

CS/IT Honours
Final Paper 2020

Title: A Tool for managing the Materialization of Deductions in a
Conceptual Data model

Author: Mandisa Baleni

Project Abbreviation: KnowDat

Supervisor(s): Prof. Maria Keet

Category Min Max Chosen
Requirement Analysis and Design 0 20 20
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 0
System Development and Implementation 0 20 20
Results, Findings and Conclusions 10 20 10
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

A Tool for managing the Materialization of Deductions in a
Conceptual Data Model

FirstName Surname†
 Department Name

 Institution/University Name
 City State Country
 email@email.com

Mandisa Baleni
 Computer Science Department

 University of Cape Town
 blnman002@myuct.ac.za

FirstName Surname
 Department Name

 Institution/University Name
 City State Country
 email@email.com

ABSTRACT
Ontologies are generally used for the semantic web and subject
domain applications to capture knowledge in order to facilitate
informed decision-making. A proposed architecture KnowID
devised a series of steps to manage knowledge and produce some
ontology or conceptual data model defined by EER features. The
final subprocess in this knowledge management sequence is the
materialization of deductions tasked with making implicit
knowledge within a model explicit. The proceeding step detects
these inferences so the ontology can be edited with them. An
expressive EER is expected as output. This report documents an
extension of an existing ontology-editing software tool, Owlready,
aimed at realizing EER-tailored materialization of deductions on a
model and a wrapper function to verify the inferred edits. Its
implementation and evaluation yielded a system able to materialize
deductions for a range of EER features and provide robust
verification services for the resulting inferences to users.

CCS CONCEPTS
• Theory of computation → Semantics and reasoning
• Knowledge-driven databases

KEYWORDS
OWL 2, description logic, reasoning, EER

1 INTRODUCTION
Ontologies or conceptual data models are used by intelligent
systems to manage data more efficiently by several applications [1].
One of the applications is being applied to the Semantic Web,
considered as the next generation of the World-Wide Web [2],
where data is envisioned as a linked web. The idea is to express
knowledge as an ontology or conceptual data model with inter-
related concepts done in such a way that the knowledge represented
is expressive about the subject domain of which it interprets.
Another application of ontology modelling is to aid decision-
making in subject domain applications like medicine practice. To
do this, the way in which knowledge (the mere representation of a
subject domain) is linked to the actual data of a domain has to be
considered [1].

A theoretical architecture called KnowID was proposed as seen in
figure 1. Its purpose is to carry out a ‘knowledge-to-data’ pipeline
process by using a set of transformation rules instead of using a
costly mapping layer [3]. KnowID has a knowledge and
information management layer with several components that are
responsible for several mechanisms that contribute to expressively
outputting an enhanced-entity relationship diagram (a conceptual
data model known as EER) which is then used for query
formulation as well as transformations to and from an abstract
relational model (ARM) in the data management layer. The data
management layer handles how the actual data -represented in the
knowledge layer- is stored, queried and managed.

We will look broadly at the functionality of the knowledge and
information management layer in figure 1. It has four main
processes. It starts by (1) taking in either conceptual data models or
application ontologies like Web Ontology languages (OWL). For
the scope of the project, we will consider OWL models because it
is already necessarily formalized in logic. (2) The second
component then proposes to formalize a given model into some
logic if it is not already so that (3) it can be reasoned over with logic
reasoners which is the process of inferring implicit information in
the model. This process is achieved by the classification component
where classes and relations amongst them in the models can be
appropriately classified. (4) The final component, materialization
of deductions, is responsible for editing the model to add or remove
any of the deductions made from the reasoning step so that the
implicit information becomes explicit [1].

Figure 1: KnowID architecture [3].

The KnowID tool requires the output model of the final
materialization of deductions step in the knowledge layer to be an

EER, a graphically-notated diagram. The choice for this model is
because its mapping over relational models is popular because it
does so well and it is also largely used in the database community
[1]. In particular, KnowID maps the EER to an abstract relational
model (ARM) which is a more general form of a relational model
with object identifiers for entities and associated attributes for
relations in order to realize more constructs like disjoint constraint,
explicit inheritance and more [1] The ARM or the resulting EER
can thus be used to bridge the knowledge and data layer with and
aim to provide a graphical knowledge model in a GUI and store it
in JSON files so that graphically informed queries can be made [1].

Reasoning tools require models that are formalized in a logic so
that the logic can be used by their algorithms to make necessary
inferences using description logics (DL) [4], first-order principals
[5] or other logic semantics. EER diagrams or ones expressed in a
conceptual data model are not formalized in a logic and therefore
must be interpreted in terms of some logic. Most available
reasoning tools are compatible with OWL constructs and other
direct logic semantics. Consequently, existing tools that
encapsulate some of the functionality of the materialization of
deductions are generally based on OWL constructs. Such existing
tools include the Intelligent Conceptual Modelling tool and
methodology (ICOM) [6], the OWL API [7], Owlready [8] and
previous iterations of Protégé [9]. Although they are able to
materialize some deductions, they are not tailored specifically for
models that encapsulate EER features. Furthermore, there is little
capability for data model validation where users can confirm or
refuse deductions based on their sensibility in the real world.
Validation also makes models more useful and accurate for its
respective subject domain.

1.1 Project Aim
We proposed a software to focus on the implementation of the
materialization of deductions component regarding the issues
outlined above. The system aimed to address the following:

(1) Aim: Materialize deductions that more closely match
OWL constructs to EER features.

(2) Aim: Provide wrapper functionality to help users
validate the ontology edits.

The following section 2 will briefly clarify non-intuitive
interchangeable terminology used in ontologies and data models. It
will mainly look more closely at related tools and software that use
or once used reasoners to materialize deductions as well as the
extent to which they did. It will also address the shortcomings of
validation amongst them. Section 3 will discuss systems
development and design. More specifically, the development
methodology and framework, architecture and more. Section 4 will
look the system and testing implementation. Section 5 describe
result, section 6 will discuss them section 7 will mention ethical
and legal issues and sect. Finally, section 8 concludes with main
achievements addressed and future work to be considered.

2 RELATED WORKS

2.1 Terminology
The constructs used in ontologies and conceptual data models tend
to have differing terminology that express the same concepts.
Terminology will also be used interchangeably in this paper. Object
properties in OWL are synonymous for relationships and relations
in EER whilst OWL’s data properties represent EER attributes.
Classes and entities express the same concept. Classification and
subsumption refer to subclassing and class consistency refers to
whether an instance of a class can be instantiated. Lastly inference
and deductions will also be used interchangeably.

2.2 Protégé
One of the most prominent existing tools that performed the process
of editing ontologies with inferences was an earlier version of
Protégé [9]. An OWL Plugin was extended for Protégé in order to
modify OWL ontologies and make use of description logic
reasoners. It provided services such as classification and checking
for consistency [10] where its owl plugin could directly access DL
reasoners like Racer to do so. However, Protégé’s original
functionality pertaining to materializing deductions is widely
inaccessible and the tool was not tailored to suit EER features.

2.3 APIs and object-oriented implementations
2.3.1 OWL API.
The OWL API [7] is a high-level API implemented in Java that
allows users to load, manipulate and query ontologies [7]. It has a
number of interfaces that examine and edit OWL 2 (structural
specification) ontologies using reasoning services [7]. Unlike other
APIs, like the Jena and Protégé API which do not support
ontologies in RDF syntax, the OWL API does so that it can digest
the ontologies as a set of axioms. The manager at its core is what
creates, loads, changes and saves ontologies. Providing a central
point to do all that allows the user to easily keep track of changes
to the ontology [7].

2.3.2 Owlready.
Object programming languages are easier to use to modify an
ontology in comparison to APIs like the OWL API [7]. Owlready
is a python module designed to use object-oriented programming
principals to support OWL 2 ontologies where entities can be
accessed like objects in programming languages. Methods are
provided to manage classes and their constraints. An algorithm to
perform simple closed world reasoning tasks has also been
implemented. Closed world reasoning refers to reasoning that
infers a logic statement as false if it is unknown [11]. Like the OWL
API, Owlready can express OWL 2 constructs such as classes,
individuals (instances), disjointness, attributes (object properties)
and datatypes. Methods are provided to map OWL constructs to a
python object model in Owlready [8]. Owlready is also able to
consider equivalence in classes. It can check for subclasses
considering equivalent classes. Owlready provides functions to
access and edit entities and constraints alike the OWL API [7]. The
user needs to call on the reasoner for inferences to be deduced using

a sync_reasoner() function. It runs a HermiT reasoner on the file
which is an OWL 2 DL reasoner. The function returns the output
produced by the reasoner to a specified ontology.

2.3.3 OwlLink.
There are other management mechanisms employed for OWL like
OWLLink [12]. OWLLink is an interface that allows one to access
OWL reasoner functionality [13]. It provides a client-server
protocol between an application as the client and a reasoner as the
server [12]. It can communicate with off-the-shelf reasoners [11].
The application can make requests from the server like enquiring
about subclasses for a particular class [12].

2.4 ICOM and inference validation
2.4.1 ICOM.
ICOM [6] is a conceptual modelling tool that has a reasoner that is
capable of deducing inferences such as class and relationship
subsumption and particularly editing with stricter constraints and
detecting inconsistencies. It also has a DL reasoning server.
Overall, it is able to reason and materialize over modelling features
somewhat compatible with EER features. In ICOM, after an
ontology is sent to the reasoner, the system queries for deductions
and results are given to the ontology editor to edit with the
deductions. The editor displays unsatisfiable objects in red, non-
explicit deductions are added in green, equivalence found is added
using links, and likewise subsumption is shown using specific links
and lastly, stricter cardinalities are added. The user can then decide
if they want to keep the changes if they are happy with the
deductions [6].

2.4.2 Importance of inference validation.
We want to consider inference validation. This involves thinking
about how accurately an ontology interprets the reality of the
domain. It allows the user to verify changes and reject them if they
don’t represent the truthfulness of the domain. A problem with this
is reversibility which is undoing the changes that have been made
which is not always the same as inverting the change. An example
is deleting a class in a hierarchy where the subclasses of that class
must either also be deleted or reattached to a parent of the class.
Reversing a change like this would require readjusting the
hierarchy as opposed to just recreating the deleted element [13].

3 SYSTEM DEVELOPMENT & DESIGN

3.1 Software Development Methodology
3.1.1 TDD agile methodology.
A test-first agile development methodology approach was used to
implement the Owlready extension. Mainstream software practice
recommends the agile approach for development projects that
prioritize working software. We hence chose this approach to focus
on some getting working software for both aims. The agile
approach would enable each stage to contribute a significant feat to
realize a robust system that meets the requirements outlined in the
introduction. The test-first development approach was used
because it is used in best practice when developers want to focus
code on specified tests and validate the code’s purpose. Defined

OWL 2 format is widely used and we wanted to tailor our code
specifically to the format so that its reusable. We also want our
code’s purpose to be as clear as possible so that it can be built on
further in the ontology engineering community.
3.1.2 TDD agile approach.
Software development was divided into three iterations. Each
iteration was started off by (1) obtaining and modifying (where
necessary) test cases of sample models, (2) followed by code
implementation, and lastly (3) followed by evaluation to verify
working code and progress. The second and third steps were
continuously repeated before moving onto further implementation
if the code wasn’t working to ensure that subsequent code was built
on working prototypes.

The first iteration prioritized core EER features with most
prominent reasoning services addressed so that a subset of the first
aim could be realized. This involved basic subclass constraint edits
for entity subsumption; determining inconsistent classes over most
of EER features; and appending inconsistent flag comments to
those classes that were inconsistent. The EER features encapsulated
as OWL constructs considered were binary relationships with
varying cardinality restrictions, namely: 1-to-1 mandatory
participation, 1-to-1 optional participation, 1-to-N mandatory
participation, 1-to-N optional participation, disjointness and
covering constraints as well as for equivalent classes.
The second iteration deviated from the original proposal that
proposed to implement materialization of deductions for remaining
EER features and reasoning tasks and instead focused on the
validation wrapper. This was due to an unanticipated delay to
achieve proven test case reasoning samples in RDF/XML from the
likes of Protégé’s guide to building OWL ontologies [14]. The
decision to prioritise the wrapper function was so that both the 1st
and 2nd aims (as outlined in the introduction) could be decently
covered. This second iteration focused on carrying out basic
inference acceptance and rejected prompts to the user, and using
those decisions to resend the ontology back to the reasoner to be
reasoned over again.
The 3rd stage went back to materialization of deductions for
unfulfilled EER features and reasoning tasks. This was carrying out
relationship subsumption for the ontologies with binary
relationships applied with the wrapper. This was done for the
cardinality restrictions outlined in the first iteration.

3.2 Development Framework
3.2.1 Programming Language and Framework.
The programming language used was Python. This is because the
proposed solution is an extension of the existing Owlready module
written in Python. The extended module would need to directly
access methods and classes from Owlready’s metaclasses. It was
developed in JetBrain’s PyCharm IDE because of its sophisticated
integration with Github Desktop. Github would provide version
control throughout the development process.

3.3 Design
3.3.1 Architecture.
The complete architecture of the system is the Owlready
architecture with the implemented extension added as seen in figure
2. An extension was implemented because Owlready has extensive
functionality that can be used to edit ontologies. Owlready is robust
and adding the extension to automate several ontology management
functionality makes it easy to integrate at KnowID’s knowledge
layer.

Figure 2: Extension to the Owlready architecture by Lamy [8]

Owlready’s original architecture is divided into 5 main parts [8]:

1. RDF quadstore which operates within SQLite3
2. OWL metaclasses which methods that access and edit

them that operate in the python runtime memory
3. Optional python source files that can be imported. One

can define additional methods for specific OWL classes
4. The HermiT reasoner which performs the reasoning
5. RDFlib module’s SPARQL engine

3.3.2 to 3.35 will discuss the functionality of the components with
regards to figure 2. (3) and (5) are not used in the implementation
because it is not in scope.

3.3.2 RDF quadstore.
The RDF quadstore is a quadstore relational database that works
within a SQL database, specifically SQLLite3. It contains a
column table with 4-tuple quads. Each quad contains an object from
an ontology and specifies its respective ontology. The object can be
a class or an object property and it is specified by its
Internationalized Resource Identifier (IRI) or its RDF literal [8].
IRIs are the URL at which an ontology object or more generally an
ontology can be accessed on the internet. To dynamically load the
objects from the quadstore to metaclasses in python runtime
memory, a lazy parser will load the object from the RDF and wrap
it into a python object whenever a method accesses it. When a
method modifies the wrapped object by updating, adding to it or
removing the wrapper object, its automatically updated in the
quadstore as well. The wrapper of the object gets destroyed when
its no longer accessed and space in the cache runs out but can be

created again by reloading it from the RDF if access is needed again
[8].

3.3.3 Owlready metaclasses.
Owlready supplies metaclasses in python runtime memory. These
classes are classes whose instances are classes as well. The
instances of classes encapsulate ontologies so that ontologies
become .py files. The metaclasses have pre-defined methods that
are used to access ontology classes and call the HermiT reasoner
on them [8]. These available methods load ontologies from
RDF/XML format into python classes, optionally create new
python class, perform reasoning on them and export inferences
from the reasoner to an ontology and save the inferences to a new
RDF/XML. Other capabilities include enquiries about subclasses
or parents of a particular class, what object properties are in an
ontology and more.

3.3.4 Ontology-specific Python source files.
Owlready also provides the option for users to define additional
methods that access OWL classes in addition to the pre-defined
methods discussed above. These user-defined methods must be
associated to a specific ontology (its respective python class) so that
they can be imported along with the class whenever they are
accessed and used with the reasoner [8].

3.3.5 HermiT.
Owlready the HermiT reasoner to interact with the metaclasses and
RDF quadstore. It needs to be explicitly called by a user to make
any inferences on ontologies. The RDF quadstore may have an
ontology encapsulated by quad entries for each of the objects inside
an ontology. The quads in the RDF quadstore will briefly be
interpreted in NTriple format so that HermiT can reason over it.
The output of HermiT is then used to update RDF quadstore by
adding an inference as an RDF triple (subject, predicate, object)
and the respective wrapper python object [8]

3.3.6 Extension.
We have added an extension labelled at (1.). It is a module with a
user interface, a wrapper manager and other ontology editing
classes. In the extension, the user interface is the initial point of
interaction with the user. An OWL 2 file in RDF/XML format
representing an EER diagram is passed to the extension module via
its user interface which requests a path directory of the file. The
extension has an ontology manager which is the central point for
automating the ontology management functionality provided by
Owlready’s metaclasses. This includes aggregating the process of
loading, reason, save functionality described in 3.3.3 an ontology
from RDF/XML to a python class. This is required because HermiT
needs to be explicitly invoked.

The extension also has a wrapper which provides further interaction
for user validation of inferences. It prompts the users with choices
of accepting or rejecting the inferences as well as an option to
remove a subclass.

3.3.7 Algorithms and some data structures.
To aggregate and automate the process of the manager given an
RDF/XML formatted ontology that represents EER with implicit

1.

inferences, the algorithm in algorithm 1 is followed. Owlready [8]
proposes using this functionality to load, reason, and save
inferences. Here sync_reasoner() calls the reasoner to infer
deductions from the onto ontology to a temporary inference_onto
ontology inference_onto.save() saves the inferences to an OWL file
ready to be amended with to the original OWL file in RDF/XML
format. Our implementation uses this algorithm to obtain the
inferences in RDF/XML format in order to edit. The original
ontology RDF/XML is put into a list. Encapsulating it in a list
allows us to dynamically add, remove and alter constraints. Python
doesn’t have a library to dynamically alter binary files. Generic
arrays were used for storing deductions since they did not need to
be dynamically processed. This process will be discussed in more
depth in the implementation section.

Algorithm 1: inference.py

Input: input owl I, inference owl T,
Output: inference owl T

1 onto = get_ontology(I)
2 onto.load()
3 inference_onto = get_ontology(T)
4 with inference_onto:
5 sync_reasoner()
6 inference_onto.save()

4 SYSTEM IMPLEMENTATION &
TESTING

This section will document the main implementation process to
realize materialization of deduction and the wrapper functionality
as well as the functional testing used to evaluate the system.

4.1 Implementation
4.1.1 User interface and manager.
The user interface (a python class) in the extension module prompts
the user to specify a file path of an ontology that encapsulates EER
features in OWL 2 specificaton. It also requests the file path to an
empty output owl file in the same location as the input. The input
owl file needs to be in RDF/XML format. The interface class then
passes these file paths to the manager in the extension. The manager
executes the general algorithm presented in algorithm 1 to
combine all steps required to load and call a reasoner on the
ontology and save inferences in RDF/XML format to an external
owl file. The append() function of Owlready adds the file location
of an OWL ontology class captured as an object onto.
get_ontology() then fetches the actual ontology by the name passed
to it to attach to the onto object. When load() is called, the
RDF/XML ontology is now transformed to a python object
wrapped by the onto object. An additional ontology
inference_ontology is created the same way as onto but given an
empty RDF/XML file. When sync_reasoner() is called, the HermiT
reasoner is invoked on the onto ontology with the output deductions
inserted into inference_ontology. save() saves the inferences now

inside inference_ontology into the RDF/XML owl file passed to it.
We now have the inferences with the object to which it references
in RDF/XML format, ready to be integrated with the original OWL
file to a new output file specified by the user.

4.1.2 Materialization.

Algorithm 2: wrapper

Input: input owl I, inference owl T, output owl O
Output: output owl O

1 prep = Preprocess(I, T, O)
2 prep.find_items()
3
4 material = Materialize (prep.deductions, I, O, prep)
5 material.materialize_deductions()
6 material.write_to_RDFXML()
7
8 wrap = Wrapper(material, prep)
9 wrap.manage()

Algorithm 2 starts after writing the explicit isolated inferences to
another temporary RDF/XML T. To integrate these subsequent
inferences in T with the original, the following steps in algorithm
2 is followed. Starting by pre-processing all the deductions in the
temporary OWL T to identify the object that needs to be edited with
the new inference into inference python objects. In line 1,
Preprocess instantiates an object with the input owl file, a reusable
temporary owl file (for the inferences) and an output file. The
find_items() function will store the deductions from the temporary
file in an array as inference objects with an item_to_edit and the
actual edit itself named edit. Both item_to_edit and edit are in
strings to maintain the RDF/XML format from the temporary
RDF/XML file they were saved in. This will make it easier to
integrate with original ontology. Although the OWL file is binary,
Python’s decode and encode methods can be used to convert from
binary to string and vice versa respectively.

Materialize instantiates an object of the Materialize class
responsible for the actual integration of the inferences into the
RDF/XML. Its load_input_file() loads the original RDF/XML into
a list. The most imperative function materialize_deductions()
actually iterates over the ontology list and edits with the array of
deductions accordingly. It checks for subclasses, equivalent classes
and inconsistent objects. The write_to_RDFXML finally rewrites it
back to a binary OWL file O in the maintained RDF/XML format.

4.1.3 Wrapper.
The wrapper is called after materialization of deductions is
complete which reproduces a user interface and deletes constraints,
classes and objects based on the user’s selected choice. An object
of Wrapper class is created with the respective Preprocess and
Materialize objects in order to call its manage() function which
elicits the wrapper user interface to present the original changes to
the ontology and request the user to accept, reject and additionally

remove classes. When changes are accepted nothing further is done
to the output ontology. When a request is rejected, the inferred
constraint is removed from the ontology. When a class inferred as
a subclass is removed, the remove_subclass() function deletes the
class from the ontology, and makes its subsequent classes inherit
all constraints of the removed class. It reparents the subclasses to
the removed class’ parent. It also removes all subclass references
to the object for any other class as we cannot reference a non-
existent class. If the class removed has no subclasses, any object
properties of which it is the domain will be removed as well since
the object property can only be used with the removed class. The
resultant object is sent back to the reasoner and any new inferences
are sustained in resultant ontology.

When objects in an RDF/XML are put into objects captured as Item
objects using the items_original_file() function, the inherit()
function defined in Item was used to explicitly inherit object
property cardinality restrictions from its parents alongside any
other constraints like disjoint classes.

4.2 Testing Implementation
Manual functional testing was used to evaluate the outcome of the
system. Functional testing bases its tests cases on the functional
requirements of a system by providing input and evaluating and
verifying the corresponding outcome against such requirements.
Our systems broad requirements are the aims defined in the
introduction. More specifically the requirements of realizing
materialization of deductions can be defined in terms of the edits
expected to be made. Our system’s wrapper function itself has three
overall specifications which is to remove certain constraints,
reparent and remove certain classes as well as do nothing. So to
determine if the specifications were met, we simply needed to see
if the correct OWL files were produced by simply seeing if they
matched the output OWL file expected. More specifically, we
could check the necessary objects in the file with anticipated
change. Hence this black box testing method was suitable to use to
compare expected output OWLs to the ones produced over all our
requirements. It was done manually so we could fully analyze the
changes to the file.

4.2.1 Sample models.
To evaluate the success of the program test sample cases were taken
from Protégé’s guide to building OWL ontologies [14]. The guide
was used because it provides widely-used ontology samples that
explore several reasoning cases. The reasoning cases use formal
logic to make inferences. This ensures that the expected inferences
are verified and reliable. Where needed, we altered and made our
own test cases following the principals outlined in the Protégé
guide.

The ontology samples use pizza concepts and illustrates them with
different constraints. Such constraints include subclasses,
minimum and maximum cardinality constraints (qualified and non-
qualified), equivalent classes, disjoint classes and union classes

(covering). The construction of each ontology example was
instructed by the guide where we followed accordingly and used
the relevant Protégé 4 Desktop version 5.5.0 tool to easily create
them [15]. Once the sample ontology was created, it was saved into
RDF/XML syntax. The instruction guide was also used to construct
the corresponding output ontology with inferences expected as
outlined in the guide. Some of the examples were slightly modified
by trimming unneeded concepts so that we could test specific
features and simplify the process. Some naming was also changed
for more intuitive understanding of the reasoning cases.
4.2.2 Wrapper testing.
The wrapper class was evaluated by analyzing the output to see if

§ constraints were sustained or removed
§ a deleted subclass had their subclasses reassigned to its

parent’s class and ensured inheritance of its features
§ object properties whose domain was the removed class

was removed alongside its domain class. This was only
in the case where the removed class did not have any
children.

§ The removal of subclass references to the object was also
inspected.

The table below shows how EER constructs are captured as OWL
constructs and can be used to explain the expected output for EER
feature descriptions numbered in figure 3.

Table 1: OWL 2 constructs in EER

OWL	2	constructs	 EER constraints

Class/subClassOf	 Entity/sub-entity

dataProperty	 Attributes
qualifiedCardinality	
rdf:datatype="...#nonNegativeInteger">1	 Binary relationship 1 : 1 mandatory
maxQualifiedCardinality	
rdf:datatype="...#nonNegativeInteger">1	 Binary relationship 1 : 1 optional
minQualifiedCardinality	
rdf:datatype="...#nonNegativeInteger">1	 Binary relationship 1 : N mandatory
minQualifiedCardinality	
rdf:datatype="...#nonNegativeInteger">0	 Binary relationship 1 : N optional

disjointWith	 Disjointness

intersectionOf/unionOf	 Covering

Class/(min/max)qualifiedCardinality	 N-ary relationship

4.2.3 System requirements.
The system requirements are captured in figure 3. Figure 3 shows
what is expected to be appended or removed depending on the
inference made. The following numbered points will refer to the
figure to explain the edit: (The numbering in the figure and points
correspond)

1. Shows when a class entity2 is inferred as a subclass of a
class entity. If the inference is rejected in the wrapper, it
is removed

2. When a subclass is removed in the wrapper, the class
entity is removed

3. To evaluate if a binary relationship with binary 1:1
mandatory participation can be subsumed by entity from
another class when removing its parent in the wrapper,
the red excerpt in 3 figure x should be observed.

4. To evaluate if a binary relationship with binary 1:1
optional participation can be subsumed by entity from
another class when removing its parent in the wrapper,
the red excerpt in 4 figure x should be observed.

5. To evaluate if a binary relationship with binary 1:N
mandatory participation can be subsumed by entity from
another class when removing its parent in the wrapper,
the red excerpt in 5 figure x should be observed.

6. To evaluate if a binary relationship with binary 1:N
optional participation can be subsumed by entity from
another class when removing its parent in the wrapper,
the red excerpt in 6 figure x should be observed.

7. To evaluate if a class entity subsumed that it is disjoint
with another class entity 2 when removing its parent in
the wrapper, the red excerpt in 7 figure x should be
observed.

8. To evaluate if a class entity is inconsistent, the
inconsistent tag show in red in 8 figure x should be
observed.

Figure 3: Demonstration of inferences made to OWL 2 objects
in RDF/XML format

1. Subclass determined (and its rejection)

<Class> entity
 <subClassOf> entity2
<Class>

2. Subclass removal

<Class> entity
<Class>

3. Binary 1:1 mandatory participation subsumed

<Class> entity
 <subClassOf>
 <Restriction>

<onProperty> property
<qualifiedCardinality> 1
<onClass> entity2

<onProperty>
<Restriction>

 <subClassOf>
<Class>

4. Binary 1:1 optional participation subsumed

<Class> entity
 <subClassOf>
 <Restriction>

<onProperty> property
<maxQualifiedCardinality> 1
<onClass> entity2

<onProperty>
<Restriction>

 <subClassOf>
<Class>

5. Binary 1: N mandatory participation subsumed
<Class> entity
 <subClassOf>
 <Restriction>

<onProperty> property
<minQualifiedCardinality> 1
<onClass> entity2

<onProperty>
<Restriction>

 <subClassOf>
<Class>

6. Binary 1: N optional participation subsumed
<Class>

 <subClassOf>
 <Restriction>

<onProperty> property
<minQualifiedCardinality> 0
<onClass> entity2

<onProperty>
<Restriction>

 <subClassOf>
 <Class>

7. Disjointness constraint subsumed

<Class> entity
 disjointWith: entity2
<Class>

8. Inconsistent class

<Class> entity
 <! --DEDUCTION-->
 <--INCONSISTENT CLASS-->
<Class>

5 RESULTS

5.1 Generated test case sample models

Table 2: A table showing edits to ontologies that were achieved

Table 2 shows the edits that were successfully made to 9 sample
ontologies. The first column references a specific ontology by
number, the second column documents the edit/s that was made to
the ontology. The third column identifies which EER constraints
were directly responsible for the inferences shown in column 2.

5.1.1 Sample 1.
We will document the results of the first sample from table 2 in
depth to make the account of the remaining results more
interpretable.

Figure 4: EER diagram of ontology sample 1 (captured in Table
2)

The first sample was an ontology representing the resulting EER
diagram show in figure 4 after reasoning. The constraints in red
denote the inferred constraints that were added. These were:

Margherita is a subclass of CheeseyPizza and CheeseyPizza is a
subclass of Pizza.

Figure 5: Input/output owl classes and property before and
after reasoning in truncated RDF/XML format for sample 1

Figure 5 is the truncated version of the RDF/XML I/O files
produced after running sample 1. The excerpts have also been
numbered and slightly graphically altered for ease of interpretation.
Relevant naming is highlighted in blue and edits are in red. The
complete input/output owl files are attached in the appendix and
within the software module along with the remaining sample
models to adhere to maximum page constraints.

In OWL 2, a subClassOf CheeseyPizza constraint was added to
Margherita (seen line 2 on the right of figure 5).

5.1.2 Subclass constraint.
subClassOf CheeseyPizza constraint was also added to Margherita
for samples 2,3 and 4 which had different cardinality restrictions
for the binary relationship hasTopping as respectively indicated in
Table 2.

5.1.3 Wrapper samples removing constraint.
Sample 1, 2, 3, and 4 were also used with wrapper to test the
rejection of the added constraint. After running the output file with
the wrapper, when reject was selected, subClassOf CheeseyPizza
constraint was removed from the Margherita class in all samples.

5.1.4 Inconsistent.
The inconsistent tag was added to the output RDF/XML in sample
5. It was added to an inconsistent class ThinandCrispyBase after
reasoning detected it was a subclass of two disjoint classes
PizzaBase and PizzaTopping.

5.1.5 Wrapper samples reparenting, removing
references, subsuming relationships & removing
subclass.

Sample	
OWL	 OWL	edit	

Ontology	constraint/s	
determining	inference	

1	 Addition/removal	of	subClassOf	constraint	
Binary	relationship	1	:	1	
mandatory	and	covering	

2	 Addition/removal	of	subClassOf	constraint	
Binary	relationship	1	:	1	
mandatory	and	covering	

3	 Addition/removal	of	subClassOf	constraint	
Binary	relationship	1	:	N	
mandatory	and	covering	

4	 Addition/removal	of	subClassOf	constraint	
Binary	relationship	1	:	N	
optional	and	covering	

5	 Addition	of	Inconsistent	tag	
Disjointness	and	
covering	

6	 Addition	of	qualifiedCardinality>1	 Subclass	

7	 Addition	of	maxQualifiedCardinality>1	 Subclass	

8	 Addition	of	minQualifiedCardinality>1	 Subclass	

9	 Addition	of	minQualifiedCardinality>0	 Subclass	

9	 Addition	of	disjointWith	constraint	 Subclass	

9	 Removal	of	Class	 Subclass	

10	 Removal	of	Object	Property	 via	Subclass	removal		

1 <ObjectProperty> hasTopping
2 <subPropertyOf> hasIngredient
3 < ObjectProperty >

1 <Class> CheeseyPizza
2 <equivalentClass>
3 <Class>
4 <intersectionOf>parseType= ”Collection” Pizza
5 <Restriction>
6 <onProperty> hasTopping
7 <qualifiedCardinality> 1
8 <onClass> CheeseTopping
9 <onProperty>
10 <Restriction>
11 <intersectionOf>
12 <Class>
13 <equivalentClass>
14 <Class>

1 <Class> Margherita 1 <Class> Margherita
2 <subClassOf> Pizza 2 <subClassOf> CheeseyPizza
3 <subClassOf> 3 <subClassOf> Pizza
4 <Restriction> 4 <subClassOf>
5 <onProperty> hasTopping 5 <Restriction>
6 <qualifiedCardinality> 1 6 <onProperty> hasTopping
7 <onClass> CheeseTopping 7 <qualifiedCardinality> 1
8 <onProperty> 8 <onClass> CheeseTopping
9 <Restriction> 9 <onProperty>
10 <subClassOf> 10 <Restriction>
11<Class> 11 <subClassOf>

12 <Class>

Relevant input classes and object properties Relevant output class

Samples 6, 7, 8, and 9 were used with the wrapper function. A
parent class Margherita had two subclasses GourmetMargherita
and StandardMargherita and a parent class Pizza.
GourmetMargherita and StandardMargherita inherited
relationships with their cardinality restrictions from the parent class
when a parent class was selected to be removed. The cardinality
restrictions inherited are once again respectively denoted in the 3rd
column of table 2. Margherita class was removed. References to
Margherita present in only GourmetMargherita and
StandardMargherita were removed. Moreover, any other
constraints from Margherita were also inherited like in sample 9,
disjointWith BaconPizza constraint from Margherita was inherited
by GourmetMargherita and StandardMargherita. Also, a new
subClassOf Pizza constraint was added to GourmetMargherita and
StandardMargherita.

5.1.6 Wrapper samples removing subclass & object
property.

Margherita has no subclasses. The sample is a case were domain
and range of object property hasHerb is included. Margherita is the
domain of object property hasHerb and Basil is the range of it so
that it reads that a Margherita has a herb Basil. After Margherita is
selected for deletion, hasHerb is deleted as well.

6 DISCUSSIONS
The aim to materialize deductions on an ontology over EER
features was met fairly well. Explicitly adding subclass constraints
to the OWL was achieved for ontologies over the binary
relationship constraints for all its cardinalities. Moreover,
constraints like disjointess, covering and subclass constraints were
other EER features reasoned over to add a subclass inference to an
ontology. A case of explicitly tagging a detected inconsistent class
was satisfied which used disjointness and covering constraint to
infer that fact. Amending binary relationship with their cardinalities
to subclasses of a parent removed was the extent to which entity
subsumption could be achieved. Cardinalities once again include
all those specified in table 1. A wrapper was also realized. As
discussed, reversibility of some verification is not always as easy
as it seems. This system was able to give various options to the user
to verify inferences made. It can reparent classes based on user
decisions to remove a class subsumed to be a child of another. This
was the case of a class which after materialization of deductions
was achieved, was now a parent and a child. Removing the class
would require reassigning its children to its parent which the system
achieved. The achieved reference removal of a non-existent class
was also an important feat for a sensible ontology. Other constraints
like disjointness were also subsumed to the children when
reparenting. The removal of an inconsistent binary relationship also
automatically ensues if its domain class is removed and it has no
children. The presence of children otherwise has the affect of re-
assigning the object property to the children if its cardinality
restrictions are subsumed as described above. Alerting the user of
an inconsistency is also imperative to materializing deductions and
was achieved by the system. Moreover, attribute inferences take
place at instance level. This means such inferences would take
place in the data layer of KnowID as opposed to the knowledge

layer in which the systems is intended to be used. N-ary
relationships were not realized for the system as were unable to
interpret them in OWL 2. Furthermore, testing was limited to our
test cases.

7 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES
Further development on Owlready is permissible. It is available
under GNU GPL v3 license which is a free and copyleft license for
software. This system extension was also developed under GNU. It
is open-sourced so that others are free to use and develop further.

8 CONCLUSIONS & FUTURE WORK
Overall, an extension to materialize deductions on an EER was
successful and so was a wrapper to aid an effective user-verification
process. For future work, one can implement a transformation
algorithm from RDF/XML files to JSON files. It has been proven
that it can be achieved [1]. If this is realized, it can be integrated
with this system to facilitate query formulation in the data layer. It
requires a JSON file to be used with React [1] to graphically display
the EER in a GUI and have users formulate queries over it. Some
ontology variations with the reasoning cases and constraints
explored in this report can be tested over these three components
merged.

ACKNOWLEDGMENTS
I would like to thank my project partner, Bradley Malgas, for his
support and being an exemplar in navigating software development
and project work. I would also like to greatly thank my supervisor,
Maria Keet for all of her advice, constant support, guidance, and
pushing me to think open-mindedly.

REFERENCES
[1] Pablo R. Fillotrani, S. Jamieson and C. Maria Keet. 2020. Connecting knowledge

to data through transformations in KnowID: system description. In KI -
Künstliche Intelligenz (KI ‘20), Springer, 373–379. DOI:
https://doi.org/10.1007/s13218-020-00675-6.

[2] Natalya F. Noy, Monica Crubézy, Ray W. Fergerson, Holger Knublauch, Samson
W. Tu, Jennifer Vendetti and Mark A. Musen. 2003. Protégé-2000: An Open-
Source Ontology-Development and Knowledge-Acquisition Environment. In
AMIA Annual Symposium Proceedings (AMIMA ‘03).

[3] Pablo R. Fillotrani and C. Maria Keet. 2020. KnowID: An architecture for
efficient Knowledgedriven Information and Data access.

[4] Franz Baader, Ian Horrocks and Ulrike Sattler. 2007. Description Logics. In
Reasoning Web. Semantic Technologies for Information Systems (Reasoning
Web ’09). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-
03754-2_1

 [5] Ian Horrocks and Andrei Voronkov. 2006. Reasoning Support for Expressive
Ontology Languages Using a Theorem Prover. In Diz J., Hegner S.J. (eds)
Foundations of Information and Knowledge Systems 4th International
Symposium, Lecture Notes in Computer Science 3861 (FolKS 2006), February 14
– 17, 2006, Budapest, Hungary. Springer, Berlin, Heidelberg, 201-218.

[6] Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris. 2012. The ICOM 3.0
Intelligent Conceptual Modelling tool and methodology. Semantic Web 3, 3
(2012), 293-306.

[7] Sean Bechhofer and Matthew Horridge. 2009. The OWL API: A Java API for
Working with OWL 2 Ontologies. In Proceedings of the 6th International
Conference on OWL: Experiences and Directions (OWLED 2009), October 23 -
24, 2009, Aachen, Germany, 49-58.

[8] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in
Python with automatic classification and high-level constructs for biomedical
ontologies. Artificial Intelligence in Medicine 80, 11-28.

[9] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, Monika
Crubézy, Henrik Eriksson, Natalya F., Noy and Samson W. Tu. The evolution of
Protégé: An environment for knowledge-based systems development. In
International Journal of HumanComputer Studies, 58, 1 (2003), 89–123.
DOI:10.1016/S1071-5819(02)00127-1.

[10] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen.
2004. The Protégé OWL Plugin: An Open Development Environment for
Semantic Web Applications. In Third International Semantic Web Conference
(ISWC 2004), November 7 – 11, 2004, Hiroshima, Japan. Springer, Berlin,
Heidelberg, 229-243.

[11] Oren Etzioni, Keith Golden and Daniel Weld. 1994. Tractable Closed World
Reasoning Updates. In Proceedings of the Conference on Principles of
Knowledge Representation and Reasoning (KR-94 1994).

[12] Thorsten Liebig, Marko Luther, Olaf Noppens and Michael Wessel. 2011.
OWLlink. Semantic Web, January 2011.

[13] Alexander Maedche, Boris Motik, Ljiljana Stojanovic, Rudi Studer, and Raphael
Volz. 2003. Ontologies for Enterprise Knowledge Management. IEEE Intelligent
Systems 18, 2 (March-April 2003), 26-33.

[14] Matthew Horridge and Sebastian Brandt. 2011. A Practical Guide To Building
OWL Ontologies Using Protége 4 and CO-ODE Tools Edition 1.3. The
University of Manchester, Manchester, UK.

[15] Protégé. 2016. Protégé: https://protege.stanford.edu/products.php

APPENDIX

Relevant excerpts from each sample taken and shown
Sample 1 input

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseyPizza -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#CheeseyPizza">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Margherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-

27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Sample 1 Output

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseyPizza -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#CheeseyPizza">

 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Margherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseyPizza"/>
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-

27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Sample 2 Input
<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-27#SomePizza
-->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#SomePizza">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:maxQualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:maxQualifiedCardi
nality>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

Sample 2 output
Same as sample 1

Sample 3 Input
<!-- http://www.co-ode.org/ontologies/pizza/pizza.owl#CheeseyPizza -->

<owl:Class rdf:about="http://www.co-ode.org/ontologies/pizza/pizza.owl#CheeseyPizza">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="http://www.co-ode.org/ontologies/pizza/pizza.owl#Pizza"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#hasTopping"/>
 <owl:minQualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:minQualifiedCardin
ality>
 <owl:onClass rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#CheeseTopping"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:comment xml:lang="en">Any pizza that has at least 1 cheese topping.</rdfs:comment>
 <rdfs:label xml:lang="pt">PizzaComQueijo</rdfs:label>
</owl:Class>

Sample 3 output
Same as sample 1

Sample 4 input
<!-- http://www.co-ode.org/ontologies/pizza/pizza.owl#SomePizza -->

<owl:Class rdf:about="http://www.co-ode.org/ontologies/pizza/pizza.owl#SomePizza">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="http://www.co-ode.org/ontologies/pizza/pizza.owl#Pizza"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#hasTopping"/>
 <owl:minQualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">0</owl:minQualifiedCardin
ality>
 <owl:onClass rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#CheeseTopping"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="http://www.co-ode.org/ontologies/pizza/pizza.owl#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#hasTopping"/>
 <owl:someValuesFrom rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#hasTopping"/>
 <owl:minQualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">0</owl:minQualifiedCardin
ality>
 <owl:onClass rdf:resource="http://www.co-
ode.org/ontologies/pizza/pizza.owl#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment xml:lang="en">Any pizza that has at least 1 cheese topping.</rdfs:comment>
 <rdfs:label xml:lang="pt">PizzaComQueijo</rdfs:label>
</owl:Class>

Sample 4 input
Same as sample 1

Sample 5 input
<!-- http://www.co-ode.org/ontologies/pizza/pizza.owl#ThinAndCrispyBase -->

<owl:Class rdf:about="#ThinAndCrispyBase">
 <rdfs:label xml:lang="pt"
 >BaseFinaEQuebradica</rdfs:label>
 <rdfs:subClassOf rdf:resource="#PizzaBase"/>
 <rdfs:subClassOf rdf:resource="#PizzaTopping"/>
</owl:Class>
<!-- http://www.co-ode.org/ontologies/pizza/pizza.owl#PizzaBase -->

<owl:Class rdf:about="#PizzaBase">
 <rdfs:label xml:lang="pt">BaseDaPizza</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Food"/>
 <owl:disjointWith rdf:resource="#PizzaTopping"/>
 <owl:disjointWith rdf:resource="#Pizza"/>
</owl:Class>

<!-- http://www.co-ode.org/ontologies/pizza/pizza.owl#PizzaTopping -->

<owl:Class rdf:about="#PizzaTopping">
 <rdfs:label xml:lang="pt"
 >CoberturaDaPizza</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Food"/>
</owl:Class>

Sample 5 output

 <!-- http://www.co-ode.org/ontologies/pizza/pizza.owl# dCrispyBase -->

 <owl:Class rdf:about="#ThinAndCrispyBase">
<!--DEDUCTION-->
<!--INCONSISTENT CLASS-->
 <rdfs:label xml:lang="pt"
 >BaseFinaEQuebradica</rdfs:label>
 <rdfs:subClassOf rdf:resource="#PizzaBase"/>
 <rdfs:subClassOf rdf:resource="#PizzaTopping"/>
 <owl:disjointWith rdf:resource="#DeepPanBase"/>
 </owl:Class>

Sample 6 input

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#GourmetMargherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#GourmetMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita"/>
 </owl:Class>

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Margherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#StandardMargherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#StandardMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-

27#Margherita"/>

Sample 6 output

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#GourmetMargherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#GourmetMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#StandardMargherita -->

 <owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#StandardMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Samples 7, 8 and 9 are nearly similar qualified cardinalities inherited differ according to
table showing binary cardinalities.

Sample 9 has more inferencing done.
Sample 9 input, margherita removed

<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#StandardMargherita -->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#StandardMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita"/>
</owl:Class>
<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#GourmetMargherita -->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#GourmetMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita"/>
</owl:Class>

Sample 9 input cont.
<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-27#Margherita
-->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Margherita">
 <owl:disjointWith
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#BaconPizza"/>
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Sample 9 output

<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#GourmetMargherita -->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#GourmetMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-

27#BaconPizza"/>
</owl:Class>

<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#StandardMargherita -->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#StandardMargherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#BaconPizza"/>
</owl:Class>

Sample 10 input

<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-27#hasHerb -->

<owl:ObjectProperty
rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasHerb">
 <rdfs:subPropertyOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasIngredient"/>
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Margherita"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Basil"/>
</owl:ObjectProperty>

<!-- http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-27#Margherita
-->

<owl:Class rdf:about="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-
ontology-27#Margherita">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Pizza"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasHerb"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#Basil"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:someValuesFrom
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#TomatoTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#hasTopping"/>
 <owl:qualifiedCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:qualifiedCardinalit
y>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/mandisabaleni/ontologies/2020/8/untitled-ontology-
27#CheeseTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Sample 10 Output
Both hasHerb and Margherita were removed

