
Ontology Specifications to GenerateQuestions
Steve Wang

wngshu003@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Ontology have been used across multiple fields. This paper investi-
gates the use of ontology to generate quality questions. This project
aims to define a set of specifications on an ontology for it to generate
instances of different question types. In this way, higher quality, in
the aspects of syntax, semantics and ontology-answerable questions
can be generated. A software program was developed to generate
questions from an ontology and a list of question templates. The
resulting questions were evaluated for their quality and the feed-
back was analysed. These results show that only small portion of
the generated questions were good quality. The feedback provides
several reasons with regards to the poor quality of the generated
questions. Some of these reasons are the lack of scenario identified
to cover different cases of generation for the same template, the in-
correct use of axioms when generating questions and syntax errors
when defining the templates.

CCS CONCEPTS
• Applied computing → Enterprise ontologies, taxonomies
and vocabularies; •Computingmethodologies→ Natural lan-
guage generation;

KEYWORDS
ontology, knowledge representation, question generation, natural
language generation

1 INTRODUCTION
Ontology was initially created to provide a common vocabulary
at an abstract level above conceptual data models which assists in
the integration of multiple data and information systems. However,
over the last few decades, the use of ontology has spread into multi-
ple fields to assist in e-learning, navigating and the understanding
of scholarly documents, meta-mining of data mining experiments,
structuring and reasoning over scientific contents, deep question-
answering and ontology-driven conceptual data modelling. [4] In-
quire Biology is an example of an intelligent textbook that makes
use of ontology to support content based navigation and question
answer generation [1].

Inquire Biology also make use of template based NLG to generate
instances of various question types. This way of generating natural
language requires a set of question templates for each question
type. Questions are generated in this style by replacing the "blank
spaces" in the template with the appropriate words. In this study,
the "blank space" in a question template are represented by a class
in the ontology and such "blank space" can be replace with any
subclass of the original class. For example: The template "What does
a <animal> <objectProperty>?" can generate the question "What

does a lion eat?" where lion is a sub-class of animal and eat is a
sub-class of the objectProperty in the underlying ontology.

In this paper, high quality questions are defined as questions
that conform to the syntax and semantic rules of English and are
answerable by the ontology.

Often problematic questions are generated when the ontology
does not have sufficient axioms, classes or object properties that is
required to generate an instance of the question type. This paper
aim to solve this problem by providing a set of prerequisites for an
ontology to generate questions.

A list of question types along with their templates are defined.
Since ontology is class specific, as opposed to instance specific,
the list is refined to a set which contains only class specific ques-
tions. This list is then fed into a program along with an ontology
to generate questions. This process is then repeated, with vary-
ing characteristics and structure of the ontology each time. The
resulting questions are evaluated according to the notion of quality
questions defined above. From this, a set of specifications of an
ontology can be analysed and concluded according to the quality
of questions generated.

This paper focuses on answering this question, " What are the
characteristics that are required of an ontology to generate different
question types?”

2 RELATEDWORKS
The foundation of this paper is based across various fields. Ontology
is amajor building block for this project andwithin the ontology, the
decrption logic (DL) that it make use of is also an essential element
in determining whether if a generated question is answerable or
not. Protégé allow the ease to manage, edit and create ontologies
used in this project. Generating questions using template based
NLG is also an essential part of the project.

2.1 Ontology
Maria Keet’s book, "An Introduction to Ontology Engineering",
mentioned a few attempts to define that ontology is. One of which
stats that ontology is equivalent to a description logic knowledge
base. Essentially, ontology can be seen as classes or concepts in an
subject domain that are link with each other with different relation
and the underlying description logic provides more meanings and
restrictions to the ontology.

Web Ontology Language (OWL) is based of DL representation
formalism. It is most commonly used to format and serialise on-
tology into a text file. OWL was primarily designed to represent
categorised objects and the relationship between these objects.

Protégé is Ontology Development Environment (ODE) which
make it easy to design ontology by providing necessary tools to con-
struct domain models and knowledge-based applications. Among

all the other API-like functionalities include the function of gener-
ating serialised ontology into RDF/XML format.

2.2 Template Based Question Generation
Template based NLG is a form of NLG that maps non-linguistic
words into "gaps" in a linguistic structure. Such linguistic structure
have "gaps" in them are known as template. In this paper, templates
of different question types are identified and the "gaps" in template
are replace by the appropriate classes in an ontology.

3 DESIGN OF QUESTION TEMPLATE
The process of designing question templates were done is several
iterations. "Inquire Biology" is an smart textbook that makes use of
an ontology and template based NLG to generate questions relating
to the content. In the first attempt to identify question templates,
I have adapted question template used for "Inquire Biology" that
is mentioned in the paper "Question generation from a knowledge
base" [1] as follows:

• Definition Questions:What is <X>?
• Find a Value Questions (Basic Triple): What is R of <X>?
What are Rs of <X>?

• Yes/No Questions: Is it true that <Y> is R of <X>? and Is it
true that <Ys> are Rs of <X>?

• Identification Questions: What <X> has the following spe-
cific property/Properties? and List all <Xs> that have the
following specific property/Properties?

• Relationship Questions: What is the relationship between
<X> and <Y>? and What are the relationships between <X>
and <Y>?

• Comparison Questions: What is the [similarity/differences]
between <X> and <Y>? andWhat are the [similarities/differences]
between <X> and <Y>?

• How Many Questions : How many <Ys> are R of <X>? and
How many <Xs> have this specific property?

• Event Relations: What is R of <Event X>?
• Features/Property Questions: What is the property of <X>?
and What are the properties of <X>?

• Max Count Questions: Which <X> has most <R>?
However, these templates are domain specific to the field of

biology. Hence, there are not abstract enough to accommodate all
types of ontologies. In the second attempt to identify the appropriate
question templates that are more abstract and well rounded, I have
made use of question taxonomy defined by the information system
institute from the University of Southern California. The taxonomy
classifies question according to the type of answer that the question
is asking for [2]. Figure 8 in the appendix shows how the taxonomy
classifies different question types.

Although such question taxonomy covers a large variety of ques-
tion types in a structured manner, but certain questions are not
answerable by the ontology. This is due to the fact that ontology
are generally used for abstract and class level concept as opposed
to instance level question. For example, a person instance, "Steve",
is not stored as an subclass of person in the ontology. Neither is
any detail such as birth date and age of Steve will be stored as an
entity in the ontology. Therefore, questions such as "How old is
Steve?" is not answerable in the ontology. As a result, I have remove

instance level templates such as "How old is <Person>?" In general,
such instance level questions typically involves time, location and
names.

For simplicity, the final set of question templates are kept in
the singular form. The "gaps" in the templates are classes from the
DOLCE foundations ontology and they can be easily changed to
other equivalent classes of other foundations ontology. Each of the
question templates are mapped to description logic queries. This
makes sure that the question template are answerable within the
ontology.

3.1 Application of Question templates
An example of a question template is "Does a <particular> <Object-
Property> <particular>?" The "gaps" in the template is enclosed by
’<’ and ’>’ and the word in between is a token that represent a class
in the ontology. Such ’gaps’ can be replace with any subclass of
the class specified in the template. In the above example <particu-
lar> is replaced with a subclass of particular and <ObjectProperty>
is replace by any object property in the ontology. In the case of
replacing a "gap" with a specific type of object property, <Object-
Property:Verb> is used. This allows only object properties that are
verbs to replace the token.

Besides replacing tokens with its subclass, the replacement needs
to conform to the underlying DL so that the question is answerable
by the ontology. However, this differs across different question
types and will be explained for each question type for the rest of
section 3.

3.2 Yes/No Questions
These are questions that expects yes or no as an answer. I have
defined three different types of Yes/No questions which takes in
different sets of parameters. The first type requires two particulars
and a single relation and the second takes in two particulars, one
relation and a quantifier while the third type only requires one
eudurant and one perdurant. The choice of different sets of parame-
ter also depends on the DL of the ontology. Since ontology operates
under the open world assumption (OWA), we may only use a set
of parameters if the DL of the ontology explicitly says yes or the
negation of that for no.

3.2.1 Yes/No Questions with two particulars and one relation. In
DOLCE foundational ontology <Thing> is the root node of the on-
tology and since subclass relations are transitive by definition, any
other class is a subclass of <Thing>. Templates for such questions
are as follows:

• Does a <Thing> <ObjectProperty:Verb> a <Thing>?
• Did the <Thing> <ObjectProperty:Verb> the <Thing>?
• Is the <Endurant> <ObjectProperty:Nonverb> the <Perdu-
rant>?

• Was the <Endurant> <ObjectProperty:Nonverb> <Perdu-
rant>?

The tokens in the template can be varied to other lower classes so
that the template is specific to the subject domain. To explain the
underlying DL for this question type, consider the first template in
the above list. The generated question "Does a X OP a Y" gives the
answer "Yes", if X ⊑ ∃ OP.Y and "No" if X ⊑ ¬ ∀ OP.Y

2

3.2.2 Yes/NoQuestions with two particulars, one relation and a
quantifier. Templates of such questions are as follows:

• Does a <Thing> <ObjectProperty:Verb> <Quantifier> <Thing>?
• Did the <Thing> <ObjectProperty:Verb> <Quantifier> <Thing>?
• Is the <Endurant> <ObjectProperty:Nonverb> <Quantifier>
<Perdurant>?

• Was the <Endurant> <ObjectProperty:Nonverb> <Quanti-
fier> <Perdurant>?

Consider the following question "Does a X VERB some Y?" This
question results in "Yes" if X ⊑ ∃ VERB.Y and "No" if X ⊑ ¬ ∃
VERB.Y. The question "Does a X VERB all Y?" results in "Yes" if
X ⊑ ∀ VERB.Y and "No" if ⊑ ¬ ∀ VERB.Y

3.2.3 Yes/No Questions with one Endurant and one Perdurant.
Generating instances of these question type require "participate-
in" relation within the ontology. Since DOLCE is the foundational
ontology in the project and DOLCE have "participate-in" relations.
Template of such questions are as follows:

• Does a <Endurant> <Perdurant>?
• Did a <Endurant> <Perdurant>?
• Is the <Endurant> <Perdurant>?
• Was the <Endurant> <Perdurant>?

Consider the following generated question "Does a X Y?" This
question will result in "Yes" if X ⊑ ∃ participate-in.Y and "No" if
X ⊑ ¬ ∀ participate-in.Y

3.3 True/False Questions
Similar to questions templates in section 3.2. The expected answer
of these question instance are either "True" or "False". There are
two different types of true/false questions, the first type uses two
particulars and a relation as parameters and the second types has
an additional quantifier. Once again, I took in to consideration that
the ontology operates under OWA. Hence, a question is false if the
ontology explicitly says so.

3.3.1 True/False Questions with two particulars and one relation.
The template of such questions are as follows:

• True or false: A <Thing> <ObjectProperty:Verb> a <Thing>.
• True or false: The <Thing> is <ObjectProperty:Nonverb>
<Thing>.

• A <Thing> <ObjectProperty:Verb> <Thing>. True or false?
• The <Thing> is <ObjectProperty:Nonverb> <Thing>. True
or false?

Consider the question "True or false: A X OP a Y." The answer is
"True" if X ⊑ ∃ OP.Y and "False" if X ⊑ ¬ ∀ OP.Y

3.3.2 True/False Question with additional quantifier. The tem-
plate of such questions are as follows:

• True or false: The <Thing> is <ObjectProperty:Nonverb>
<Quantifier> <Thing>.

• True or false: A <Thing> <ObjectProperty:Verb> <Quanti-
fier> a <Thing>.

• A <Thing> <ObjectProperty:Verb> <Quantifier> <Thing>.
True or false?

• The <Thing> is <ObjectProperty:Nonverb> <Quantifier>
<Thing>. True or false?

Consider the generated question "True or false: The X is OP some
Y." The answer is "True" if X ⊑ ∃ OP.Y and "False" if X ⊑ ¬ ∃ OP.Y.
The question, "True or false: The X is OP all Y.", is "True" if X ⊑ ∀
OP.Y and "False" if X ⊑ ¬ ∀ OP.Y.

3.4 Equivalence Questions
This is a special case of sections 3.3.2 where the relation between
class X and Y is the equivalent-to relation. The template of such
question type is as follows:

• Are there any differences between a <Endurant> and a <En-
durant>?

• Are there any differences between <Perdurant> and <Perdu-
rant>?

• Are there any differences between <Quality> and <Quality>?
The question "Are there any differences between a X and a Y?" gives
answer "Yes" if X ≡ ¬ Y and "No" if X ≡ Y under the OWA.

3.5 Subclass Identification Questions
These can also be seen as "What" questions and they are also cate-
gorised into three class, one with quantifiers and the other without
quantifiers and both of which takes in two particulars and a relation.
The third type takes one particular and one relation.

3.5.1 Subclass identification questions with two particulars and
one relation. and the templates are as follows:

• What <Thing> <ObjectProperty> <Thing>?
The answer of a generated question "What X OP Y?" is any subclass
Z ⊑ X ⊓ OP.Y

3.5.2 Subclass identification question with additional quantifier.
and the template is as follows:

• What <Thing> <ObjectProperty> <Quantifier> <Thing>?
The answer of a generated question "What X OP some Y?" is any
subclass Z ⊑ X ⊓ ∃OP.Y and the question "What X OP all Y?" would
have the answer of any subclass Z ⊑ X ⊓ ∀ OP.Y

3.5.3 Subclass identification questions with one particular and
one relation. The question templates are as follows:

• What does a <Endurant> <ObjectProperty:Verb>?
• What did a <Endurant> <ObjectProperty:Verb>?
• What is the <Endurant> <ObjectProperty:Nonverb>?
• What was the <Endurant> <ObjectProperty:Nonverb>?

For generated question "What does a X OP?" the answer is any
class Y such that X ⊑ ∃ OP.Y

3.6 Narrative Questions
These question can also be seen as definition questions. The tem-
plates used in this project is the following:

• Define <Thing>.
• What is <Thing>?

A class in an ontology is defined if it satisfies one of the following
criteria:

(1) The class is annotated with a definition.
(2) The class has at least one equivalent class.
(3) The class has at least one superclass, at least one subclass or

a combination of both
3

Therefore, for question such as "Define X" can either annotated
definition, equivalent class or its relations to its super and subclasses
as an answer.

4 QUESTION GENERATOR
The question generator was created using Java with Netbeans IDE.
It makes use of the two major dependencies, the OWL api and the
Hermit reasoner. Figure 10 shows the graphical user interface (GUI)
of the question generator. The generator takes a .txt textfile that
contains the template and an .owl file that contains the ontology as
inputs.

4.1 Input standards
The question templates text file needs to be in a specific format so
that the question generator can recognise the question types and
apply algorithms to substitute the set of tokens accordingly. The
question template file start with a question type and followed by
template of that question type. The following is an illustration of
how a question template should look like:
Question type 1
Template 1
Template 2
....
Question type 2
Template 1
Template 2
....

There are in total 10 different question types and templates of
each question type is explained in the previous section. The string
representation for each question type that is recognised by the
generator are as follows:

(1) Yes-No 2 particular 1 relation
(2) Yes-No 2 particular 1 relation + quantifier
(3) Yes-No 1 particular 1 relation
(4) Equivalence
(5) True-False
(6) True-False + quantifier
(7) What 2 particular 1 relation
(8) What 2 particular 1 relation + quantifier
(9) What 1 particular 1 relation
(10) Define

The question generator also defines various result sets. Each result
set contain sub-class name(s) and/or sub-object property name(s)
that are used to replace tokens in the templates. Some question
groups may use the same result set since they expects the same
form and combination of sub-classes, sub-object properties and/or
quantifiers. Question type 1 and question type 5 from the above
list requires the same result set, both requires two sub-classes and
an object property, and the result set needs to conform to the same
DL, that is:
For OWLClass X, Y and OWLObjectProperty OP
X ⊑ ∃ OP.Y
X ⊑ ¬ ∀ OP.Y
Hence, these two question types are grouped into Question Group
1, and the same algorithm applies to both of them. The same applies
to question type 2 and question type 6. Both require result sets

in the form of two particulars, one relation and a quantifier and
conform one of the following DLs:
For OWLClass X, Y and OWLObjectProperty OP
X ⊑ ∃ OP.Y
X ⊑ ¬ ∃ OP.Y
X ⊑ ∀ OP.Y
X ⊑ ¬ ∀ OP.Y
Since, the same algorithm is applicable to both question types, they
are grouped into Question Group 3. The rest of the question types
belongs its own question group: yes/no questions with an endurant
and a perdurant belongs to question group 2, what questions with
two particular and a relation belongs to question group 4, what
questions with one endurant and one object property belongs to
question group 5, what questions with an additional quantifier be-
longs to question group 6, definition questions belongs to question
group 7 and equivalence questions belongs to group 8.

Figure 1 give a table of how the question types were grouped
Different result sets are defined to present words that replaces

tokens in a structured manner. Certain question groups share the
same result set because they expect the same entity types as a result.

Figure 2 shows different result sets, the structure of the result
set and which question types makes use of it.

Question groups 7 (Definition Questions) and 8 (Equivalence
Questions) are not assigned any result sets. This is because there
are no decencies between the expected result of these question
group.

The question generator assumes that all the question templates
have only "a" and "the" as articles. Therefore, the generator is
equipped to change "a" to "an" if the substituted word starts with a
vowel but it is unable to handle change of articles if "an" appears in
the templates.

On the other hand, there are a set of specifications and standards
on the input ontology so that the question generator can recognise
and work with it. The input question templates use class names of
the DOLCE foundational ontology as tokens, as a result the genera-
tor may not be able to recognise the tokens if another foundational
ontology is used in the input ontology. However, a quick and easy
fix is to replace the tokens in the template with the equivalent class
names or object property names from the input ontology.

Figure 9 in the appendix gives a set of classes and relational
properties and their equivalent names across three different foun-
dational ontology.

Another standard that input ontology should have is that all
classes and object property beside the top node (OWL:Thing) and
the bottom node (OWL:Nothing) must have the same prefix. The
question generator make use of org. semanticweb. owlapi. model.
PrefixManager to add prefixes to a String so that it can used in
ontology queries as an OWLClass. For an example animal in the
African wildlife ontology has the full IRI name, file:/Applications/
Protege_4.1_beta / AfricanWildlifeOntology1.owl#animal. When
given the token <animal> from the template as a String, the prefix
manager adds the prefix to the String and outputs it to the OWL-
DataFactory to create the corresponding OWLClass. This become
a problem is the classes in the ontology have different prefixes,
the PrefixManager does not know which prefix corresponds to
which String. Therefore, it is necessary that all class and object
properties have the same prefix. However, the OWL:Thing and

4

Figure 1: Table of Question Groups

Figure 2: Table of Result sets

OWL:Nothing are two exceptions, they usually have different pre-
fixes but these two classes can be called by the reasoner using
reasoner.getTopClassNode() and reasoner.getBottomClassNode()
methods respectively.

In OWL, object properties can be seen as roles or relations be-
tween two OWLClasses. It is necessary that these object properties
are classified into verbs and non-verbs. This is because the syntax
rules of English, certain question template only conforms to the
syntax rules of English if the object property is a verb. Likewise,
other question templates can only work with non-verb object prop-
erties. For example: the result set [“branch”, “a-part-of”, “tree”]
where both “branch” and “tree” are OWLClasses and “a-part-of”
is an object property that is a non-verb. Here we cannot use the
template “Does a <Thing> <ObjectProperty> a <Thing>?” because
the resulting sentence “Does a branch a part of a tree?” violates the
syntax of an English sentence. However, the same result set works
perfectly to a different question template. Consider, the template “Is
the <Thing> <ObjectProperty> the <Thing>?” by substituting the
same result set gives the sentence “Is the branch a part of the tree?”
which conforms to the syntax of an English sentence. Similarly, the
result set [“lion”, “eat”, “impala”] would not work the template “Is
the <Thing> <ObjectProperty> the <Thing>?” because the result-
ing sentence “Is the lion eat then impala?” does not make sense
but using the same result set with the template, “Does a <Thing>
<ObjectPropert> a <Thing>?” give a sensible resulting sentence
of “Does a lion eat a impala?”. Therefore, it is important for both
the template and the ontology to distinguish between verb and

non-verb object property. For the above example, a-part-of should
be a sub-object property of non-verb and eat should be a sub-object
property of verb in the ontology. As the templates were changed
to “Does a <Thing> <ObjectPropert:Verb> a <Thing>?” and “Is the
<Thing> <ObjectProperty:Non-verb> the <Thing>?”

The question generator also assumes that the input ontology is
consistent. Any inconsistency in the ontologymay cause the Hermit
reasoner to give unexpected results. This can output unwanted
result set and generate poor quality questions.

4.2 Question Generation Algorithms
This subsection explains the algorithms used for each of the ques-
tion groups. This ensures that the generated question is answerable
by the ontology. Although, a major part of the algorithms varies for
different question groups, there are several steps in the algorithms
that are same across all question groups. There are 3 different type
of tokens: quantifier tokens, OWLObjectProperty tokens and OWL-
Class tokens. All tokens in a template appear in between ’<’ and ’>’.
Quantifier tokens are represented as <quantifier> in the templates,
it is replaced with either "some" or "all". OWLObjectProperty tokens
can be represented in the template in one of two way. When the
token appears as <ObjectProperty> then it can be replaced with
any sub-object property in the ontology that satisfies the DL of the
question type. If it appears as <ObjectProperty:X> where X is an
object property in the ontology, then the token is replaced with any
sub-object property of X that satisfies the DL of the question type.
If a token is either a quantifier token or an OWLObjectProperty

5

Figure 3: Diagram of the question generation process

token, then it is a OWLClass token, where the word in between
’<’ and ’>’ is the name of a class in the ontology. If <Y> appears
in the template, the it can be replaced with any subclass of Y that
conforms to the underlying DL of the question type.

The reasoner was used across many question generations. Get-
ting sub-classes of a given class is mostly widely used. The reasoner
was also used when getting the domain and range of a OWLObejct-
Property. However, these may not always return what you expect.
For example: If an ontology have classes ["Land", "Sea", "Sky",] as
sub-classes of the class ["Endurant"] and an OWLObjectProperty
["Lives-on"] that have range Land ⊔ Sky ⊔ Sea. Then the reasoner
query, reasoner.getObjectPropertyDomains (participate-in,false) re-
turn "Endurant" rather that the set ["Land", "Sky", "Sea"] and notice
that "Endurant" is the superclass of a lot more classes than just
"Land", "Sky" and "Sea".

To handle the NLG aspect of the question generation, a java class
called Linguistic Handler contains algorithms that handles article
checking, word replacement and String manipulations. When a
word replaces a token in the template, the linguistic handler checks
if the word starts with a vowel and adjust the word "a" to "an" ac-
cordingly. Linguistic handler also produces class names from String
representations of OWLClass. For example: The toString method
of an OWLClass produces "file:/Applications/ Protege_4.1_beta /
AfricanWildlifeOntology1.owl#animal", the linguistic handler re-
moves the prefix and produces the class name "animal". The most es-
sential functionality of the linguistic handler is that it maps parts of
the result set to the corresponding "gaps" in the templates. For exam-
ple: consider the template "Does a <Thing> <ObjectProperty:verb>
<Thing>?" with type 1 result set ["lion", "eat", "Impala"]. The linguis-
tic handler recognises that type 1 result set is of the form [OWLClass
X, OWLObjectProperty OP, OWLClass Y] and it maps to the tokens
in the templates as "Does a X OP Y?". Hence, the above example
becomes "Does a lion eat a impala?"

Figure 3 show a flow cart diagram of the overview of question
generation process.

4.2.1 Group 1Question Generation. For group 1 questions ex-
pects a types 1 result set which contains [OWLClassExpression (X),
OWLObjectPropertyExpression (OP), OWLClassExpression (Y)]
and the result set need to conform to either one of the two ontology
axioms:

(1) X ⊑ ∃ OP.Y
(2) X ⊑ ¬ ∃ OP.Y

In OWL, we can view object property, OP, as a function where the
domain is, OWLClass X and the range is OWLClass Y. Therefore, it
is clear that both X and Y is dependent on OP. The algorithm starts

Figure 4: Diagram of group 1 question generation

off by determining all the sub-ObjectProperty of the OP specified
in the template. For each sub-ObjectProperty, the algorithm finds
a set of domain and a set of range. Keep in mind that a domain in
only valid if it is a subclass of the OWLClass specified in between
’<’ and ’>’ in the template and the same applies to ranges resulting
in a set of valid ranges. A type 1 result set is then construct with a
random element from the set of valid domains, a random element
from the set of valid ranges and the sub-objectProperty current at
hand. This step is repeated for each sub-objectProperty, this results
in a valid result set generated every iteration. The file final result
set that are applied to the template are randomly picked from the
set of valid result sets.

figure 4 is a flow chart diagram of the generation algorithms
explained above.

4.2.2 Group 2 Question Generation. There two different way to
view group 2 question template:

(1) Does a <Endurnat> <Predurnat>?
(2) Does a <Endurant> <ObjectRelation:Verb>?

To generate instances of questions from template (1), the ques-
tion generator have to assume that the ontology makes use of the
participate-in object property. In this case, for an OWLClass X ⊑

Endurant and an OWLClass Y ⊑ Perdurant, the pair have to satisfy
one of the following axioms:

• X ⊑ ∃ participate-in.Y
• X ⊑ ¬ ∀ participate-in.Y

if the pair (X,Y) satisfies the first axiom then algorithm generates a
question with a "Yes" answer and if the second axiom is satisfied
then the algorithm generates a question with a "No" answer.

Template (2) can be used for any ontology as long the ontology
contains some OWLClass X ⊑Endurant and some OWLObjectProp-
erty OP ⊑Verb that satisifies the one of the following axioms:

• X ⊑ ∃ OP.Y, where Y is any class in the range of OP
• X ⊑ ¬ ∀ OP.Y, where Y is any class in the range of OP

Template (2) can be used for a larger range of ontologies. However,
the question generator assumes that the ontology makes use of
the DOLCE foundational ontology and the "participate-in" object
property is always available in DOLCE. Hence, template (1) is used
here to generate questions.

6

Figure 5: Diagram of group 3 question generation

The algorithm for question group 2 output type 2 result sets. Type
2 result set consists of 2 OWLClassExpressions. The algorithm of
group 2 questions are similar to that of group 1 questions. Instead
of, going getting domains and ranges for all sub-objectProperties,
the algorithm get only the domains and the ranges for participate-in
object property only. The output result set consists of a randomly se-
lected domain and a randomly selected range. Once again, keeping
in mind that the selected domain and range need to be sub-classes
of endurant and perdurant respective according to the template.

Figure 11 shows that the algorithm is the same as group 1 ques-
tion generation algorithm shown in figure 4with the object property
fix at "participate-in" OWLObjectProperty.

4.2.3 Group 3 Question Generation. The algothem first finds
all sub-object properties (subOP) of the given object property (OP)
from the template. For each sub-object property, the algorithm
finds a set of ranges(R). It then filters out all the invalid ranges
that are not sub-classes of the second OWLClass specified in the
template. For each sub-objectProperty and each valid range (validR),
the algorithm finds all OWLClass X such that it satisfied at least
one of the follwing axioms:

(1) X ⊑ ∃ subOP.validR
(2) X ⊑ ¬ ∃ subOP.validR
(3) X ⊑ ∀ subOP.validR
(4) X ⊑ ¬ ∀ subOP.validR

Lastly, the algorithem filters out all invalid domains that are not a
subclass of the first OWLClass specified in the template. If x satisfies
(1) or (2), the algorithm return as a type 3 result set which contains
[X , subOP, Y, "some"]. On the other hand, if X satisfies (3) or (4),
the algorithem return as type 3 result set which contains [X, subOP,
Y, "all"]. For questions generated based on axiom (1) or (3) should
return a "Yes" or "True" answer and questions generated based on
axiom (2) or (4) should return a "No" or "False" answer.

Figure 5 depicts the above generation algorithm for question
group 3.

4.2.4 Group 4Question Generation. The algorithm that gener-
ate group 4 questions expects results of two OWLClasses and an
OWLObjectPropert. Therefore, a type 1 result set is used here. This
algorithm works in a similar way as to group 1 question genera-
tion: Start off by finding all sub-objectProperty of the given object

property. Determine a set of valid ranges and valid domains for
each of the sub-objectPropety. An extra step of domain filtering
is required in this algorithm, the selected domain cannot be an
end node in the ontology. This is because the answer of group 4
question is always a subclass of the domain. Group 4 questions are
based on the following axioms: For OWLClass X, OWLClass Y, and
OWLObjectProperty OP that replaces tojkens in the template, we
have an OWLClass Z such that, Z ⊑ X and X ⊑ ∃ OP.Y and Z is the
expected answer of the generated question.

Figure 12 in the appendix depicts the above generation algorithm
for question group 4.

4.2.5 Group 5 Question Generation. Group 5 questions requires
an OWLClass and an OWLObjectProperty to replace the tokens
in the templates. Therefore, result set 5 is used to manage the
output of the algorithm. This algorithm operates exactly the same
as the group 1 question generation, we get a triplet [OWLClass X,
OWLObjectProperty OP, OWLClass Y] that satisfies the following
axiom:

• X ⊑ ∃ OP.Y
The difference is that the template only requires OWLClass X and
OWLObjectProperty OP. OWLClass Y is the expected answer of
the generated question.

Figure 13 in the appendix depicts the above generation algorithm
for question group 5.

4.2.6 Group 6 Question Generation. The algorithm for group
6 questions output a set of quadruplet in the form of [OWLClass
X, OWLObjectProperty OP, quantifier, OWLClass Y], hence type 3
result set is used here. The result set is generated similar to group
3 question generation with an extra domain filtering step which
removes all domains that are an end node of the ontology. Similar
to group 4 question generation, the answer of group 6 question
generation is always a sub-class of the domain. For each result set
generated there exist a OWLClass Z such that Z ⊑ X and the result
set satisfies at least one of the following axioms:

(1) X ⊑ ∃ OP.R
(2) X ⊑ ∀ OP.R

The corresponding result set for axiom (1) have the format of [X,
OP, "some", Y] and [X, OP, "all", Y] corresponds with axiom (2).
The expected answer for this question group is class Z mentioned
above.

Figure 14 in the appendix depicts the above generation algorithm
for question group 6.

4.2.7 Group 7 Question Generation. As explained in section 3.6,
a class in an ontology in the following three ways:

(1) The class is annotated with a definition.
(2) The class has at least one equivalent class.
(3) The class has at least one superclass, at least one subclass or

a combination of both
The generating algorithm checks each class for the above ways to
define a class using the following methods respectively:

(1) Check if the set, OWLClass.getAnnotations(ontology, isDe-
finedBy) is empty or not. An empty set means that the class
is not annotated with a definition.

7

Figure 6: Diagram of group 7 question generation

(2) Check if the set, OWLClass.getEquivalentClasses(ontology)
is empty or not. An empty set shows that the class does not
have any equivalent classes.

(3) Check if the sets, OWLClass.getSuperClasses(ontology) and
OWLClass.getsubClasses(ontology) is empty. The algorithm
then removesOWL:Thing from the first set andOWL:Nothing
from the second set because these classes are trivial. If both
resulting set are empty, then it means that the class is not
related to any other class.

If the class does not satisfy any of the three ways of definition, in
other words, if the class is not annotated with a definition and is
disjoint from the rest of the ontology, then algorithm removes such
classes as candidates for possible replacement of the token in the
template.

Figure 6 depicts the above generation algorithm for question
group 7.

4.2.8 Group 8 Question Generator. Group 8 questions only con-
tains equivalence questions. Although there are two "gaps" in the
template, it is intuitive that these two tokens are in one of the
following structure:

• The two token are representations of the same class in the
ontology. Example: "Are there any differences between a
<Endurant> and a <Endurant>?"

• The class representation of one token is a subclass of the
class representation of the other class. Example: "Are there
any differences between a <Endurant> and a <Animal>?"

A counter intuitive example is "Are there any differences between
a <Endurant> and a <Perdurant>?" Unless these is an axiom in the
ontology that specifically states that Endurant is not equivalent to
Perdurant.

Group 8 question generator results in two OWLClasses. Al-
though it is possible to just replace any sub-classes of the classes
specified by the template, but under the OWA class X is not equiv-
alent to class Y only if the ontology specifically say so. Therefore,
it cannot be assumed that if Y is not in set, X.getEquivalentClasses(
ontology), implies that X is not equivalent to Y. If OWLClass X

is equivalent to OWLClass Y (X ≡ Y), then by the symmetry
of equivalence, OWLClass Y is also equivalent to OWLClass X (
Y ≡ X). The algorithm checks X ≡ Y by searching for Y in the
set, X.getEquivalentClasses(ontology) and X ≡ ¬ Y is the set,
X.getEquivalentClasses(ontology) contains ¬ Y.

Figure 15 in the appendix depicts the above generation algorithm
for question group 8.

5 EXPERIMENT DESIGN AND EXECUTION
The main aim of this experiment is to evaluate the quality of the
generated questions. Besides the evaluation, another aim is to gather
other details through feedback provided by the participants which
is discussed in section 5.1. Section 5.2 gives a general overview
of what was expected as the outcome of this experiment. There
are 2 sets of evaluations in the experiment. Both sets are a list of
generated questions from the same ontology but with different
templates. The materials used to do so is provided in section 5.3.
Section 5.4 provides the process of this experiment and experiment
methods used in detail.

5.1 Aim
The aim of this evaluation is to determine the quality of questions
generated by the software mentioned in section 4. The quality of
questions in this paper consists of three aspects. The syntax of
a question refers to rules in the grammar of English for the use
of words, punctuation, phrases, clauses and the structure of the
sentence. The second aspect of a quality question is the semantics of
the question. A question with a clear and unambiguous meaning is
known to have good semantics. The last aspect of a quality question
is that it must be answerable by the ontology. However, questions
used in this experiment should be answerable by the nature of
question generation algorithms mentioned in section 4.2.Unless the
algorithms defined are incorrect and this can be reflected from the
semantics of the generated questions.

Feedback fromparticipant are analysed and compared to given an
indication on any problems. Such problem can be in term of syntax,
semantic or the question generation algorithms. These identified
problems can be used to improve the next version of ontology
question generator and for the better understanding of limitations
and specifications to generate quality questions.

As mentioned above, there are evaluation of two different sets of
questions generated from the same ontology but different templates.
The differences for the template is mentioned in section 5.3. By
comparing the evaluation results from both sets of questions, it
may give indications as to what are the pros and cons of applying
template of different levels and how that affects the quality of the
questions.

5.2 Hypothesis
The hypothesis of this experiment is that the generated questions
should make some sense in term the underlying ontology and the
axioms that each question type refers to. Since, the token replace-
ments are randomly generated, typically from a set of domain or
range, some unforeseen errors may arise. Any errors with the gen-
eration algorithms should have a knock on effect on the semantics
of the questions.

8

The syntax of the generated questions should be correct in a
typical scenario where the expected words appears in the correct
token slots. Unforeseen cases of question syntax may also arise.
Once again, this is due the random selection of replacement word
from a set of domain and range. Syntax errors may also arise from
the fact that many possible change of syntax depending different
factors, such as the replacement words for tokens, may not be
covered in the limited time frame of this project.

5.3 Materials
The participants evaluated two set of questions generated from
the same ontology but different question templates. The ontology
used is an extended version of the African Wildlife ontology, by
adding enough classes and object properties to the original African-
WildlifeOntology1.owl [3] that allows the question generator to
generate all question types investigated in this project. This on-
tology has 41 classes which are shown in figure 16 and 10 object
properties show in figure 17. Besides the addition of DOLCE founda-
tional ontology to the AfricanWildlifeOntology1.owl by classifying
all classes into endurants and perdurants, the object properties
were also classified into verb and non-verbs. Ranges on the newly
added object properties such as "Live-on" and "participate-in" are
"Land or sea or sky" and "walk or fly or hibernate", respectively.
Domains of such object properties were not specified as it causes
inconsistencies of the ontology. An example of such inconsistency
occurs when adding "animal" as the domain of the object property
"eats" with its existing range from AfricanWildlifeOntology1.owl
as this cause a problem since "animal" is disjoint from "plant".

The first set of questions consists of 30 automatically gener-
ated questions. This set of questions are generated from the set
of template identified in section 3 which are listed is figure 18
in the Appendix. Question templates used in the 1st evaluation
are generally abstract and the tokens are usually high level OWL-
Classes in the ontology. Such OWLClasses are usually contained
in the foundational ontology, in this specific ontology the DOLCE
foundational ontology. This allows the template to be used across
variety of different ontologies that uses DOLCE foundational ontol-
ogy ontologies. The tokens can be replace with other equivalent
OWLClasses from other foundational ontologies as discussed in
previous section 4.1. The resulting questions used for evaluation 1
is listed in figure 20.

In contrast, the question templates that are used to generate eval-
uation 2 are more subject domain specific. A template in evaluation
1 were replaced with multiple templates based on the different
scenarios that this template can be apply to. For example: This
template in the first set

• "What <Thing> <ObjectProperty> <Thing>?"
can be replaced with the following templates which are different
scenarios of the above template.

• "What <animal> <ObjectProperty:eat> <animal>?"
• "What <animal> <ObjectProperty:eat> <plant>?"
• "What <animal> <ObjectProperty:Live-on> <Habitat>?"
• "What <animal> <ObjectProperty:Participate-In> <Perdu-
rant>?"

In this way 40 question templates were developed form the 1st
set of templates. On the down side, this type of template are less

Figure 7: Number of quality questions that were evaluated

diverse and not applicable to other ontology. The template “Does
a <animal> <ObjectProperty:eats> <plant>?” is applicable to the
African Wildlife ontology, but not for other ontology such as the
data mining ontology because the OWLCLASS "animal", "plants"
and OWLObjectPeoperty "eats" does not exist in the data mining
ontology and hence there are no ontologies to replace these tokens
with. Figure 19 in the appendix shows the templates used to gener-
ate a set of questions for evaluation 2. The resulting question are
list in 21.

5.4 Methods
A group of University of Cape Town (UCT) students were recruited
to complete the evaluations. All participant has at least a matric
pass of English and are able to speak fluent English. Each of the
participant were given either evaluation 1 or evaluation 2 and in
some cases both evaluations depending of the availability of the
participants.

An evaluation required participants to read through every gen-
erated question and determine whether each question conforms
to the syntax and semantic of English. The participants were also
given an option to provide feedback to questions that they think
violated grammatical rules of English or just simply just didn’t
make sense. These feedback can be either stating what they think
was wrong with the question or provide a question that conform
to the rules of English and makes sense to them.

6 RESULTS AND FINDINGS
There were in total 11 evaluations done. 5 of which were evalua-
tion 1 and 6 evaluation 2. Figure 7 shows the number of quality
questions in each of the evaluation that was conducted. This show
that 26% of the generated questions in the first evaluation were
considered quality questions while the second evaluation produce
34% of quality questions. From this one can see that specifying the
template to a lower level class token helps to improve the quality
of the generated questions.

However, the issue arise while developing template for the sec-
ond evaluation is that there may be the risk of over specifying the
templates. If that was the case, the tokens in the template are lo-
cated at lower levels of the ontology or even worse at instance level,
then it defeats the purpose of creating a template for automated
generations.

Analyse and reflection on the feedback provided by the partici-
pants gave insights as to why the rate of quality question genera-
tion is so low. A list of issues with the current question generation
system and potential improvements for the next attempts in an
ontology-based question generation are as follows:

9

• The present of ambiguity in the generated questions may
cause some questions not too be answerable by the ontology.
For example: "Does the carnivore participate in fly?", the
more direct and easier way to ask this question is "Does
carnivores fly?". However, ambiguity occurs depending on
how the user interprets "participate in"

• Depending on the scenarios and the nature of the replac-
ing word, the articles "a/the" changes. For example: Using
the template "Was the <Thing> <ObjectProperty:Nonverb>
<Thing>?", the sentences "Was the Impala eat by the lion."
and "Was the branch a prat of a tree?" both conformed to
the template but the article of the second replacing words
differs.

• The need to take into consideration that terms used for the
names of the object property may not be suitable to be used
for NLG. For example: "Group of" or "Type of" are more
sensible replacements for "subclass of".

• Better decision of the use of templates. For example: consider
the templates "Does a <animal> <Perdurant>?" and "Did a
<animal> <Perdurant>?". Replacement tokens with "bumble-
bee" and "fly" respectively, works for the 1st template but
not the 2nd.

• Same issues as the previous point but applied to was/is. This
shows that the choice of words changes the templates that
is required to generate a quality question and vise versa the
choice of the templates changes the tense and form of the
replacing words.

• Some words always uses article "the" instead of a/an. Exam-
ple: The land, the sea

• Considering the previous 3 points one can see that the ar-
ticles "a" and "the" cannot to fixed in the templates since it
changes according to the replacing word. However, this can
be solved by replace one template with multiple scenarios
of that template. Like the differences between evacuation 1
and evaluation 2 5.3.

• Avoid repetition of replacing tokens. Example: "The hiber-
nate is proper part of hibernate."

• The use of a-proper-part-of does not work in sentences,
rather use a-part-of.

• In some case of group 4 questions ("What" questions), better
option is to use "Which" rather than "What". For example:
"Which terrestrial eats rock dassie?" makes more sense then
the question "What terrestrial eat rock dassie?"

• Words changes singular/plural depending on where they are
in the sentence. Example: the word "plant" in the following
sentences "what plant is eaten by impala?" "what animal eat
plants?"

• The generation of open ended questions such as "What
does an impala participate in?". Even though the range of
participate-in is eat, walk and hibernate but the reader does
not know the underlying ontology well enough to under-
stand the question.

• In some cases the tense change depending on the Genaro.
For example: Human is a part of animals , but never: human
was a part of animals

Besides the above listed syntax and semantic errors that occurred,
another major issue that caused in the low rate of quality questions
generation is that use if domain and range of the objectProper-
ties rather than using of axioms that that generate more sensible
question.

The insufficiency of using a random domain and range to replace
tokens come from the fact that domain cannot be specified for
certain object properties which inconsistent ontologies as discussed
in section 5.3.

Another down fall of the questions generated for the evaluations
in because that the ontology used was too small and causes repeated
random generations.

7 CONCLUSION
In this project, a set of question templates was defined. Each tem-
plate is questions that have "gaps" known as tokens in it. A token
represents a class in the ontology and when generating questions
these token are replace with sub-classes of the token that conforms
to the underlying axiom of the question type.

Given a template we can specify the requirement on the on-
tology to generate such questions. Besides, the simple fact that
the ontology need to be populated with a set classes and object
property, more importantly, it requires the axioms that correspond
to the question type to be present in the ontology. The question
generator used in this experiment implemented the randomly select
domain and ranges instead of acquiring domain as a element of the
set objectProperty.range by applying the axiom. This caused low
quality question generation in several question types.

Through the analyse of the results from the evaluations, it is
shows that using templates that contains tokens that are classes at a
reasonable level also increase the quality of the questions generated.
Typically, ideal classes to use in the templates as tokens are classes
below the foundational ontology and but higher up in the domain
specific ontology.

However, the downfall of having higher classes in the domain
specific ontology as tokens is that the templates are not able to be
widely use across multiple ontologies. Defining question template
with higher, foundational class token allows the flexibility of to be
used across different ontologies with the trade-off for the quality
of generated questions.

REFERENCES
[1] Vinay K Chaudhri, Peter E Clark, Adam Overholtzer, and Aaron Spaulding.

2014. Question generation from a knowledge base. In International Conference
on Knowledge Engineering and Knowledge Management. Springer, 54–65.

[2] Ulf Hermjakob Michael Junk Chin-Yew Lin Eduard Hovy, Laurie Gerber. 2002.
Question Answering in Webclopedia. (2002).

[3] Maria Keet. 2010. African Wildlife ontology tutorial ontologies. (aug 2010).
Retrieved September 01, 2019 from https://keet.wordpress.com/2010/08/20/
african-wildlife-ontology-tutorial-ontologies/

[4] Maria Keet. 2018. Introduction to ontology enginerring. Vol. 1.

A POTENTIAL EXTENSIONWORK
A.1 Extend Question generation
Since ontology is defined at a high abstract level and focuses on
classes as opposed to instances, many instance level question may
not be answerable by the ontology. However, there is a possibility
that there are instance level question are answerable within the

10

https://keet.wordpress.com/2010/08/20/african-wildlife-ontology-tutorial-ontologies/
https://keet.wordpress.com/2010/08/20/african-wildlife-ontology-tutorial-ontologies/

textbook that the ontology is associated with. Therefore, there is a
possibility to generate well defined and answerable, instance level
questions.

11

Figure 8: Question Taxonomy by information system institute from the University of Southern California [2]

Figure 9: List of equivalent classes across 3 different foundational ontology

12

Figure 10: Graphical interface of the question generator

13

Figure 11: Diagram of group 2 question generation

Figure 12: Diagram of group 4 question generation

Figure 13: Diagram of group 5 question generation

Figure 14: Diagram of group 6 question generation

Figure 15: Diagram of group 8 question generation

14

Figure 16: Class hierarchy of the ontology used to generate
questions for the experiment

Figure 17: Object Property hierarchy of the ontology used to
generate questions for the experiment

Figure 18: Template used to generate the first set of ques-
tions in the ontology

15

Figure 19: Template used to generate the second set of ques-
tions in the ontology

Figure 20: Questions used in evaluation 1

Figure 21: Questions used in evaluation 2

16

	Abstract
	1 Introduction
	2 Related Works
	2.1 Ontology
	2.2 Template Based Question Generation

	3 Design of Question Template
	3.1 Application of Question templates
	3.2 Yes/No Questions
	3.3 True/False Questions
	3.4 Equivalence Questions
	3.5 Subclass Identification Questions
	3.6 Narrative Questions

	4 Question Generator
	4.1 Input standards
	4.2 Question Generation Algorithms

	5 Experiment design and execution
	5.1 Aim
	5.2 Hypothesis
	5.3 Materials
	5.4 Methods

	6 Results and Findings
	7 Conclusion
	References
	A Potential extension work
	A.1 Extend Question generation

