

CS/IT Honours

Final Paper 2020

Title: Building a South African English corpus

Author: M.Umar Khan (KHNMUH038)

Project Abbreviation: CASE TEXT

Supervisor(s): Associate Professor Maria Keet

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Building a South African English corpus
Muhammed Umar Khan

khnmuh038@myuct.ac.za
University of Cape Town
Rondebosch, South Africa

Abstract
A corpus is a compilation of text that is used for linguistic

research. Currently, South African English(SAE) does not
have a written electronic corpus and only has smaller spoken
corpora that only focus on the sub-varieties of SAE. This
project aimed to create a comprehensive corpus for SAE
which would fairly represent multiple sub-varieties of the
language. The corpus was created by gathering, cleaning,
and storing data from multiple different categories where
SAE is used. After completing the development of the corpus,
we achieved to develop an electronic South African English
with a comprehensive metadata scheme for the contents of
the corpus. Weaknesses of the corpus were discussed (such
as an unfair representation of sub-varieties of SAE) and rec-
ommendations for future works were provided on how the
corpus could be expanded.

Keywords
Corpus, South African English(SAE)

1 Introduction
A corpus is a collection of texts which are used for lin-

guistic research. South African English (SAE) contains many
sub-varieties which include: Indian South African English,
Black South African English, Afrikaans South African Eng-
lish, etc. South African English has no large-scale electronic
corpus available, so linguistic research is limited due to there
being no electronic corpus being available for the language
[1].

A South African English corpus is needed for projects such
as the International corpus of English or ICE requires that
there be a South African English corpus as it is one of the
components of the ICE [5].The need for a South African Eng-
lish corpus is further enhanced by the fact that an authority
of SAE, the Dictionary of South African English (DSAE), re-
quires that an SAE corpus be available because their current
approach of manually collecting data to compile SAE dictio-
naries seem to limit the amount of data that can be gathered
and also limits the depth to which the analysis of data can
take place[1]. This project doesn’t aim to fulfill those require-
ments but the requirements presented by these organizations

facilitate the need for an SAE corpus for linguistic research.

Previously there has been work done in developing cor-
pora for South African English but these corpora focused on
sub-varieties of South African English such as Black South
African English and Indian South African English [1]. The
data samples for these corpora were relatively small in size
as data was collected the use of audio recordings [3, 5, 4]
rendering these corpora not useful for projects with a large
scale and involving written text, these corpora also did not
take into account various genres where South African Eng-
lish is used such as news websites, political speeches, blogs,
social media and so on [5, 4].

Taking all these factors into consideration this project was
undertaken to fulfill the following aims:

• Build a corpus for South African English that could
easily be expanded upon in the future and be capable
to use for linguistic research by the end of this project.

• Development of an appropriate metadata scheme for
the corpus, which will help in adding linguistic context
and provenance to the corpus and make it simpler to
traverse through the corpus and extract information
from it.

• Attempt to fairly represent most sub-varieties of South
African English in the corpus.

The development of included 4 major steps with Testing
being done between steps. These 4 steps were as follows:

(1) Gathering data for the corpus
(2) Cleaning and Filtering of raw data
(3) Implementing Metadata of the corpus
(4) Storage of data acquired

This paper consists of 8 sections. In Section 2 we discuss
the relatedwork done concerning developing a South African
corpus as well as the methods that were used during the
development of other language-specific corpora. Section 3
covers the Design. Section 4 covers the implementation of
the design for the development of the corpus and section
5 details the testing strategy. Section 6 details the results
we achieved as well as the discussion of the results. Section
7 is further discussion of key results. Section 8 covers the
conclusion and the possibility of any future work.

Conference’17, July 2017, Washington, DC, USA Muhammed Umar Khan

2 Related works
In this section we will be focusing on the related work that

has been done for developing corpora for South African Eng-
lish as well as developing various language-specific corpora
worldwide, the methods used for developing these corpora al-
lowed us to choose the tools appropriate for the development
of the South African English corpus.

2.1 Previous Work on the Development of
SAE Corpora

Currently, there exists no complete corpus for South African
English [1, 3], work has been done on the sub-varieties of
South African English this includes work done by Peinaar
and de Klerk [3] concerning Indian South African English,
de Klerk [4] for Xhosa English in which De Klerk came up
with a spoken corpus of Xhosa English consisting of about
500000 words [4] and Jeffery [5] with an attempt to create a
South African English corpus for the International Corpus of
English, but this corpus has not yet been completed. A trait
common between these corpora was that they only focused
on sub-varieties of South African English and their means
of collecting data for the corpus was limited to audio record-
ings as seen with [3], [4] and [5] this resulted in a very small
sample size [1].

The decision to use audio recording was explained by [3],
since to transform from spoken data to written text required
listening to the recordings multiple times and manual tran-
scription of the words. It was acknowledged by [3] that au-
tomatic transcription methods do exist but the issue with
those is that they tend to perform well with clear speech
such as dialogues or broadcast monologues, whilst with un-
predictable and spontaneous speech auto transcribers are
still unreliable [3].

2.2 Work on other language-specific
corpora

Generally, the following procedure was adopted for the de-
velopment of corpora by various scholars.

(1) Collecting raw corpus data
(2) Storage of acquired corpus data
(3) Filtering and cleaning acquired data
(4) Metadata scheme for the corpus

2.2.1 Collecting raw corpus data [1] specifically worked
on developing a corpus for South African English and the
methods used by [1] were the use of web crawlers, RSS feeds
and software to collect dynamic data such as CrawlJax.

[6] and [2] which constructed large corpora used web crawls

as well but also highlighted the possible use of methods such
as search engine queries and search engine hit counts.

2.2.2 Storage of data acquired Most scholars did not state
how the corpus was stored [1].[1] used NoSQL databases
such as MongoDB to store the data that was retrieved for the
corpus and scholars such as [8] chose to store data with the
use of text files as they believed this approach was quicker
than making the use of relational databases.

2.2.3 Cleaning and filtering data After the corpus data
was collected it required filtering and cleaning, procedures
such as boilerplate removal had to be carried out by [1, 2, 6]
and either developed or used specialized tools for this process
such as Boilerpipe, NCleaner,Recovery etc.

The BTE tool was adopted by [12] in which it was stated
that sections rich with content in a page would often have
a low HTML tag density, whereas boilerplate contains a
substantial amount of HTML due to its special formatting,
newlines etc .This approach was independent of the crawling
procedure used because it is based on the general properties
of web documents [10].

[9] decided to go with manually writing scripts for each
website to deal with HTML markup and boilerplate removal,
the reason for this was because they believed this method
would result in desired content and would save them from
the problem of fundamental duplicates such as samples from
articles and blogs etc [9].

Automatic cleaning tools were also developed by some, such
as "Victor the Cleaner" by [11] which was aimed at clean-
ing HTML pages by removing all text except headers and
main page content. Continuous text sections (sections not
including any HTML tags) are considered a single block that
should be marked by a label as a whole [11].

Whilst carrying out the cleaning process scholars also per-
formed the removal of near duplicates or exact duplicates of
data. Exact duplicates were easier to handle by using hashes
and fingerprints to track HTML documents [1]. Near dupli-
cates, removal was a harder task but the general approach
seen with many such as [1], [2] and [6] was the use of n-
grams to track the similarity between documents and also
implemented an algorithm known as the "shingling" algo-
rithm to deal with near duplicates [1, 6, 2].

2.2.4 Metadata scheme for the corpus [7] suggested the
use of XML files and metadata schemes such as Text Encod-
ing Initiative (TEI),ISLE Metadata Initiative (IMDI), and the
Open Language Archive Community (OLAC). These schemas
can categorize any resource and TEI specifically has a de-
tailed online guideline.

Building a South African English corpus Conference’17, July 2017, Washington, DC, USA

Most of the schemas were very similar when categorizing
data but with the TEI approach, custom schemas could be
made by extending the TEI corpus schema. If this was done
usually a document was provided detailing the definitions
of all the elements used in the schema [7].
Most authors did not mention the way they stored the

metadata but there are versions of the Brown Corpus as well
as the BNC that are available in XML and use TEI as their
metadata schema [7].

3 Design
In this section, we discuss how the requirements for the

project were gathered and the design aspects of the corpus.

3.1 Requirements Gathering
To gather the requirements of the project Weekly meetings
on Skype were scheduled with the project supervisor. These
meetings were also kept to prevent any scope creep during
the course of the project. Any further doubts with regards to
project requirements were clarified by the project supervisor
over email. The requirements were as follows:

• Attempt to make an SAE corpus over a million tokens
• Include various sub-categories of data for the corpus
with data belonging to different provinces of South
Africa to attempt and fairly represent sub-varieties of
SAE.

• Implement a metadata scheme that would make it easy
to locate the source of the text that was gathered and
make it easy to traverse through the corpus.

With these requirements in mind, we came up with the
design of our corpus.

3.2 System Design
The corpus was designed to contain over a million tokens
of data, comprising of various genres where South African
English was used, the reason for this was because different
words and style of writing is probable in different forms of
media, for example, a newspaper article is expected to be
more professional than a simple social media tweet. Because
of this, we decided to include the following genres for the
corpus:

(1) News websites
(2) Political speeches
(3) Media statements and Advisories
(4) South African Books(Fiction)
(5) South African Twitter data
(6) South African Blogs

For some categories of data, we decided to include sub-
categories, the reason for this choice was that there could be
a difference in the writing style between the sub-categories.

A list of the subcategories are as follows:
For news websites:
(1) National News
(2) Local News
(3) Lifestyle and Entertainment
(4) Sport
(5) Health
(6) Education
For Blogs :
(1) Lifestyle
(2) Travel
For Books :
(1) South African fiction
We also decided to gather text from various regions of

South Africa such as Gauteng,Western Cape, KwaZulu-Natal,
etc. This choice was made to attempt to fairly represent dif-
ferent sub-varieties of South African English such as Indian
South African English(containing words such as "Whakind"
as a form of a greeting), Black South African English (which
contains words like "indaba" meaning meeting of a commu-
nity, or words such as "ubuntu" used for kindness), Afrikaans
South African English(comprising of words such as "boykie"
for a young man) and so on. These sub-varieties were in-
cluded as South African English comprises of many "loan"
words from such languages [1].

Figure 1: Example showing the sub categories of the
data that will be gathered along with examples where
such sub-categories were represented

Metadata is essential when it comes to organizing ways
a language specific corpus can be meaningfully processed
[7]. It stores the interpretive framework in which the con-
stituents of a corpus are selected and are to be understood [7].
Cause of these reasons metadata is vital to a language cor-
pus. This is why we came up with a comprehensive metadata
scheme for our corpus.

We decided to store the corpus in two different ways one
in XML format and the other in flat-text format. The reason
this was done is for the XML version it used the TEI corpus

Conference’17, July 2017, Washington, DC, USA Muhammed Umar Khan

metadata schema which is a standard metadata schema and
can be used with tools that cater to it. We also chose to do
a flat-text version of the corpus with our custom metadata
schema, this version was chosen as not all corpus tools such
as WordSmithTools [14] and AntConc[15] are comfortable
with XML format of data and the flat-text version can be
easier to use when dealing with just the contents of the
corpus as they are not encoded with any tags like with XML.

The TEI corpus metadata schema was intended to be used
for the XML version of the corpus and our custom meta-
data schema for the flat-text version of the corpus. Both the
metadata schemas contained the same contents albeit in a
different format the metadata for both versions of the corpus
included the following:

• Title
• author
• publisher
• Date published
• Country
• Province/ region(in XML)
• Source URL
• Category
• Sub-Category
• License

3.3 Design Approach for the development
life cycle

To carry out the development of the corpus 2 major stages
need to be carried out before the metadata can be imple-
mented and the storing of the corpus, these stages are as
follows:
(1) Gathering raw corpus data
(2) Cleaning and filtering of raw data
To begin with the development of the corpus we first

had to decide on how the data would be gathered. Various
methods were considered in deciding the methods that were
going to be used to gather data for the corpus such as web
crawlers, search engine queries and search engine hit counts.

Web crawlers were chosen for data collection. Web crawlers
were chosen cause they are efficient at gathering data and
many powerful web crawlers are available for free, web
crawlers also don’t have limitations that are present with
methods such as search engine queries, where the number
of queries per day is restricted by search engines [2]. This
required us to use popular Web crawling packages such as
Scrapy and develop Crawlers to suit extraction of data from
the sources of our choice such as various news websites or
political speeches, this meant that using the Scrapy classes
we need to create our custom crawlers to extract data.
The Scrapy based crawlers were designed to be used with

all the corpus categories besides the gathering of twitter
data which required a separate program be written using
the Twitter API as twitter tweets do not have their separate
URLs like blog articles or news articles.

When it came to gathering data for the Books category of the
corpus it was very difficult to find any recent books which
were available for free, this led to us deciding to gather our
books data from www.gutenberg.org, here we were able to
find books on South African fiction written by South African
authors and these books were freely available with almost no
restrictions whatsoever, the only restriction was to include
the Project Gutenberg license with the book.

When crawling data from the web, the data is still not ideal
for corpus development and includes boilerplate as our crawler
was made to extract HTML tags as well as the HTML body
content. This decision was made because if only the text of
specific tags was extracted there could be a loss in valuable
data if those tags contained HTML tags that contained other
text. An example of this is given in Figure 1:

Figure 2: Example showing <p> tags in a Daily voice
news article contain tags for South African loan
words(in this case "mert" is the loan word)

The cleaning of data was also required to take into account
the possibility of data duplication, this was due to the nature
of Twitter data and how there is a possibility of retweets, this
had to be handled with the use of custom programs as to not
store any retweets. Data duplication was also a possibility
when conducting large crawls so this had to be handled by
not storing any article that had already been crawled before.

3.4 Corpus Development Methodology
An iterative approach was used for the development of the
corpus in which initially a small mini corpus was to be de-
veloped comprising of only a few news articles along with
some basic metadata such as title, author, and date published.
An iterative approach was selected for this project as we
believe any problems with our current design or procedures
could be detected early on in the development life cycle and
changes could be easily made in due time, following a wa-
terfall approach we would have possibly resulted in making
changes late during the development life cycle and risk not
having completed the project in time.

Building a South African English corpus Conference’17, July 2017, Washington, DC, USA

4 Implementation
In this section, we discuss how the design aspects were

implemented to develop a South African English corpus.
Belowwe detail how the design aspects were implemented

for the development life cycle.

4.1 Gathering raw corpus data
For gathering data for the corpus we included data from the
following sources.

For news websites:
• Mail and guardian
• News24
• The South African
• The Citizen (Gauteng and National news)
• Sunday Times (TimesLive)
• Daily Voice (Western cape news)
• South coast Sun and The Mercury (KwaZulu-Natal
news)

• HeraldLive (Eastern Cape news)
For Blogs we gathered data from the following websites :
• Rattle and Mum
• Boring Cape Town Chick
• Minkys
• Dirty Pink City
• Unfold Durban
• Presitge Digital

For political speeches and media statements and advi-
sories, we gathered data from the Government of South
Africa’s website.

Books were gathered from www.gutenberg.org and Twit-
ter data was gathered from Twitter using Twitters API

The Scrapy crawler which is a python based crawler was one
of the methods used for gathering data for the corpus, it was
suitable for our needs as Scrapy allows for the easy creation
of filters for the cleaning of data as well as data sanitization
[1]. These filters were used to extract important metadata
for the text being crawled and will be discussed in further
detail later on.

For the crawling of data we wrote two separate Python pro-
grams to initiate crawls depending on the source, A BaseSpi-
der was designed to carry out crawls where the URLs were
fed into the python program and smaller crawls were to
be made, and a complex crawler(known as CrawlSpider in
Scrapy) was designed when larger crawls were needed and
the spider had to follow a base URL depending on some set
rules such as crawling articles that contain "lifestyle" in their
URL, so this meant that articles part of the lifestyle category
may be crawled. The Crawl spider was capped to a specific
number of articles(depending on the source) to avoid the

Crawler running for a very long time and able to manage
the amount of content being crawled.

Figure 3: Command used to initiate a crawl in the
python terminal (large is the name of the CrawlSpi-
der)

Figure 4: example showing start URL,base URL and
follow URL for CrawlSpider crawler

A python script was written using the Twitter API aimed
to gather tweets by the use of hashtags such as #Mzansi, #Jozi
which were terms that are popularly used by South Africans
making the tweets gathered being South African English. To
gather data from various regions of South Africa to represent
the sub-varieties of SAE, popular cities of a province and the
province name were included in the hashtags such as for the
Western Cape the hashtags were #WesternCape, #CapeTown.
When extracting twitter data the crawls were limited to a
max of 1500 raw unfiltered tweets in the past 6 months. The
tweets were limited to the past 6 months to try and prevent
any tweets posted by tourists during the holiday season at
the start of the year.

We did not have to write any custom scripts when gathering
book data as Project Gutenburg offered flat-text versions of
the books so data was already in its desired format with only
the removal of the table of contents and the index being done
manually.

4.2 Cleaning and filtering of raw data
Our approach for the removal of boilerplate was done by
using an open-source Python library known as jusText, the
code written with this library attempted to remove boiler-
plate from the crawled web pages and produce the main body
text for the webpages. The data produced after running the
jusText code was the content to be included in the corpus. As
mentioned in the previous subsection, twitter tweets were
not crawled as they did not contain any HTML code when
the raw data was extracted, due to this being the case we
were not able to use jusText to remove any boilerplate such as
links and hashtags being present in tweets. To remove tweet
boilerplate we wrote down python code to remove the links,
and@ from tweets, making the tweets then boilerplate free.

Conference’17, July 2017, Washington, DC, USA Muhammed Umar Khan

Another issue that was to be taken into account was with
large crawls of data, as the Scrapy spider might revisit a page
due to it containing the base URL required by the python
spider. To counter this issue, when conducting large crawls
we stored the title of each crawled article in a list, this list
was used to check if an article with the same heading had
been crawled previously, and if so then the article data was
disregarded. Twitter data also raised the concerns for data
duplication as twitter has the option to retweet tweets. This
was simple to handle, as retweets contain "@RT" and because
of this our program was able to declare a tweet as a retweet
and avoid unnecessary data duplication.

Figure 5: Code for handling twitter retweets

4.3 Metadata for the corpus text
Some of the metadata for the corpus was automated with the
use of python code, this was done by using a program called
SelectorGadget [13] which is a Google Chrome extension
which enables to select parts of a webpage and give the
Xpath code for how the selected text is stored, using this
program we extracted metadata such as article title, author,
date published, category of data and so on.

Figure 6: Demo of how the XPath for an author from a
daily voice article was extracted using SelectorGadget
the author is clicked on the webpage to get the XPath
for the author

Figure 7: Example of how the Xpath in Figure 6 was
used to extract and store the author name in the code

Extraction of metadata varied from source to source as
categories such as media statements and Political speeches
included data like province which was not present in sources
such as news articles or blogs, though this metadata was
easily added manually according to the type of data being
crawled such as inserting "Lifestyle and Entertainment" un-
der sub-category for crawling pages with the Base URL con-
taining "lifestyle" before writing the content to a flat-text
file.

Figure 8: Example showing how automated metadata
was added and how some known data was manually
inserted before storing the corpus text

Figure 8 shows how for news websites, the publisher, coun-
try, province, subcategory, and license were manually in-
serted before writing data to the corpus for storage.

For the flat-text file implementation of metadata, the start
of the metadata was denoted by three #’s followed by the
metadata than a single hash at the end to denote the end of
the metadata and the start of the text content.

Figure 9: How metadata was represented in the flat-
text file

4.4 Corpus data Storage
As previously mentioned in our design two versions of the
corpus were to be developed. For this to be possible we wrote
the data after it had been cleaned by jusText to a flat-text
file along with adding the metadata as well. Once the flat-
text version of the corpus was available we then developed
a python program to convert our flat-text variation of the
corpus to an XML one, this program provided the TEI repre-
sentation of the texts and then later, was manually made to

Building a South African English corpus Conference’17, July 2017, Washington, DC, USA

include the <teicorpus> tag as the root element to encompass
all the text of the corpus and be following the TEI standards
for a corpus.

4.5 Corpus Structure
Corpus data was put into different folders as that it would
make it easier to access data belonging to a specific category
instead of having to search the corpus to find data belonging
to the desired category. A concern that might be raised is
that a text might belong to more than one category of data
such as it could be a political speech as well as a news article.
For this reason, we decided to separate the data into its vari-
ous categories and also have a separate file that contained
all the contents of the corpus, having this large file would
make it easier to test if there was any overlap between data
categories.

Statistics such as the number of texts and the number of
tokens per category of the final corpus are discussed in the
Results and Discussion section .

5 Testing strategy
We ran tests for each major step in the development cycle

of the corpus. The purpose of these tests was to see that if
the corpus could be easily searched and if the assumptions
being made during the development process were true.

5.1 Tests for gathering and cleaning data
We initially ran tests for gathering data by writing a short
python script and created a simple crawler with Scrapy in
which the URLs for the webpages that were intended to be
crawled were manually fed into the program. This test was
done to monitor the format of the scraped pages so that it
may be fed into the jusText code for the removal of boiler-
plate.

After running the Basic crawler with a few articles from
newswebsites it was seen that data was indeed being crawled
successfully and it was noted that the relevant data needed
for the corpus was stored in the <p> tags of the web pages
and this was extracted and compared with text produced by
jusText.This test was done to check the reliability of jusText
when attempting to remove boilerplate.

For gathering twitter data we suspected that when attempt-
ing to crawl data from different provinces of South Africa
that more popular provinces will see a higher number of
tweets when compared to provinces that are less developed
or have less access to the internet, for this reason when we
fixed the number of raw unfiltered tweets to a max of 1500
in the past 6 months and attempted to gather twitter data
by inserting hashtags that contained the province name and

popular cities of the province.

After the data was gathered, cleaned, and stored we ran
it through a python program we wrote to determine the
word count of the corpus, this was done so that we could
determine if we reached our goal of over 1 million tokens
for the corpus.

5.2 Tests of the metadata to search the
corpus

When the corpus data was gathered from a specific source
we searched through the contents of the flat-text file using
a python program we wrote to determine if data can be re-
trieved from the corpus with the use of the metadata this
meant for example looking for texts in the news websites
section that belonged to the sub-category "Lifestyle and En-
tertainment" or extracting texts that were intended for a
specific province such as the "Western Cape".

6 Results and Discussions
When crawling the data we noticed that the CrawlSpider

was not feasible for every source, we noted that when in-
serting a start URL and follow URL for some websites the
web crawler was unable to follow and extract other articles
that contained the follow URL as part of their URL for exam-
ple when browsing a news website known as The Citizen
we saw that the web crawler crawled the article which we
had included as a start URL for the web crawler and fail to
crawl most other articles that contained the follow URL, this
meant that if we were trying to extract for example some
"Finance" articles and fed the URL for one Finance article
as the start URL, the crawler would exit only after crawl-
ing a few articles. For this reason, for such sources we had
to resort to the BaseSpider in which we manually fed the
URLs for the webpages that we chose to be extracted, the
BaseSpider was also preferred in some instances due to the
Scrapy BaseSpider class being able to track the URL of the
pages it was crawling, so this meant that the source URL was
automated and included as part of the metadata. Concerning
the large crawler(CrawlSpider) the source URL had to be
manually inserted after the corpus data was stored.

An issue we encountered when using the large crawler was
that for websites that had some sections that required a pay-
wall such as news24 our large crawler only managed to crawl
very little of the article and because of this jusText ended up
including some boilerplate which was repeated throughout
"subscriber-only" articles. So in such a case, we either used
the BaseSpider program so that we couldmanually feed URLs
for free articles or after storage search all articles containing
the "subscriber-only" article boilerplate and removing them
manually.

Conference’17, July 2017, Washington, DC, USA Muhammed Umar Khan

Figure 10: Example of a paid article that the large
crawler attempted to crawl

Our results when performing boilerplate removal with
jusText were quite satisfactory for most of the sources we
tried to crawl we got boilerplate with the aforementioned
subscriber-only articles and inconsistencies with main con-
tent detection with some other sources. The other sources
where we had inconsistencies with jusText were not a big
issue as data extracted by jusText from these sources did not
include any boilerplate but they did not encompass all the
content of the source as well, this was not seen as a major
issue as we were gathering fewer data from a source but
we were still gathering important text that belonged to that
article and not some common boilerplate.

Figure 11: Example of how jusText only detected a
small section of a daily voice "Lifestyle and Entertain-
ment" article

When gathering twitter data by using hashtags from mul-
tiple provinces and cities we noted that even though we
had set a max limit for tweets (1500 raw tweets including
retweets and boilerplate) we noted that some provinces con-
tained much lower amounts of tweets compared to other
provinces.

Figure 12: From the size of the text fileswe can see how
the number of tweets varied between provinces, cities
and other keywords such as Mzansi

With regards to twitter data, we also noticed that many
slang terms were being used in tweets and some tweets were
not in English or were half in English and half in a native
language such as Afrikaans. We did not try to change this as
attempting to remove the "non-English" words would have
potentially resulted in a loss of loanwords that are commonly
used in SAE.

Figure 13: Shows some tweets were not in english
(Seen in the second line of the figure), example was
taken from twitter data from the Free state provinces

After gathering, cleaning and storing data our metadata
was stored in the following way (Seen in figure 14 and 15)
for all categories of data:

Figure 14: Showsmetadata for an article from theMail
and gaurdian in the news websites section

Building a South African English corpus Conference’17, July 2017, Washington, DC, USA

Figure 15: Example in Figure 14 being represented in
XML

After the corpus had been compiled we ran a python pro-
gram to get the word counts of each category of data, the
breakdown is given in Figure 16.

Figure 16: A breakdown of the token counts and num-
ber of texts collected for the categories of the corpus
From the contents of the corpus we see that news web-

sites and Books made up over half of the corpus tokens, this
was due to different news websites being easily available on
the internet and because of this, we attempted to capture
the various writing styles of these news sites, this included
news websites that were intended for a province or part of
a province to news websites intended to target the whole
country. For media statements and political speeches, all data
was gathered from the South African government website,
because the data was coming essentially from one source we
decided to include less data for these categories. For blogs
and twitter data, less content was included as these cate-
gories included very informal language(such as the use of
emojis) and at times did not pay much attention to spelling.
For twitter data we see only about 3287 tweets although we

limited each province to 1500 raw tweets, the reason for this
was because many tweets were found to be retweets and
as previously mentioned when attempting to get tweets for
some provinces the tweets that were gathered were substan-
tially lower than other more popular provinces.

Figure 17: A breakdown of the token counts and num-
ber of texts collected for the sub-categories of the cor-
pus

When looking at the token counts and the number of
texts for sub-categories Health and Education we see a very
low token and text count, the reason for this is because the
Health articles could be included in either National News or
Lifestyle this is why we included few articles like this in its
separate category. Local news data is also low in comparison
to national news this was since there were not as many
websites available just for local news, most websites focused
on national news with some having sub-sections for local
news such as news websites called "The Daily Voice". For
Blogs we found that most bloggers had articles in the sub-
category "Lifestyle" and only had a few articles under the
travel sub-category, this is why we see that "Lifestyle" blog
data is more than double of the "Travel" blog data.

7 Further Discussion of key results
At the end of development, we ended up with a corpus

comprising of text made up of South African English though
we believe all the sub-varieties of the language were not
fairly represented. Whilst carrying out the experiment it was
noted that not much data was available for the lesser devel-
oped provinces of South Africa. This was seen with Blogs,
news websites, twitter data, and Books as well. Most data
were available for the Gauteng, Western Cape, and KwaZulu-
Natal provinces. This meant that sub-varieties of SAE used
in regions such as Limpopo, Northwest, Eastern Cape, etc
were not as prevalent in the corpus as the more popular
regions such as Gauteng or Western Cape. Though we do be-
lieve that there was enough data for different South African
provinces in the Political Speeches category. We also believe
the data gathered for the books category was not ideal for

Conference’17, July 2017, Washington, DC, USA Muhammed Umar Khan

a modern corpus as the books we gathered were over a 100
years old with most books being from the early 1900s, this
meant that the language used in the books were not a good
representation of the current state of SAE.

When it came to devising an appropriatemetadata scheme for
the corpus that would add linguistic context and provenance
to the corpus, our results were just as expected, and believe
we achieved our aim, as the metadata included enough in-
formation about the source of the text, such that it could
be easily traced back. The metadata scheme also made it
easy to search through the corpus and filter the type of texts
from the corpus. Examples of this would be like extracting all
news articles that were intended for theWestern Cape region
or extracting news articles belonging to the sub-category
"Sport" or even extracting Blogs that were written by a spe-
cific author.

From the corpus we achieved at the end of development
we believed we had achieved our aim of developing a com-
prehensive corpus for South African English as we managed
to include data from various sub-categories where SAE was
used. We also achieved our target of having over 1 million
tokens for the corpus.

8 Conclusions
From the results, we saw at the end of the development

of the corpus we believe the project was a success as the
main aim of developing an electronic South African corpus
had been achieved and we had also included a variety of
categories where South African English was used.

We do believe though, that a fair representation of all the
sub-varieties of South African English was not achieved as
previously mentioned, this was due to the lack of availability
for data for lesser developed provinces of South Africa.
A comprehensive metadata scheme was achieved as well
enabling linguists to have enough background on the source
and type of texts that were included in the corpus. This
metadata scheme also made it possible to filter through the
contents of the corpus by using the constituents of the meta-
data such as category, author, sub-category, etc.

We believe future works to develop an SAE corpus should
implement Part-of-Speech tagging as well, which classifies
the type eachword is and this could be used to find the type to
token ratio of the data and would further aid with linguistic
research with respect to an SAE corpus. We also believe
more categories of data may be included such as interview
transcripts, Political debates, and private conversations as
well as implement other techniques for gathering data such
as search engine queries, RSS feeds, etc.

References
[1] Gareth Terence Bryant Dwyer. 2014. “Towards Automated

Creation and Management of a South African English Web
Corpus

[2] Baroni,M and Ueyama,M. 2006 .“Building general- and
special-purpose corpora by Web crawling.

[3] Pienaar,L and Klerk, V. (2009). Towards a corpus of South
African english: corralling the sub-varieties. Lexikos. 19.
10.4314/lex.v19i1.49135.

[4] Klerk, V. (2002). Starting with Xhosa English . . . towards a
spoken corpus. International Journal of Corpus Linguistics.
7. 21-42. 10.1075/ijcl.7.1.02dek.

[5] Jeffery, C (2003) On compiling a corpus of South African
English, Southern African Linguistics and Applied Language
Studies, 21:4, 341-344, DOI: 10.2989/16073610309486353

[6] Baroni, Marco, Bernardini, Silvia,Ferraresi, Adriano,
Zanchetta, Eros. 2009. The WaCky wide web: a collection
of very large linguistically processed web-crawled corpora.
Language resources and evaluation, 43(3), 209–226.

[7] Wynne,M. 2005. Developing Linguistic Corpora: a Guide to
Good Practice Chapter 3: Metadata for corpus work (Lou
Burnard,University of Oxford © Lou Burnard 2004) pp 40-57

[8] Zhao, L and Kong, W and Wang, Q and Song, L. (2019).
Construction of power industry corpus based on data min-
ing and machine learning intelligent algorithm. Journal
of Physics: Conference Series. 1187. 022018. 10.1088/1742-
6596/1187/2/022018.

[9] Spoustová, J and Spousta, M. (2012). A High-Quality Web
Corpus of Czech.

[10] Botha, G and Barnard, E. (2005). Two approaches to gather-
ing text corpora from the World Wide Web.

[11] Spousta, M and Marek, M and Pecina, P. (2008). Victor: the
Web-Page Cleaning Tool. 12-17.

[12] Baroni, M and Kilgarriff, A. (2006). Large Linguistically-
Processed Web Corpora for Multiple Languages.. Proceed-
ings of EACL 2006. 10.3115/1608974.1608976.

[13] Chrome Web Store. 2020. SelectorGadget. Retreived from
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb?hl=en

[14] Lexical Analysis Software and Oxford Univer-
sity Press. 2020. WordSmithTools. Retreived from
https://lexically.net/wordsmith

[15] Laurence Anthony. 2020. AntConc. Retreived from
https://antconc.en.lo4d.com/windows

