere

with ensuring the materialisation of deductions component is

compatible with query formulation developed separately.

6.2 Timeline

The project timeline is already in motion as of the 30th of March

when work commenced on the Literature review of the various

topics. This was followed up by this project proposal and will be

furthered with other deliverables. This is reflected in the timeline

(Gannt Chart) in Appendix A.

6.3 Required resources

6.3.1 Software Resources

▪ Python

▪ React

▪ Django Framework

6.3.2 Hardware Resources

▪ Personal Computers

6.3.3 Data Resources

▪ Owlready python module

▪ EER-ARM bi-directional algorithm module

6.4 Deliverables

The list of final deliverables that will be produced at the end of

this project are as follows:

▪ Visual query system

▪ EER to SQLP algorithm

▪ Owlready extened

▪ Materialisation of deductions system with reasoning

▪ Final Research Paper

▪ Project Poster

▪ Project Web Page

▪ Reflection Paper

6.5 Milestones

As shown in the timeline, a few activities are marked with an

orange diamond to signify that they are of importance. These

major milestones will be used to determine when a significant

portion of the project has been completed (key milestones

indicated with diamonds in gantt chart):

▪ Completed Literature Review

▪ Rough Draft of Project Proposal Completed

▪ Completed Final Project Proposal

▪ Created data model to represent input

▪ Completed SQLP Query Generation Algorithm

▪ Designed Visual Query System

▪ Completing the first iteration of materialising

deductions as shown in the gantt chart will be

significant since the most important features would have

been completed with owa reasoning

▪ Completing the 3rd iteration to implement a wrapper

since it provides key functionality for a user to validate

the model

▪ Software Feasibility Demo

▪ Final Draft of Research Paper

REFERENCES

[1] Patricia S. Abril and Robert Plant. 2007. The patent holder's

dilemma: Buy, sell, or troll? Communications of the ACM 50,

1 (Jan, 2007), 36-44.

[2] Germán Braun, Laura Cecchi, Pablo Fillottrani, and Christian

Gimenez. 2016. crowd: A Tool for Conceptual Modelling assisted

by Automated Reasoning. In Preliminary Report, 2016,

Argentina, 29-41.

[3] Pablo R. Fillotrani and C. Maria Keet. 2020. KnowID: An

architecture for efficient Knowledge-driven Information and Data

access. Universidad Nacional del Sur, Bah´ıa Blanca, Argentina.

University of Cape Town, South Africa.

[4] Jin, C., Bhowmick, S. S., Xiao, X., Cheng, J. and Choi, B.

GBLENDER: towards blending visual query formulation and

query processing in graph databases. City, 2010.

[5] Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez

Ruiz, E., Giese, M. and Horrocks, I. Ontology-based visual query

formulation: An industry experience. Springer, City, 2015.

[6] Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris.

2012. The ICOM 3.0 Intelligent Conceptual Modelling tool and

methodology. Semantic Web 3, 3 (2012), 293-306.

[7] Sean Bechhofer and Matthew Horridge. 2009. The OWL API:

A Java API for Working with OWL 2 Ontologies. In Proceedings

of the 6th International Conference on OWL: Experiences and

Directions (OWLED’09), October, 2009. CEUR-WS.org, Aachen,

Germany, 49-58.

[8] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented

programming in Python with automatic classification and high-

level constructs for biomedical ontologies. Artificial Intelligence

in Medicine 80, 11-28.

[9] Joubert, M., Fieschi, M., Robert, J.-J., Volot, F. and Fieschi,

D. UMLS-based conceptual queries to biomedical

information databases: an overview of the project ARIANE.

Journal of the American Medical Informatics Association, 5,

1 (1998), 52-61.

[10] Sikha Bagui. 2009. Mapping OWL to the Entity Relationship

and Extended Entity Relationship Models. In International

Journal of Knowledge and Web Intelligence 1, 1-2

(September 2009), 125-149.

[11] Weicong Ma. 2018. On the Utility of Adding an Abstract

Domain and Attribute Paths to SQL. Master's thesis.

University of Waterloo, Ontario Canada.

Appendix A: Timeline (Gannt Chart)

Appendix B: Risk Matrix

