Implications of the Dataflow Paradigm in the Exascale Era of
Scientific Computation

Dylan Fouché
Department of Computer Science
University of Cape Town
fchdyl001@myuct.ac.za

ABSTRACT

The move towards the exascale era of computation has opened up
new possibilities in the scientific community. Problems previously
labelled as effectively non-computable can now be approximated as-
tonishingly quickly. However, there are challenges associated with
this, such as the new design paradigms needed to leverage the pro-
cessing power of these new massively parallel and heterogeneous
distributed systems.

With the use case of high-throughput astronomical computation
in mind, we explore the validity of the dataflow model for use in
these exascale scientific computations through a review of related
literature. The use of interpreted languages for these problems is
addressed, as well as the new systemic requirements of exascale
computers. A number of successful implementations of this nature
are presented, and a set of conclusions are made on its use for a
wider range of problems.

CCS CONCEPTS

« General and reference — General literature; Performance; «
Computer systems organisation — Pipeline computing; « Soft-
ware and its engineering — Multiprocessing / multiprogram-
ming / multitasking; Data flow architectures; Data flow lan-
guages.

KEYWORDS

dataflow, exascale, Python, visualisation, astronomy

1 INTRODUCTION

The Cube Analysis and Rendering Tool for Astronomy (CARTA)
[2] is designed to visualise data from the Atacama Large Millimetre
Array, the National Radio Astronomy Observatory, and the Square
Kilometre Array. As the image size of these modern telescopes
has been increasing rapidly over the past years, this analysis and
visualisation has become a very computationally expensive task.

With parallelism and scalability as their core values, the current
CARTA back-end [8] is written almost entirely in C++ [6]. This is
widely regarded as a highly performant language. But the approach
to the design of computational models is shifting as we move into
the exascale era, and there is evidence that suggests merit to an
interpreted approach to solve these problems.

We propose a novel implementation of the CARTA back-end sys-
tem, using the Python language [24]. Back-end components will be
prototyped using the Dask library [10, 11] enabling advanced paral-
lelism and distributed computation. Other libraries such as AstroPy
[3, 19] and H5Py [9] will help to abstract away from domain-specific
implementation details.

The performance of these prototype components will be com-
pared with the current object-oriented implementation and a set of
recommendations will be made. The implications of this are wider
than one implementation, however, as we aim to assess the valid-
ity of the dataflow model using interpreted language for various
high-throughput scientific computations in the exascale era.

2 INTERPRETED LANGUAGES FOR
SCIENTIFIC COMPUTATION

In recent years, interpreted languages such as Python have found
widespread popularity in the scientific community. The reason is
not immediately clear, however, as interpreted languages are com-
monly slower than compiled languages at run time. Zhang et al
[27] demonstrate that, ignoring compile time, Python is signifi-
cantly slower than C at some typical problem involving repeated
floating point multiplication. However, it was also demonstrated
that Python’s extensibility to compiled libraries (Cython [4], for
instance) can improve its performance significantly.

Regardless of the performance implications, Python is still widely
used for intensive scientific computations. Oliphant [17] suggests
that one reason may be its highly expressive syntax: "comparable
to executable pseudo-code". This is attractive to academics who
do not have extensive programming experience. Furthermore, the
interpreter is platform-independent, meaning that the target archi-
tecture need not be considered when developing software. This
may be particularly useful in the case of distributed computation.

Pérez et al [18] described Python as "an ecosystem for scien-
tific computing”, noting that the flexibility and extensibility of the
language may be more important to some than pure performance,
especially for once-off computations and simulations. There are a
huge number of libraries that are useful for scientific work that can
be installed with one call to python’s built-in installer, and there
is no need to worry about linking binaries at compile time. They
also point out that the scientific computing landscape is moving
away from just performing floating point arithmetic and towards
the use of more complex data structures, many of which Python
would have native support for.

Another use case was described by Oliphant [17], where Python
is used as a steering language for scientific code written in some
other (often compiled) language. Mulder et al [16] introduced the
idea of computational steering with a review of the relevant envi-
ronments and architectures, but this has since become one of the
most common uses for Python: as a high-level scripting language
and automation tool. But even in entirely Python-based implemen-
tations, slight performance overheads are often trumped by ease of
development and deployment.



Python may still be optimal for time-constrained algorithms with
the help of some libraries designed exclusively to bring parallelism
and scalability to the language.

3 THE EXASCALE ERA

An exascale computing system is one that is capable of at least
one exaflops. That is, at least 10'® floating point operations each
second. With specific mention of the Square Kilometer Array, Bobak
et al [5] make the observation that modern telescope arrays can
produce several petabytes of data each month. With data storage
infrastructure struggling to keep up with this massive throughput,
it is often necessary to perform some type of pre-processing or
feature extraction on the data in real time as it is generated. This
lessens the load on the storage infrastructure, but requires compute
power at a truly astronomical scale. Even visualising and analysing
archived data at this scale is a challenge ill-suited to traditional
architectures and algorithmic design.

Shalf et al [21] recognise that the transition to exascale compu-
tation looks rather different than the previous transition to petas-
cale computation. Previously, it was an increase in processor clock
speeds that allotted faster computing, but now these clock rates can-
not increase much further due to the dynamic power wall. Now it is
mainly an increase in the number of processing cores that is driving
the increase in processing power. Heterogeneity and concurrency
are becoming increasingly integral in our modern computing in-
frastructure, and software design needs to adapt to take advantage
of this new technology.

However, this new paradigm is not without its concerns. The
issue of resilience is raised by Cappello et al [7], where they argue
that the greater number of processors and threads implicitly creates
a greater number of potential points of failure. Thus, robustness
needs to be a primary concern of exascale architecture.

Entirely new architectures are being developed for exascale com-
putation, such as the "codelet" approach suggested by Lauderdale
et al [14]. The idea here is to define the atomic unit of computation
as a codelet, which may be implemented with one or more threads.
Each codelet behaves like a process that is incapable of blocking and
is entirely responsible for its own error handling. They propose that
this creates software that is more robust and more easily scheduled
in heterogeneous computing systems.

Other architectures have been identified for use in exascale sys-
tems, such as the implicitly parallel pipe and filter pattern, some-
times referred to as the dataflow model.

4 THE DATAFLOW MODEL OF
COMPUTATION

In the seminal work, Culler [12] suggests thinking of the dataflow
model as a directed acyclic graph. Each node is some function, and
values (or tokens) travel along the arcs that connect the nodes. This
is a fundamentally different way of representing computation, as
there is in essence no program counter, the order of execution of
instructions is implicitly non-deterministic.

The abstract dataflow model assumes that each arc has un-
bounded storage, or that infinitely many tokens can be on an a
given arc at any point in time. It goes without saying that this is
practically impossible, and the way in which this is implemented

D Fouché (2020)

gives rise to two different dataflow types: the static dataflow model
and the dynamic dataflow model. In the static model, the maximum
number of tokens per arc is constrained to one, allowing for a much
simpler deterministic implementation. The dynamic model labels
each token and pools them in a large common memory space, leav-
ing the capacity of each arc essentially unbounded, but also leaving
us unable to enforce any particular ordering of tokens on each arc.
And as always, non-determinism in concurrent programs means
we have to watch out for fatal issues such as bad inter-leavings and
deadlock situations.

Verdosica et al [25] suggest that the static dataflow model is
a valid approach for exascale computation, on the condition that
the computing system is homogeneous. Others propose dynamic
dataflow systems to work across heterogeneous compute topologies,
such as the extreme-scale many-task system (ExM) proposed by
Armstrong et al [1] to abstract away from painful implementation
details for massively concurrent distributed algorithms.

Silva et al [22] demonstrated the efficiency of this approach for
analysing large raw-data files over distributed systems, which is a
typical use case in the astronomical domain.

5 VISUALISATION AND THE
ASTRONOMICAL DOMAIN

As mentioned previously, analysing and visualising large raw data
files can be very computationally expensive. Resultantly, many
have turned to massive parallelism to achieve this in real time or
sufficiently close to real time.

Mao et al [15], for instance, have developed a graph-based dataflow
model to schedule jobs over a highly distributed computing net-
work in order to process the exascale throughput from the Square
Kilometre Array. The authors built upon previous work such as
the open-source Celery [23] scheduler developed for the MeerKAT
telescope. Furthermore, a number of optimisation methods are pro-
posed for this system including a meta-heuristic approach such as
genetic algorithm optimisation, as well as other critical-path aware
hierarchical scheduling algorithms.

Wang et al [26] also use a dynamic dataflow model, in this case
composing dynamic web services for highly parallel astronomy data
processing. They aim to reach one of the primary goals of service-
oriented architecture (SOA): allowing end-user service development
without manual programming. It is shown that the PMGrid system
developed allows for asynchronous parallelism, while increasing
computational efficiency and helping to avoid human error.

Dataflow systems for astronomy data processing have been pro-
posed by many others at different implementation levels. Sane et al
[20] developed a low-level dataflow system for astronomical dig-
ital signal processing targeted at field programmable gate arrays.
The VISTA system developed by Irwin et al [13] uses a higher-level
pipeline processing system to analyse large volumes of raw infrared
(IR) data.

Zhang et al [28] implemented another dataflow system on the
massively scalable Amazon Web Servives EC2 cloud compute infras-
tructure. The authors use a computation model based on directed
acyclic graphs, similar to that of Mao et al [15]. Given this, the
authors report a 3.7X speedup over a naive C implementation with
multi-threading.



Implications of the Dataflow Paradigm in the Exascale Era of Scientific Computation

6 CONCLUSIONS

Our aim was to explore the validity of the dataflow paradigm for
exascale scientific computation. While there is a much literature
describing successful implementations of this nature, there is a
lack of modern research describing the efficacy of this approach to
exascale scientific computation as a whole.

Many have admitted the performance restrictions of interpreted
languages such as Python, and justified their use in the scientific
community with ease of use and massive extensibility. Its use may
not be so widespread had a vast set of libraries for scientific compu-
tation not been developed for the language. The shifting landscape
of the exascale era was described, as well as the new challenges it
poses for algorithmic design. New highly parallel approaches are
required to leverage this increase in computational power, and the
dataflow paradigm is one such model that can take advantage of
this.

The dataflow model, described originally as a hardware archi-
tecture and later adapted as a parallel programming pattern not
dissimilar to the pipe and filter model, is said to be highly effective
across heterogeneous distributed systems under certain implemen-
tation constraints. This model has already been adapted widely
in the astronomical domain, from low-level signal processing im-
plementations to massively scalable cloud compute systems. Still,
the benefits of using this approach versus the traditional object-
oriented design are rarely discussed.

Nevertheless, this appears to be a valid approach to address the
new requirements of exascale systems.

ACKNOWLEDGMENTS

This work is based on the research supported wholly or in part by
the National Research Foundation of South Africa (grant number
MND190716456261).

REFERENCES

[1] Timothy G Armstrong, Justin M Wozniak, Michael Wilde, Ketan Maheshwari,
Daniel S Katz, Matei Ripeanu, Ewing L Lusk, and Ian T Foster. 2012. ExM: High
level dataflow programming for extreme-scale systems. In 4th USENIX Workshop
on Hot Topics in Parallelism (HotPar), poster, Berkeley, CA.

NRAO ASIAA, IDIA. 2020. Cube Analysis and Rendering Tool for Astronomy.
https://cartavis.github.io

Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom,
E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, W. E. Kerzendorf,
A. Conley, N. Crighton, K. Barbary, D. Muna, H. Ferguson, F. Grollier, M. M.
Parikh, P. H. Nair, H. M. Unther, C. Delil, J. Woillez, S. Conseil, R. Kramer, J. E. H.
Turner, L. Singer, R. Fox, B. A. Weaver, V. Zabalza, Z. I. Edwards, K. Azalee
Bostroem, D. J. Burke, A. R. Casey, S. M. Crawford, N. Dencheva, J. Ely, T. Jenness,
K. Labrie, P. L. Lim, F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, and
O. Streicher. 2013. Astropy: A community Python package for astronomy. 558,
Article A33 (Oct. 2013), A33 pages. https://doi.org/10.1051/0004-6361/201322068
arXiv:astro-ph.IM/1307.6212

[4] S.Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. 2011.
Cython: The Best of Both Worlds. Computing in Science Engineering 13, 2 (march
2011), 31 -39. https://doi.org/10.1109/MCSE.2010.118

M. Bobak, L. Hluchy, A. Belloum, R. Cushing, J. Meizner, P. Nowakowski, V. Tran,
O. Habala, J. Maassen, B. Somoskéi, M. Graziani, M. Heikkurinen, M. Héb, and
J. Schmidt. 2019. Reference Exascale Architecture. In 2019 15th International
Conference on eScience (eScience). 479-487.

British Standards Institute. 2003. The C++ Standard: incorporating Technical
Corrigendum 1: BS ISO (second ed.). Wiley, New York, NY, USA. xxxiv + 782
pages.

Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
2009. Toward exascale resilience. The International Journal of High Performance
Computing Applications 23, 4 (2009), 374-388.

[2

=
&N

(5

=

l6

=

=

(8]

9]

== —
=S

[12

[13

[14

(15]

=
&

(17

[18

(19]

[20

[21

~
£,

[23

[24]

[25

[26]

&
=

[28

CARTAvis community. 2020. CARTA Backend. https://github.com/CARTAvis/
carta-backend/

Andrew Collette & contributors. 2020. HDF5 for Python. https://www.h5py.org
Dask core developers. 2019. Dask: Natively scales Python. https://dask.org
James Crist. 2016. Dask & Numba: Simple libraries for optimizing scientific
python code. In 2016 IEEE International Conference on Big Data (Big Data). IEEE,
2342-2343.

David E Culler. 1986. Dataflow architectures. Annual review of computer science
1,1 (1986), 225-253.

Mike J Irwin, Jim Lewis, Simon Hodgkin, Peter Bunclark, Dafydd Evans, Richard
McMahon, James P Emerson, Malcolm Stewart, and Steven Beard. 2004. VISTA
data flow system: pipeline processing for WFCAM and VISTA. In Optimizing
scientific return for astronomy through information technologies, Vol. 5493. Inter-
national Society for Optics and Photonics, 411-422.

Christopher Lauderdale and Rishi Khan. 2012. Towards a Codelet-Based Runtime
for Exascale Computing: Position Paper. In Proceedings of the 2nd International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era (London,
United Kingdom) (EXADAPT ’12). Association for Computing Machinery, New
York, NY, USA, 21-26. https://doi.org/10.1145/2185475.2185478

Yishu Mao, Yongxin Zhu, Tian Huang, Han Song, and Qixuan Xue. 2016. DAG
Constrained Scheduling Prototype for an Astronomy Exa-Scale HPC Application.
In 2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 631-638.

Jurriaan D Mulder, Jarke J Van Wijk, and Robert Van Liere. 1999. A survey of
computational steering environments. Future generation computer systems 15, 1
(1999), 119-129.

Travis E Oliphant. 2007. Python for scientific computing. Computing in Science
& Engineering 9, 3 (2007), 10-20.

Fernando Perez, Brian E Granger, and John D Hunter. 2010. Python: an ecosystem
for scientific computing. Computing in Science & Engineering 13, 2 (2010), 13-21.
A. M. Price-Whelan, B. M. Sip6cz, H. M. Giinther, P. L. Lim, S. M. Crawford, S.
Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas,
L. D. Bradley, D. Pérez-Suarez, M. de Val-Borro, (Primary Paper Contributors,
T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, (Astropy Coordination
Committee, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov, S. P.
Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M.
Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach,
H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. Cano Rodriguez, M. Cara, J. V. M.
Cardoso, S. Cheedella, Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, E.
Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro,
L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein,
R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P.
Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Z. Ivezi¢, A.
Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf, A. Khvalko,
J. King, D. Kirkby, A. M. Kulkarni, Astropy Contributors, et al. 2018. The Astropy
Project: Building an Open-science Project and Status of the v2.0 Core Package.
156, Article 123 (Sept. 2018), 123 pages. https://doi.org/10.3847/1538-3881/aabc4f
Nimish Sane, John Ford, Andrew I Harris, and Shuvra S Bhattacharyya. 2012.
Prototyping scalable digital signal processing systems for radio astronomy using
dataflow models. Radio Science 47, 03 (2012), 1-14.

John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale Computing Tech-
nology Challenges. In High Performance Computing for Computational Science
— VECPAR 2010, José M. Laginha M. Palma, Michel Daydé, Osni Marques, and
Jodo Correia Lopes (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-25.
Vitor Silva, Daniel de Oliveira, and Marta Mattoso. 2014. Exploratory analysis of
raw data files through dataflows. In 2014 International Symposium on Computer
Architecture and High Performance Computing Workshop. IEEE, 114-119.

Ask Solem et al. 2013. Celery: Distributed Task Queue. URL http://docs. celerypro-
Ject. org/en/latest/index. html (2013).

G. van Rossum. 1995. Python tutorial. Technical Report CS-R9526. Centrum voor
Wiskunde en Informatica (CWI), Amsterdam.

Lorenzo Verdoscia and Roberto Vaccaro. 2013. Position paper: Validity of the
static dataflow approach for exascale computing challenges. In 2013 Data-Flow
Execution Models for Extreme Scale Computing. IEEE, 38-41.

Man Wang, Zhihui Du, Yinong Chen, Shihui Zhu, and Weihua Zhu. 2007. Dy-
namic dataflow driven service composition mechanism for astronomy data pro-
cessing. In IEEE International Conference on e-Business Engineering (ICEBE’07).
IEEE, 596-599.

H. Zhang and J. Nie. 2016. Program performance test based on different comput-
ing environment. In 2016 IEEE International Conference of Online Analysis and
Computing Science (ICOACS). 174-1717.

Zhao Zhang, Kyle Barbary, Frank Austin Nothaft, Evan Sparks, Oliver Zahn,
Michael J Franklin, David A Patterson, and Saul Perlmutter. 2015. Scientific
computing meets big data technology: An astronomy use case. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 918-927.


https://cartavis.github.io
https://doi.org/10.1051/0004-6361/201322068
http://arxiv.org/abs/astro-ph.IM/1307.6212
https://doi.org/10.1109/MCSE.2010.118
https://github.com/CARTAvis/carta-backend/
https://github.com/CARTAvis/carta-backend/
https://www.h5py.org
https://dask.org
https://doi.org/10.1145/2185475.2185478
https://doi.org/10.3847/1538-3881/aabc4f

	Abstract
	1 Introduction
	2 Interpreted Languages for Scientific Computation
	3 The Exascale Era
	4 The Dataflow Model of Computation
	5 Visualisation and the Astronomical Domain
	6 Conclusions
	Acknowledgments
	References

