

DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours

Final Paper 2020

Title: Visual Query Formulation: Generating SQLP queries

using EER diagrams

Author: Bradley Malgas

Project Abbreviation: KnowID

Supervisor(s): Maria Keet

 Category Min Max Chosen

 Requirement Analysis and Design 0 20 10

 Theoretical Analysis 0 25 0

 Experiment Design and Execution 0 20 0

 System Development and Implementation 0 20 20

 Results, Findings and Conclusions 10 20 20

 Aim Formulation and Background Work 10 15 10

 Quality of Paper Writing and Presentation 10 10

 Quality of Deliverables 10 10

 Overall General Project Evaluation (this section 0 10 0

 allowed only with motivation letter from supervisor)

 Total marks 80 80

Visual Query Formulation: Generating SQLP queries using EER

diagrams

Bradley Malgas
 Department of Computer Science

 University of Cape Town

 South Africa

 MLGBRA002@myuct.ac.za

ABSTRACT

Visual querying is a method that makes use of visual components to

allow users, especially those without experience in structured query

languages to formulate queries. Users are provided with a query

environment which they can use to interact with any visual elements

to put together queries that will be transformed into the relevant

querying language associated with the database which they are

querying. A visual query system was created to allow users to load

extended entity relationship diagrams and use them to construct

queries. It was found that while this is possible, the checking of valid

attribute paths is a dynamic process that requires a large grammar

and is limiting factor of the queries that can be created.

1 INTRODUCTION

Intelligent data access is often limited by a user’s technical

knowledge and experience with data storage and querying

languages. In most cases, users without that knowledge (such as

those in other scientific fields) who require custom data queries must

rely on skilled IT professionals to construct it for them. In order to

simplify the data access without requiring users to learn structured

query languages, a visual query system is proposed to facilitate

querying of a database. The visual query system will allow users to

interact with an interface that will allow them to intelligently create

complex queries. These queries, over an EER diagram, will be

generated in SQLP and can then be run over a database. We aim to

provide users with extended entity relationship (EER) diagrams

which they can use to construct queries in an extended version of

regular Structured Query Language (SQL) known as SQLpath

(SQLP). The solution is a React WebApp that allows users the

ability to load models and while it only supports a subset of queries,

we explore what this means for visual query systems and the design

and implementation taken to create this tool.

2 BACKGROUND

2.1 SQLP

SQLP was developed in order to simplify the syntax required to

construct table joins. In doing so, it speeds up the construction of

conjunctive queries [2]. It does so by incorporating attribute paths

as an extension to the base SQL. This is achieved by making use of

abstract tables which use an abstract primary key of self [of datatype

of OID (object identifier)]. Each abstract table has only one primary

key, self, and makes use of a constraint pathfd where we can either

specify concrete attributes in the current table or concrete attributes

from other tables. This allows us to specify multiple foreign key

joins using dot-notation to separate the attributes. To illustrate this,

consider the example of a university system depicted in abstract

tables shown in Figure 1.

Fig. 1. ARM schema showing a simplified university system

In this example, we see that the abstract table CLASS contains

foreign key references to both the DEPARTMENT and PROFESSOR

abstract tables. This means that self, classid,

professor.profid and department.deptname are all

considered to be valid attribute paths for the CLASS table, whereas

profname or deptcode are not since profname and deptcode are

not contained as attributes in the table CLASS. This notation is

visibly shorter than the SQL equivalent. This shorthand notation has

been shown to reduce errors in query construction [2] as well as

reduce the time taken to construct a query [1] when compared to

SQL. For these reasons, queries in the visual query system are

constructed in SQLP.

2.2 Visual Query Systems

Visual queries are carried out by using a Visual Query System

(VQS). A VQS is a system comprised of (1) A visual querying

environment containing the visual elements the user interacts with

and (2) A Visual Query Language that dictate how the user will

interact with query environment. The VQS will visually represent

the data that can be queried and the actual requests for data.

There is currently no support for constructing SQLP queries in any

of the existing visual query systems. Existing systems that use

structured query languages, such as the ViziQuer [5], use SPARQL.

Another possible query language is EQL-Lite used in the WONDER

system [4].

Additionally, VQSs that use EER diagrams to facilitate the query

creation are not as popular with the more predominant approach

being graph-based query systems. The systems, represent the data as

graphs and allow the user to traverse the graph, selecting data to use

in the query. One such system is the GBLENDER [3] system. The

user interface of GBLENDER allows users to drag labels from a

label pane into a graph query pane. Edges can be added to link

together different labels. While the user adds more and more labels,

the current query gets built and is processed using the GBLENDER

algorithm. Another example is the WONDER system [4]. In this

system, the user interacts with a query graph which represents the

ontology that it is based on. Nodes are dragged from the ontology

graph and can join them in a query pane.

3 SYSTEM REQUIREMENTS & DESIGN

The software can be divided into 3 separate parts:

(1) The EER/ARM transformation

This is tool has been loaded over from the previous years’

project in which a JSON file can be loaded into a user

interface and then appropriately represented as either a

EER diagram or an ARM which can then subsequently be

transformed from one to the other.

(2) Querying interface

The EER diagram is used as the main querying diagram.

Users can interact with the attributes represented

graphically, selecting those which they want to query, and

a subsequent SQLP query will be generated and checked

for correctness once a user indicates that they have

selected all required elements.

(3) Background query checking

In the background, using the provided values, the system

will use a grammar to assess whether the selected

parameters constitute a valid query. This is done by

passing the values to a grammar of the SQLP query

structure and the result is passed back to the user interface.

[algorithm design = encoded grammar; explain how it is will be

assured to be the same query over arm]

3.1 System workflow

The system is designed so that multiple components will be linked

together in order to get the workflow from an input file to an SQLP

query. Each component is a standalone software tool and together

they work in order to create visual queries.

The software tool is designed to take in JSON file as input. The

system does not check whether the provided file is of the correct

format as it is assumed the user has the correctly formatted file and

is only concerned with using it to construct a query.

The JSON file will contain all the details about a specific EER model

including all entities, relationships, attributes etc.

These will all be contained in the JSON file. The interface will allow

the user to load this file and represent it diagrammatically. The

model represented will also be interactive, giving users the ability to

move different elements around as well as click on them to create

queries.

3.2 Supported Queries (Requirements)

The system will allow users to construct a limited set of queries. This

is mainly demonstrating the actual flow of information from the

loading of the EER model to the final query. The range of supported

queries can be built upon by tweaking the grammar.

Example Query 1: type 1 query

Using the same example of a university system introduced in Figure

1. Let’s say a user wants to retrieve the list of all deptcode from

DEPARTMENT:

This query in SQLP would be:

select distinct deptcode from DEPARTMENT

This is the first kind of supported query. Throughout this paper, we

will refer to this as a “type 1” query.

Example Query 1: type 2 query

Let’s say a user wants to retrieve the list of all class offered by a

specific DEPARTMENT:

This query in SQLP would be:

select distinct classid from CLASS

where class.department.deptname == “CS”

This is the second kind of supported query. Throughout this paper,

we will refer to this as a “type 2” query.

3.3 Interaction Design

The user will interact with the system by click on specific buttons.

The key part of this interaction is order. Since the order in which

users select attributes will affect what they are effectively trying to

query.

When selecting attributes, this is affectively just choosing which

elements you wish to query. These attributes must be selected in the

order which they are designed. To create Example Query 1, a user

would have to click on deptcode and the interactions would be

done. The user can skip through all other select prompts and just

generate the query.

However, Example Query 2 contains a “where” clause. The user

would need to firstly click on classid. But unlike Example Query

1, once the user is done, they need to then select the “WHERE”

clause. To do this, the user would click on class, then deptname

3.4 Architecture Design

Fig. 2: The KnowID architecture, with the focus of the project circled in red

The system will be building on a tool designed for the KnowID

architecture. The aim is to have this tool form part of the overall

process as shown in Figure 2.

4 SYSTEM IMPLEMENTATION

The software was based on the KnowID EER to ARM

transformation tool developed by Maria Keet [6]. The system is

developed using Python and JavaScript. The libraries/frameworks

that were used to support it are React, JointJS & Flask. Each library

played a hand in developing components of the system.

Flask: This framework was used to facilitate python queries in

JavaScript. The JavaScript file makes an API call to the WebServer

backend that is running through Flask and can also return results

back to the JavaScript file.

React: This library was used to develop the user interface and run it

as a web application. The main application is a React app coded in

JavaScript.

JointJS: This diagramming framework was used to assist with

representing the EER models and also helped make it interactive.

The various components that were developed will now be discussed

in detail.

4.1 User Interface

The user interface for the software tool are shown in Figure S1. The

user interface is simple and contains a blank canvas (where the EER

diagram will be loaded), a header and a footer containing a button.

The top heading indicates to the user that they need to load a new

model in order to begin the querying process. The “Load model”

button is used by the user to load input. The structure of this interface

is defined in HTML inside of the render() method shown in Figure

3.

Fig. 3: App.js file with methods highlighted in red

When a user select the “Load model” button as shown in the

interface, the onClick() method of the button is called and brings up

the choose file dialog, allowing a user to selected a JSON file. It

should be noted that the assumption is that the user will choose a

JSON file of the correct structure. Once the file is loaded, this

triggers the loadModel(input) with the input JSON file being passed

as an argument. The drawERGraph(graph, inputFile) is then also

called and is used to draw the graph on the canvas.

4.2 Query Process

Once the model is loaded, the user can now begin to construct a

query. Note, the user is informed that once loaded they will need to

rearrange the elements of the model first and this may incur

accidental presses however these can be undone. The top heading of

the user interface has now updated to indicate to the user that they

need to select attributes which they wish to query.

The querying process is split up into two parts:

(1) Select attributes to view

(2) Selecting the constraints on the results obtained

In order to select an attribute, a user simply needs to click on it. This

will do two things: firstly, it triggers an event on the canvas that will

change the outline of the attribute chosen and additionally, it will

add the details about the attribute to a Map structure with key being

the id associated with the element and the value being the array of

details.

Fig. 4: App.js file showing the mapping of an attribute click to a function

If a user accidentally selects an attribute, they can deselect it by

clicking on it as well. Both of these functions are shown in Figure

4. Constraints are selected in the same way; however, the user first

needs to click the “Finish attribute selection” button. Similarly, once

a user has finished selecting the constraints, they can click the

“Finish WHERE clause selection” button. After the user has

completed all their selections, they can click on the “Generate SQLP

Query” button which will the checkQuery() method that conducts

the Backend query check.

4.3 Backend Check

The backend check is done by the checkQuery() function which

consists of cleaning a call to the WebServer the current Map object

to be passed as an argument to the Python file that will check the

query for correctness.

This is achieved by firstly, converting the Map object into a

JavaScript object. We do this by firstly, declaring the constant

jsonQuery which will store the actual Map data. This loop is shown

in Figure 5.

Fig. 5: App.js file showing the checkQuery() method

Once the Map object is correctly formatted for passing, it is given as

for an argument, alongside the url for a POST to the WebServer. The

WebServer retrieves the input from the request received from the

POST. This input, is then passed as an argument for a call to the

method checkQuery() from the SQLP_Query_Check Python

module. This is shown in Figure 6.

Fig. 6: WebServer.py file showing the check_query() routing method

At this point, we can actually begin checking whether the selected

attributes and clauses form a valid SQLP query. The Python module,

SQLP_Query_Check has a single method checkQuery which takes

as input the data from the original Map object and extracts

information from it. The data extracted is the same as shown in

Figure x and follows the logic shown in Figure Sx. This method is

an encapsulation of a grammar and checks whether the given values

can be used to form one of the supported queries. The reason why a

Python program was chosen over a traditional grammar is explored

in the Results.

The output of this program is either a syntactically and logically

correct SQLP Query or a detailed error message and this is shown in

Figure S2. At this point the query formulation is complete and a user

can choose to use their query elsewhere or create another

5 RESULTS

The results obtained from the testing shows us that while the overall

system design and related components work well together, the

grammar representation is not flexible and dynamic enough to cover

the broad scope of SQLP queries. This is due to the fact to the rules

need to be adjusted dynamically with variable names constantly

changing. The accuracy of queries can therefore not always be

guaranteed, as only a subset of queries are supported. These among

other observations were made and are explored below.

5.1 Attribute Paths & Grammar

One of the biggest strengths of SQLP is the ability to use the

shorthand notation in order to simplify queries. As explained in the

Background, this is made possible through the use of attribute paths.

Since the software is meant to serve as means of simplifying the

querying process, the users are not expected to have any

understanding of how attribute paths function and are more than

likely not going to focus on this during query construction. This

leaves much of the system checking to be done by the encoded

grammar. The dynamic nature of the problem is not well suited to a

grammar but would much rather benefit from a rule-based front-end

system that could conduct all the checks while the user selects the

query (This is one area for future work). The speed at which queries

are checked is not adequate. This could be the manner in which the

calls take place in the workflow shown in Figure x. This workflow

could be further optimized to minimize the required components and

allow for asynchronous checking of queries while a user interacts

with the interfaces, however, time did not allow for this.

The system does however, meet the minimum requirements set out.

It allows the user to load any JSON file containing the representation

of an EER diagram, use that model to interact with the diagram and

using the provided interface come up with a SQLP query. This

proves that despite there being obvious areas for improvement, the

software can achieve what it set out to albeit only for a small subset

of user queries.

5.2 Query Accuracy & Performance

The system was able to pick up on a few obvious querying errors

that users might make. The test cases cover a number of scenarios

but that is only for the supported queries. The system would not be

able to detect errors where the queries become increasingly complex

which does limit its applicability. The queries that it can correctly

generate are simple enough to not explicitly need the user interface.

However, it should be noted that the time taken to generate the

average query is insert time seconds. This means that users can

benefit from having the ability to conduct multiple queries in a short

space of time.

5.3 User Interface

The user interface benefits most from being interactive however it

isn’t without any issues. Users are guided by the button prompts as

to what they have to do but ideally this process should take place in

one step. The interface itself also lacks the facility for allowing users

to undo mistakes intuitively. It was made clear from the tests that the

process would be much easier if there was an undo button for

stepping back in the query instead of being forced to start over.

The user interface however does prevent most errors. The intuitive

alert messages are somewhat useful however there could have been

more action taken to prevent the errors from happening at all. This

however was not prioritized due to time constraints.

6 DISCUSSION

These results are relevant to the future development of VQS. It

demonstrates that it is possible to make use of a different inputs to

construct queries. By showing that the transformations that take

place between EER and ARM models can be used to construct

SQLP, which is developed for ARM, we can apply this concept to a

number of other knowledge graphs (e.g. UML, ORM). They would

simply need to have the support for transformation between there

JSON encoding and the format used for the EER diagram. The

inverse is also a possibility, since the JointJS library treats all shapes

in the same way, any knowledge graph represented in this way

would only need to call the relevant event listeners developed in for

the software project in order to allow it to become interactive and

subsequently be used as the querying model in place of the EER

diagram.

The aim of creating a visual querying environment for constructing

SQLP queries has only been partially achieved. Like SQL, SQLP

supports constructs such as “AND” to link multiple query

constraints together. Comparisons also extend beyond simple

equality with greater than (), less than () and other operands also

being supported. These areas are where the software tool falls short.

It lacks the ability to account for this wide range of queries and

would greatly benefit from an expanded grammar. In its current

state, multiple valid queries would be flagged as incorrect. This gap

in the tool will be part of the future work.

The flexibility of the tool developed does mean that it can built upon

to develop a fully functional querying system. For example, instead

of simply displaying a query, if the output is correct it can be passed

as an argument to a relevant tool to convert it to SQL which can be

used to query a live database. This extension to the program would

allow users to retrieve the results of the generated query as well

which would vastly improve the usefulness of the software tool.

6.1 Limitations

If time were not a limiting factor, a number of changes could have

been introduced. Firstly, the querying time would decrease if user

did not have to select query components in parts. The ideal tool

should allow it to seamlessly transition between clauses and have

the user only click a button when they need to construct the query.

Another limitation stems from the chosen diagramming JavaScript

library. While it benefits from having many of its shapes be

represented in the same way, this is also where it falls short. The

listening events, that allow user to click on elements, are applied to

all shapes in the diagram. This makes it difficult to have unique ways

of dealing with specific object types and events that they throw and

also means many attributes cannot be changed on a shape after it is

instantiated. A library that has more support for methods that allow

for interacting will simplify the amount of code required as well as

open up new possibility to explore such as constructing a query by

dragging entities and attributes together. The COVID-19 pandemic,

naturally, also limited the ability for the querying process to be user

tested which would have allowed a greater focused to be played on

ease-of-use. The interface design could have also benefited from

user focused testing such as heuristic evaluations.

7 CONCLUSIONS

The software tool partially achieves what we aimed to. It is capable

of providing users with the ability to create SQLP queries over an

EER diagram. The queries supported by the tool, however, are small

in comparison to the wide range of possible queries. For this reason,

it would be unlikely to be integrated into the larger KnowID

architecture in its current state. It meets only the minimum

requirements and should be expanded upon in future works.

7.1 SQLP Queries

SQLP Queries are able to be created over a large range of knowledge

graphs if it is represented in a way that allow users to interact with

the model. Provided we have the attributes, entities and relationships,

we can check the validity of a given query.

7.2 Attribute Paths

A traditional grammar does not hold for creating the correct parsing

rules for a valid SQLP query. The dynamic nature of attribute paths

means that the grammar rules need to be encoded into a program that

can hopefully be expanded upon and can also serve as a standalone

tool for creating SQLP queries in other environments.

References

1. Ma, W., Keet, C. M., Oldford, W., Toman, D., &

Weddell, G. (2018, November). The Utility of the

Abstract Relational Model and Attribute Paths in SQL.

In European Knowledge Acquisition Workshop (pp. 195-

211). Springer, Cham.

2. Ma, W. (2018). On the Utility of Adding an Abstract

Domain and Attribute Paths to SQL (Master's thesis,

University of Waterloo).

3. Jin, C., Bhowmick, S. S., Xiao, X., Cheng, J., & Choi, B.

(2010, June). GBLENDER: towards blending visual

query formulation and query processing in graph

databases. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data (pp.

111-122).

4. Calvanese, D., Keet, C. M., Nutt, W., Rodríguez-Muro,

M., & Stefanoni, G. (2010, March). Web-based graphical

querying of databases through an ontology: the

WONDER system. In Proceedings of the 2010 ACM

symposium on applied computing (pp. 1388-1395).

5. Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J.,

Lāce, L., Grasmanis, M., ... & Bārzdiņš, J. (2018, June).

ViziQuer: a web-based tool for visual diagrammatic

queries over RDF data. In European Semantic Web

Conference (pp. 158-163). Springer, Cham.

6. Ss

SUPPLEMENTARY INFORMATION

Fig. S1: User Interface for query formulation: Starting application

Fig. S2: App.js showing the checkQuery() method

