
Lodestar: Ontology-Based Annotation of Textbooks
Kyle Robbertze

RBBKYL001@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Textbooks are starting to use new techniques that digital book
technology can offer. Currently available smart textbook platforms
are limited to a single textbook and ontology pair and do not yet
generalise to the use of any two related textbook and ontology.

This paper presents Lodestar — a smart digital textbook platform
for ontology-backed textbooks. Lodestar provides a web-based text-
book viewer with ontology-annotated term definitions and related
concept listings. These definitions and related concepts are gener-
ated from the provided ontology. Lodestar is suitable for testing
within organisations and, with some improvements, deployment
on production systems.

CCS CONCEPTS
• Information systems → Enterprise applications; Digital li-
braries and archives.

KEYWORDS
smart textbooks, ontologies, knowledge representation, textbook
use, digital textbooks

1 INTRODUCTION
Textbooks are used to convey knowledge. With the progression
of the digital age, textbooks have frequently become digital. How-
ever, these digital textbooks often take the form of a scanned or
typed copy of the physical book and thus, do not take advantage
of new techniques that digital books can bring. These techniques
include text annotation, context-based navigation and automatic
question and answer generation [2]. The inclusion of new digital
techniques in digital textbooks has been shown to improve stu-
dents’ performance in homework tasks by approximately 10% [2].
“Inquire Biology” is the only example of such a knowledge-driven
digital textbook that currently exists. However, it is proprietary
and is very specific to a single edition of a single textbook.

Thus, there is a lack of a generalised smart textbook platform
that can be used to interact with a wide variety of textbooks. A
generalised platform could help bring the academic improvements
observed by Chaudhri et al. (2013) using “Inquire Biology” to other
disciplines and textbooks without needing to re-engineer the com-
bination of textbook and ontology for each textbook. This software
development project aims to develop such a generalised smart text-
book platform. Lodestar is a web-based platform for reading and
managing knowledge-driven textbooks.

The knowledge base used in Lodestar takes the form of an on-
tology, which is a formal representation of concepts and their rela-
tionships [10]. In the context of smart textbooks, the ontology is a
graph with nodes representing concepts and edges representing the
relationships between concepts. A concept can also have properties,

which are attributes specific to that concept. For example, a concept
can have a definition property that contains the definition of the
concept in relation to the ontology domain.

Lodestar uses an ontology to provide text annotation of text-
books. A text annotation is additional information about a word or
phrase in the text that is displayed on-screen to supplement the text
itself. In the case of Lodestar, these text annotations take the form
of pop-up definitions of words and phrases with a list of related
concepts. It achieves a precision of 89% and a recall of 70% when
matching terms in the Data Mining for the Masses textbook [23] to
items in the Data Mining Optimized (DMOP) Ontology [12]. This
is an improvement on the current state of the art. Recall is the ratio
of correct positive predictions to total positive elements, while pre-
cision is the ratio of correct positive predictions to total predictions
made by the system.

Lodestar performs text annotation bymatchingwords and phrases
in a textbook to element names in the ontology. The matching
process progresses through various known generalized matching
patterns. Initially single words are matched (with the assumption
that the element name is singular). Next phrases are matched. If,
after these two matchers, there are still no matches, words in the
text are converted to singular form and the single word matching
occurs again against these singular words. Finally, synonyms for
the element name are generated using WordNet [20], a lexical data-
base for English, and these are matched against the text using the
single word matchers.

This paper is laid out as follows: Section 2 investigates the exist-
ing literature on the subject of smart digital textbooks, Section 3
describes the software design of Lodestar and the development pro-
cess that was followed, while Section 4 describes how that design
was accomplished in the final software project. Section 5 describes
how Lodestar compares to other annotation systems and Section 6
pulls conclusions about Lodestar from these results and contem-
plates additional work that could further improve Lodestar.

2 BACKGROUND
Textbooks have a long history of use by students and educators
alike to cover material and plan lessons [9, 21]. They are considered
an essential learning tool, no matter the manner in which it is used
within the classroom [27]. They have also been shown to contribute
positively to students’ academic performance in developing coun-
tries. This is due to the fact that a textbook can provide a more
comprehensive coverage of the content than a teacher may time to
go through in the classroom [18].

In recent years, universities are increasingly using digital text-
books to offer cost-effective, efficient and accessible resources to
students [28]. Studies have found that South African students read
digital textbooks at the same speed as they read hard-copies, while
maintaining the same comprehension levels as when they were

Kyle Robbertze

Concept
Summary

Concept Concept

Differences
Definition

Key
Facts

Key
Facts

Figure 1: A graphical outline of what a differential concept
summary between two concepts would look like.

using hard-copies [29]. However, Sackstein et al. (2015), hypoth-
esized that reading speed could be influenced by students’ prior
exposure to the medium that they were reading on [29]. Thus, stu-
dents’ reading speed could solely be because they are familiar with
the platform, and the study results could be hiding potential issues,
such as students presenting lower comprehension levels and slower
reading speeds that students unfamiliar with digital textbooks could
encounter while using them.

It has been noted that digital textbooks are easier to update and
distribute via the internet [3, 6]. Frequent updates are required for
subjects such as taxation tables and case-law where new standards
are often being set. This easy updating of digital textbooks also
reduces the number of different editions of textbooks students need
to purchase, minimising the cost incurredwhile studying [8]. Aweb-
based platform is able to provide updates quickly to all its users
as all textbooks and associated data are located in one location
controlled by the maintainer of the platform, thus minimising the
number of editions that students are required to use.

2.1 Digital Smart Textbooks
A digital smart textbook makes use of adaptive e-learning tech-
niques to enhance a textbook and to encourage students to read
the textbook actively. Active reading is the practice of summariz-
ing, questioning, clarifying and predicting when learning a con-
cept. Palinscar and Brown (1984) found that active learning, which
active reading is a part, significantly improved students’ compre-
hension of the content being studied. Students were also able to
generalize these gains to class tests, thus improving their academic
results [24]. Further, Chaudhri, et al. (2013) found that including
adaptive e-learning into a digital textbook, “Inquire Biology”, im-
proved students’ performance in homework tasks by approximately
10% [2]. Adaptive e-learning techniques include concept summaries,
navigation history, asking and answering students’ questions and
in-line definitions of concepts [2].

Concept summaries are generated summaries of a single concept
in the textbook. It includes the definition of the concept, key facts,
and relationships with other concepts. Each linked concept then

has its own concept summary. Concept summaries are independent
of chapters and pull knowledge from different chapters into a single
place, thus helping students to read actively. Active reading occurs
through enabling students to clarify and summarize the content
around a concept. These concept summaries are important as they
clearly summarize the content without requiring the student to
wade through irrelevant information as they would if they were
searching through other resources such as Wikipedia [2]. Figure 1
shows a concept summary displaying a concept with the differences
with a linked concept highlighted.

A potential limitation of a generated concept summary is that
students lose any advantages gained by writing the summary them-
selves, as summarizing a piece of text is the first step of active
reading [24]. While a generated concept summary does not prevent
students from creating a summary of the content themselves, it
may make students less likely to do so.

In-line definitions of concepts reduce students’ cognitive load
when working through the textbook by providing easy access to ba-
sic terminology [2]. Students experience high cognitive load when
learning new concepts [32]. Reducing this load improves concept
acquisition. This is a form of active reading and thus has been
shown to improve academic results [24]. “Inquire Biology” provides
these in-line definitions by underlining the term and providing a
pop-up dialogue containing the definition when the student mouses
over the term. This pop-up is useful as it allows students to skip
over the definition if they already know it, while giving them the
opportunity to test their knowledge of the definitions if they so
choose [2]. Thus, further benefiting the learning process.

2.2 Text Annotation
Ontology-based text annotation is the process of mapping strings
in text to ontology elements based on the provided subject domain
ontology. This is done through detecting metadata and structuring
the data for improved processing later [13]. Annotation is impor-
tant, as this is how the textbook and ontology are combined to
be presented to the user in a smart digital textbook platform: the
ontology provides a semantic interpretation of the textbook [31].

The main link between an ontology and its text is a terminology,
which maps concepts in the ontology to terms in the text. However,
usually there is no simple one-to-one mapping between terms and
concepts. According to Spasic et al. (2005), the probability of two
experts to refer to the same concept with the same term is less than
20%. Another potential ambiguity is when the same term refers to
multiple concepts depending on the context in which it is used [31].

There are several text annotation tools available, including On-
tea [13], Textpresso [22] and GoPubMed [7]. These all focus on
using ontologies to enhance written text and search results. While
Ontea is generic to any piece of text and ontology, Textpresso and
GoPubMed both focus specifically on the biomedical industry.

These tools are not suitable for use in Lodestar for several reasons.
One reason is that Ontea is domain specific in the standard regular
expressions provided [13]. Another reason is that Textpresso and
GoPubMed are both highly specific to the biomedical field and
would require an unjustifiable amount of effort to generalize

Ontea uses regular expressions to match text to concepts in the
linked ontology [13]. Laclavik, et al. (2009) achieved an average

Lodestar: Ontology-Based Annotation of Textbooks

recall of 79% and an average precision of 53% using Ontea, but
required the user to manually create the regular expressions to be
used. Lodestar performed better, with a recall of 70% and a precision
of 89%.

Ontea’s performance was measured on text using an ontology
specifically tailored to it. This would be expected to have a better
precision and recall that using a separately developed ontology
with the same text and annotation tool as the terms in the text and
ontology are the same. Thus, improving the chance of matching
terms correctly.

3 DESIGN
We aim to provide a digital smart textbook platform that enables ed-
ucators and students to interact with textbooks in a context-aware,
smart way. Lodestar allows administrators to upload textbooks
and ontologies so that users can access the smart textbooks once
they are processed. These smart textbooks include in-line defini-
tions of concepts and related concept listing based on the ontology
provided.

After meeting with the University of Cape Town’s (UCT) Centre
for Innovation in Learning and Teaching (CILT), we developed the
following list of core requirements:

• Lodestar should annotate uploaded source files with a preci-
sion and recall which is, at minimum, equivalent to existing
annotation systems such as Ontea [13],
• Administrators should be able to upload textbooks and on-
tologies,
• Users should be able to view textbooks after they are up-
loaded,
• Administrators should be able to added and remove users.

A list of desired additional features was also discussed, while
these were not implemented, they form a reference for what is
still needed before Lodestar can be used properly in a teaching
environment. The list included:

• Integration with existing Learning Management Systems,
• User friendly interface following standard human-computer
interaction principles,
• Track student usage to see which sections are used more
frequently and students’ progress through the textbook,
• Allow the user to highlight text and make comments in the
margin

3.1 System Architecture
We selected a web-based system, as this enables administrators
to update and maintain the textbooks provided easily. It further
allows users to access the textbooks from various locations on a
variety of devices without needing to develop specific applications
for every anticipated platform. This reduces complexity and aids
future maintainability. It also enables easy, cost-effective updating
of textbooks by the administrators.

The platform is broken up into 4 parts: source parser, textbook
annotation, textbook rendering and administration. This pipeline
design ensures modularity and extendibility. Modularity allows the
software to be altered with ease, as there are well-defined bound-
aries between parts and internal changes to one will not affect

another. With this modularity, extending functionality is made pos-
sible by adding additional parts to perform the required duties.
This extensibility helps iterative development and clean testing of
changes. Figure 2 shows this pipeline process graphically.

The source parser module handles the upload of source textbooks
and ontologies by the administrators. This is where supported for-
mats are defined and metadata about the files are gathered. As
administrators will be uploading content which is stored and pro-
cessed on the server, there are security implications that need to
be considered. Some of these are the responsibility of the server
administrator, however some are considered within the software
architecture chosen for Lodestar. Data security and server main-
tenance is the responsibility of the system administrator, while
Lodestar must ensure that uploaded data do not present additional
security risks to the system.

Uploaded textbooks are expected to be uploaded in one of the
supported formats. If the file is not one of these, the upload fails.
This approach reduces attack surface that uploading files provides.
In order to reduce it further, files are converted to plain Hypertext
Markup Language (HTML) files prior to further processing. This
ensures that there is no malicious code that can be executed on the
server. Using HTML as the intermediary file format ensures that
the file is suitable for rendering on-screen even if no annotations
are found.

Textbook annotation is the second step in the pipeline. This
is where text annotations are added, which is done to reduce the
processing power required to handle each client request that is sent
to the renderer. This method increases the size of each textbook on
disk, but the trade-off is that the time required to process requests
is much smaller. The space-time trade-off is justified by the ratio
of expected client requests to source file uploads. Each user will
generate a request for every textbook viewed. Thus, requests are
handled frequently, while the textbook should only be uploaded
irregularly. Thus, processing the textbook each time a user wishes
to view it would increase request handling time, making the site
slow and unresponsive. In Lodestar, the textbook does not change
on each request, rather on each upload of a new source file. This
makes processing and storing the changes more efficient.

Once the textbook is processed, it can be displayed to the users
in the rendering module. This module is responsible for the look
and feel of the website as experienced by end users. The standard
user view is a list of textbooks that they can access. Administrators
have an additional link on the home screen that allows them to
access the administration module.

The administration module is responsible for allowing adminis-
trations to maintain and update textbook and ontology details. This
is also the entry point for adding new source textbooks and ontolo-
gies. Furthermore, the administration module allows administrators
to manage users and user permissions on the website.

In every module, there is a clear distinction between the model,
view and controller logic. In the Model/View/Controller (MVC)
design pattern, the view displays information to the user, while
the model is the internal representation of the data. The controller
processes user input and interaction between the view and the
model [17]. This separation makes maintaining multiple interfaces
or changing the interface easy, without needing to change the inter-
nal representation of data. In iterative development this property

Kyle Robbertze

HTML Parser

PDF Parser

Annotation Render User

User

HTML

PDF

HTML

HTML

HTML

Request

Request

Source Parser

Administration

Request

Figure 2: Lodestar textbook pipeline

is very useful, as it decouples the model, view and controller. This
allows iterations to modify any one of the three easily without
needing to change the others significantly.

3.2 Software Development
We chose to use an iterative development process. This process
initially implements a skeletal sub-project. Additional features and
enhancements are then added in future iterations [1]. Iterative
development was chosen as it allows for flexibility in the implemen-
tation of features and does not need the team which is required in
agile-based software development processes. The flexibility in im-
plementation stems from the iterative nature of the process. After
each implementation phase, the current implementation is anal-
ysed and this dictates on what the next implementation phase will
focus [1].

The development cycle also followed Test Driven Development
(TDD). TDD requires writing automated tests before developing the
features that they test. Thus, initially, the tests are written and fail.
The feature is then implemented and the tests run again. If the fea-
ture is implemented correctly, the tests should then pass [11]. TDD
provides rapid, reproducible feedback on the state of the project.
It also ensures that the test suite covers the entire project at a low
level, thus ensuring external consistency when changes are made.
However, as it tests features at a unit (method or class) level, it
does not test for integration issues when multiple units interact
in any complex way. These situations also need to be tested in an
automated way to reduce the chance of regressions appearing.

Lodestar is licensed under the GNU General Public Licence (GPL)
version 3 with the clause allowing redistribution under a later
version of the licence at the distributor’s discretion. This is an open
source licence that allows users to modify and redistribute the
modifications, provided that they release their modifications under
compatible licensing terms [25]. Open source licensing such as the
GPL ensures that, should the original authors stop developing the
platform, interested stakeholders can continue on without needing
to start from scratch. Users who require specific features for their

environment can also freely make modifications. The source code
is available at https://gitlab.com/paddatrapper/lodestar.

As the software needs to store user data, it must comply with the
South African Protection of Personal Information (POPI) Act. This
outlines that only data that are relevant be collected and that the
user must consent to this data being collected before it can be done.
Furthermore, data must only be used for the purposes that it was
originally intended for and there must be reasonable safeguards to
ensure the data’s safety [5]. In Lodestar, this is done by never stor-
ing sensitive information, such as passwords, in plain-text. Instead,
they are cryptographically encrypted before storing. The permis-
sions structure also ensures that only registered and authorized
users can access personal data. The system administrator can also
ensure compliance by applying encryption between users and the
server running Lodestar, and implementing security measures on
the server to prevent unauthorized access.

4 IMPLEMENTATION
We chose to implement Lodestar in Python using the Django web
framework1. This decision was made as Python is cross-platform
and can be run on Windows, Mac and Linux [30]. This allows
Lodestar to be developed and deployed on any platform, which
ensures flexibility. Django also provides all the logic required to
translate between web requests, responses and Python without us
needing to re-implement it. TDD is supported through a structured
testing framework implemented inside Django that allows tests
to execute functions and construct classes in the same way as the
Django engine does when serving web requests. It further allows
testing of requests and responses at the web level. Thus, it makes
performing integration testing of multiple components simpler.
This improves efficiency and makes writing tests less of a burden.

Lodestar consists of four modules: the source parser, textbook
annotation, rendering and administration. The source parser, text-
book annotation and rendering module form a pipeline, with the

1https://www.djangoproject.com/

https://gitlab.com/paddatrapper/lodestar
https://www.djangoproject.com/

Lodestar: Ontology-Based Annotation of Textbooks

administration module providing user management, authentication
and a permissions structure.

Progression through the processing pipeline is done using signals.
When a source file is uploaded by an administrator and accepted
by the server, it is saved into the database. This emits a signal to
the source upload stage of the pipeline. Once this is complete, it
emits a signal to schedule the textbook processing to occur in the
background. The textbook processing takes place in the background
so that the user does not have to wait for what can be a lengthy
process, depending on the size of the ontology and length of the
textbook. Their upload is accepted immediately, and scheduled for
processing. The user can then continue using Lodestar or close
their browser and the processing will still occur. The textbook will
only be available once the processing is complete.

4.1 Source Upload
The source upload process needs to be tailored specifically for each
supported file format. This is due to the fact that the different for-
mats need to be processed into a common format that can then be
annotated and rendered to users. Efficient processing of uploads
was achieved through a hash table mapping file type to transforma-
tion function. A hash table provides easy extensibility by adding
additional entries for new file formats as they are implemented. In
order to improve maintainability, all source format parsers inherit
from a single base class that is responsible for registering file types
in the hash table and provides common code to reduce duplication.

Lodestar currently only supports two file types: Portable Docu-
ment Format (PDF) and HTML. This limitation is due to a lack of
feasibility with the time available for developing the initial version,
and more formats can be added in the future. The PDF parsing
function converts the source file into an HTML file and performs a
variety of regular expression string replacements on it to remove
illegal characters and ensure that it is formatted correctly for render-
ing. Conversion from PDF to HTML is performed by the pdftotext
application from the Poppler2 project. The HTML parsing function
assumes that the file is valid HTML and ensures that it is copied
into the correct directory with the correct name.

Once the source is uploaded and converted into a format that
the processing pipeline can manipulate, it schedules the textbook
for processing in the background.

Ontologies are uploaded as OWL/XML or RDF/XML files. When
uploading, the administrator can add details about the ontology,
including a list of the properties to use as definitions. A concept
has a definition that can be added to an annotation if the concept
has a value for at least one of these properties. The list of definition
properties is a comma separated list. The last property in the list
with a value found for each object in the ontology is used as the
concept’s definition. Once an ontology is uploaded, textbooks can
be uploaded linking to it. This achieves our requirement of allowing
administrators to upload textbooks and ontologies.

4.2 Textbook Annotation
Once the textbook annotation stage is started, it is responsible for
annotating the HTML file so that the renderer can display in-line
definitions and term relations. It processes the HTML line-by-line,
2https://poppler.freedesktop.org/

finding words or phrases in the text that matches element names
from the ontology and adds the required details as an HTML ele-
ment to the text. The annotated line is then written to an HTML file
that is later displayed to the user. This is explained in Algorithm 1.
The algorithm uses owlready [14] to interact with the ontology.

Algorithm 1 Annotation of a textbook
Require: ontoloдy, sourceFile,htmlFile
1: д← loadOntology()
2: predicates ← ontoloдy.predicates
3: de f initionMap ← getDefinitions(д,predicates)
4: while sourceFile has next line do
5: line ← sourceFile .readLine()
6: for all subject,de f inition in de f initionMap do
7: match,matchTerm ← getMatch(subject, line)
8: if match then
9: line ← line .replace(matchTerm,match)
10: end if
11: end for
12: htmlFile .write(line)
13: end while

Algorithm 1 requires the file path to the source HTML file
(sourceFile). This is the HTML file generated by the source up-
load module from the PDF or HTML file that the administrator
uploaded. htmlFile is the file path that the annotated text will be
written out to. getDefintions on line 3 creates a map of elements in
the ontology to definitions. This is a hash map of element names to
definitions, stored in de f initionMap. If the concept does not have
a definition, it is added, but the definition is blank. A concept has a
definition if it has a definition predicate or property. These are the
list of properties given by the administrator when they uploaded
the ontology. The line test function then uses this filtered map of
classes to definitions to detect terms.

getMatch on line 7 (Algorithm 1) calls the function described in
Algorithm 2, which matches terms in the ontology to words in a
line using a series of matching functions. These match terms, then
single words and finally try variations on words such as plurals
and synonyms using WordNet [20], an online lexical database. The
plural and synonym matchers are described in Algorithms 3 and 4
respectively. This design allows the easy addition of new matchers
by adding them to the list of matchers. getMatch (Algorithm 2)
returns two data: the regular expression generated to match the
term in the line and the HTML element to replace it with. This
HTML element includes sections of the definition and related con-
cepts so that they can be displayed when the textbook is rendered
and is generated by getItem on line 4 (Algorithm 2). The regular
expression is used on line 9 (Algorithm 1) to replace the term with
the new HTML element. This regular expression is generated to
ensure that the term is matched in the correct location in the line.
For example if a previous term contains the current term in the
definition, the regular expression must not match the term in the
definition, rather the one in the original text.

In Algorithm 3, WordNet is used to split the line up into words
(line 1) and then to generate the singular versions of each word

https://poppler.freedesktop.org/

Kyle Robbertze

Algorithm 2Matching a term in a line of text
Require: matchers, term, line,predicates
1: for allmatcher inmatchers do
2: stop, reдex,match ←matcher (term, line)
3: if “stop” in result then
4: item ← formatItem(match,predicates)
5: return reдex, item
6: end if
7: end for
8: return None

(line 2). These singular versions are then matched against the term,
ignoring letter case.

Algorithm 3Matching a plural of a term
Require: term, line
1: lineList ← wordnet .tokenize(line)
2: lineListSinдle ← wordnet .getSingleEach(lineList)
3: for i = 0 to length(lineListSinдle) do
4: if lineListSinдle[i] = term then {Case insensitive match}
5: return “stop”,

“\b” + lineListSinдle + “\b(?![\s\w]*)”,
lineList[i]

6: end if
7: end for
8: return None

WordNet is used again in Algorithm 4 to retrieve a list of syn-
onyms for the term. A limitation of this approach is that WordNet
is unable to determine which part of speech the term is, often re-
sulting in many synonyms with the incorrect part of speech being
returned and subsequently matched. WordNet is also limited in its
breadth around scientific subject, thus often resulting in generic or
incorrect (in context) synonyms being returned [19].

Algorithm 4Matching a synonym of a term
Require: term, line
1: synonyms ← wordnet .synonyms(term)
2: for all synonym in synonyms do
3: if synonym = term then {Case insensitive match}
4: return “stop”,

“\b” + term + “\b(?![\s\w]*)”, synonym
5: end if
6: end for
7: return None

As an example of the matching process, the following HTML
paragraph and an ontology with the elements given in Table 1 can
be combined by running Algorithm 1. The concepts in Table 1 come
from the Data Mining Optimization (DMOP) ontology [12].
<p>
A data set is required to perform analysis of data in order
to make predictions

</p>

This produces the following output (additional formatting added
for readability):

<p>
A

data set

DataSet: in data mining, the term data set is
defined as a set of examples or instances
represented according to a common schema.

type
Data

 is required to perform analysis of

data

Data is the generic term that englobes
different levels of granularity: data can be a
whole dataset (one main table and possibly
other tables), or only a table, or only a
feature (column of a table), or only an
instance (row of a table), or even a single
feature-value pair.

type

non-physical-endurant

 in order to make predictions
</p>

4.3 Textbook Rendering
The processing pipeline produces an annotated HTML file for each
textbook uploaded. The rendering module embeds this into the
website to ensure a consistent look and feel. Consistency is used
to ensure that the user feels comfortable while using the website.
The user is presented with a list of textbooks and when one is
selected, the renderer initially displays just the textbook’s content
on the screen. Terms are underlined and the user can click on them
to access the definitions and related concepts. This information
is presented in a side panel that pops up next to the text on the
same page, which is consistent with other websites, such as GitLab
and Facebook, where extra information is presented to the side of
the main content. It also ensures that users do not have to switch
between screens to view definitions and the textbook, making the
website more user-friendly. By displaying textbooks to the user, we
ensure that our requirement for users being able to view textbooks

Lodestar: Ontology-Based Annotation of Textbooks

Figure 3: The user interface of Lodestar showing the underlined terms and the information pop-up for techniques, which is
shown when the term is clicked on.

Concept Definition Related Elements
DataSet DataSet: in data mining, the

term data set is defined as a
set of examples or instances
represented according to a
common schema.

type: Data

Data Data is the generic term
that englobes different lev-
els of granularity: data can
be a whole dataset (one
main table and possibly
other tables), or only a table,
or only a feature (column of
a table), or only an instance
(row of a table), or even a
single feature-value pair.

type: non-physical-
endurant

Table 1: A list of example concepts in an ontology. The re-
lated elements are elements in the ontology, and are not nec-
essarily listed here.

is met. Figure 3 is what the user sees when viewing a textbook on
Lodestar.

All styling and manipulation of the web-page is done using
standard web technologies, namely CSS, JavaScript, jQuery3 and
HTML [16]. This ensures that the renderer can be maintained easily
in the future as these technologies already drive the majority of
websites [16].

The administration section of the rendering module allows ad-
ministrators to add, delete and modify textbooks and ontologies.
Unnecessary re-processing of textbooks is prevented by only execut-
ing the processing pipeline when the textbook source file changes.
This is done by storing the MD5 message digest hash and compar-
ing this to the MD5 hash of new file uploads. The MD5 hash is a 128
bit hash of a file that is typically unique [26]. While it is not cryp-
tographically secure [34], it is sufficient to minimise unnecessary

3https://jquery.com/

re-processing of textbook source files. MD5 is not cryptographi-
cally secure because two files can occasionally produce the same
MD5 hash even if their contents are different. In Lodestar, this will
only cause the updated textbook not to process the new source, but
this can be started manually by an administrator from the detail
view of a textbook. The advantage of MD5 is that it is fast and
not computationally taxing to compute [26]. Reducing the number
of times a textbook is processed reduces the load on the server
running Lodestar and thus, improves the user experience.

The administration section further enables the administrator to
add and remove users and manage their respective permissions.
This ensures that our user administration requirement is met.

5 EVALUATION
5.1 Materials and Methods
We evaluated Lodestar’s annotation by comparing standard F1,
precision and recall measures [4, 33] between four variations of
Lodestar’s matching algorithm. The four variations were:

Base case — matching words and phrases,
Plurals — the base case and plurals retrieved from WordNet,
Synonyms — the base case and synonyms retrieved from
WordNet, and
All — all three matchers three combined.

Precision is a measure of how many annotated elements are
relevant

p =
|relevant elements ∩ total matched|

|total annotated|
Recall is a measure of how many relevant elements are annotated

r =
|relevant elements ∩ total matched|

|relevant elements|
F1 is the harmonic mean of the precision and recall, giving a mea-
sure of the annotation’s overall accuracy.

F1 =
2

p−1 + r−1

Lodestar’s annotation system was tested with 7 pages selected
at random from the content sections of the “Data Mining for the
Masses” textbook [23]. The content sections are the chapters in

https://jquery.com/

Kyle Robbertze

Base
Page Total Relevant True Positive False Positive Total Matched False Negative Precision % Recall % f1%
15 31 16 5 21 15 76 52 62
65 25 9 4 13 16 69 36 47
66 24 10 2 12 14 83 42 56
81 30 19 0 19 11 100 63 78
107 5 0 3 3 5 0 0 0
227 28 23 0 23 5 100 82 90
239 36 22 1 23 14 96 61 75

Plural
Page Total Relevant True Positive False Positive Total Matched False Negative Precision % Recall % f1%
15 31 27 5 32 4 84 87 86
65 25 9 4 13 16 69 36 47
66 24 11 2 13 13 85 46 59
81 30 28 1 29 2 97 93 95
107 5 2 3 5 3 40 40 40
227 28 24 0 24 4 100 86 92
239 36 25 1 26 11 96 69 81

Synonym
Page Total Relevant True Positive False Positive Total Matched False Negative Precision % Recall % f1%
15 31 27 26 53 4 51 87 64
65 25 7 26 33 18 21 28 24
66 24 7 36 43 17 16 29 21
81 30 27 33 60 3 45 90 60
107 5 1 21 22 4 5 20 7
227 28 22 43 65 6 34 79 47
239 36 23 16 39 13 59 64 61

All
Page Total Relevant True Positive False Positive Total Matched False Negative Precision % Recall % f1%
15 31 28 24 52 3 54 90 67
65 25 7 26 33 18 21 28 24
66 24 8 37 45 16 18 33 23
81 30 26 35 61 4 43 87 57
107 5 1 20 21 4 5 20 8
227 28 22 41 63 6 35 79 48
239 36 23 16 39 13 59 64 61

Table 2: Full results for annotation using Lodestar’s annotation system. Base refers to the base set ofmatchers, matching single
words and phrases. Plural refers to the base set ofmatchers and the plural matcher. Synonym refers to the base set ofmatchers
and the synonym matcher. Finally, All refers to all matchers: base, plural and synonym combined.

the textbook with actual content. This excludes pages such as the
title page and acknowledgements, ensuring that the pages contain
content relevant to the subject matter. This was done by noting the
first page of the first chapter and the last page of the final chapter
and using a random number generator to select 7 pages within
these bounds. The selected pages were 15, 65, 66, 81, 10, 227, 239.
These page numbers are the numbers listed on the pages in the
physical copy, or the bottom of each page in the PDF. The ontology
used was the Data Mining Optimization (DMOP) Ontology [12].

Each of the seven pages was converted into HTML using the
Lodestar PDF parser. They were then run through the four analyz-
ers: base, plural, synonym and all. The total relevant elements in
the text were curated by the researchers. We manually annotated
the pages, selecting terms that are relevant to data mining, such as

data set and annotation. We further selected terms that existed in
the ontology, such as data. After Lodestar annotated the text, we
compared the elements it annotated with the elements we selected
to remove any false negatives in our manual annotation. This was
done to produce the total relevant term counts listed in Table 2.
Lodestar’s annotation was then tallied to produce the results in
Table 2.

5.2 Results and Discussion
Lodestar experimental results using precision, recall and F1 are
given in Figure 4. Table 2 shows the full results.

From the results in Figure 4, the base and plural matcher per-
forms better than purely the base alone, achieving a precision of

Lodestar: Ontology-Based Annotation of Textbooks

Precision Recall F1
0

10
20
30
40
50
60
70
80
90

100

P
er
ce
n
ta
g
e
(%

)

87

55

68

89

70

79

36

64

46

37

64

47

Base

Plural

Synonym

All

Figure 4: The average precision, recall and F1 results over all 7 pages for each of the four cases.

89% and a recall of 70%. These results are encouraging, when con-
sidered in relation to those achieved by other annotation systems
such as Ontea. This is important considering that Ontea’s results
were produced from an ontology generated from the text it was
annotating, while Lodestar used a separately created ontology and
text. Further study into the performance of Lodestar compared to
other annotation systems is needed to determine exactly how it
compares. This is due to the fact that the data set used by Laclavik,
et al. (2009) is no longer available and neither is the source code.
Thus, making it impossible to annotate the pages using Ontea.

The less effective recall performance in Lodestar could be an arte-
fact of the automatic generation of regular expressions for matching.
The automatic nature of the generation reduces Lodestar’s ability
to handle corner cases in the text and ontology. An example is
the class “CorrelationSimilarity” in the DMOP ontology. This does
not match “correlation” in the text as it does not know to match
only half the element name. It would match “correlation similarity”,
however, as it is not capable of breaking the element name up and
matching it against a multi-word term in the text. It is likely that
comparing only part of the element name would result in a high
number of false positives, reducing the precision.

Some false positives include words like “project” and “course”,
which the ontology uses as nouns, while in the text they are used
as verbs (project) or colloquially (course). Further, while still the
same part of speech, some matches are used in different ways in the
text and ontology. For example, the word “series” in the text: “This
is the participant’s performance on a series of responsiveness tests.”
(page 107 of Data Mining for the Masses). The DMOP ontology uses
the word “Series” in the statistical sense, to mean a list of numbers,
while the textbook means a list of tests.

The synonym matcher reduces the accuracy of the base-case
matches by 21%. This could be due to synonyms not taking into
account what part of speech the term is or synonyms being too
generalised or common to be of use. This can be seen by comparing
the precision of the base-case and that of the synonym matcher.
There are numerous false positive matches found by using syn-
onyms, such as “perform” and “very”. This is further confirmed in
the synonym matcher results in Table 2, where the high number
of false positives on each page are recorded. The increase in recall
shows that there is a benefit to matching synonyms if the false

positives can be identified and removed, as it does match more
of the positive elements. This could be achieved by integrating a
part of speech tagger into the synonym matcher, but due to time
limitations, this is yet to be implemented in Lodestar.

There was also some synonyms that were missed, such as “at-
tribute”, used in the textbook, as a synonym of “feature” in the
ontology. This missed synonym was due to WordNet not including
“attribute” as a synonym for “feature”, which could be a limitation
of WordNet’s breadth around scientific subjects [19].

Matching plurals improves the annotation for both precision and
recall. This is expected, as plurals do not suffer the same generalisa-
tion issue that synonyms do. Plurals continue to use the same base
word as the singular version, thus ensuring that common words
are not also matched.

6 CONCLUSIONS
We developed a digital smart textbook platform, Lodestar, to an-
notate source textbooks using an ontology and render it to users.
We have evaluated Lodestar’s annotation system, which has shown
promising results. While the synonym matcher reduced Lodestar’s
annotation ability, the best results were achieved with the base and
plural matchers combined.

While Lodestar currently presents as a solid foundation, with
better annotation and generalized textbook support, there are more
features that require implementing if Lodestar is going to be used
more effectively in schools and universities. For example, adding
study notation features such as highlighting and margin notes [15].
These combined with smart features such as question and answer
generation, as seen in “Inquire Biology” [2], would make Lodestar
much more useful in educational institutions.

REFERENCES
[1] Victor R Basil and Albert J Turner. 1975. Iterative enhancement: A practical

technique for software development. IEEE transactions on software engineering
SE-1, 4 (1975), 390–396.

[2] Vinay K Chaudhri, Britte Cheng, Adam Overtholtzer, Jeremy Roschelle, Aaron
Spaulding, Peter Clark, Mark Greaves, and Dave Gunning. 2013. Inquire Biology:
A textbook that answers questions. AI Magazine 34, 3 (2013), 55–72.

[3] Gobinda Chowdhury. 2012. How digital information services can reduce green-
house gas emissions. Online Information Review 36, 4 (2012), 489–506.

[4] Cyril W Cleverdon, Jack Mills, and E Michael Keen. 1966. Factors determining
the performance of indexing systems,(Volume 1: Design). Cranfield: College of

Kyle Robbertze

Aeronautics (1966), 28.
[5] Michelle De Bruyn. 2014. The protection of personal information (POPI) act:

impact on South Africa. International Business & Economics Research Journal 13,
6 (2014), 1315–1340.

[6] Nomusa Dlodlo and JP Tolmay. 2012. An architecture for eBook provision to
South African schools. In 14th Annual Conference onWorldWideWeb Applications,
Durban, 7-9 November 2012. ZA-WWW, 4–15.

[7] Andreas Doms and Michael Schroeder. 2005. GoPubMed: exploring PubMed with
the gene ontology. Nucleic acids research 33, suppl_2 (2005), W783–W786.

[8] Giselle Du Plessis and MelanieWiese. 2014. The battle of the e-textbook: libraries’
role in facilitating student acceptance and use of e-textbooks. South African
Journal of Libraries and Information Science 80, 2 (2014), 17–26.

[9] Bruce Fuller, Donald BHolsinger, David Baker, Rosemary Bellew, Richard Bennett,
Prema Clarke, Brunhilda Forlemu, Ben H Fred-Mensah, Rosalind Michahelles,
Pablo Stansbery, et al. 1993. Secondary education in developing countries. Education
and Social Policy Department, World Bank.

[10] Thomas R Gruber. 1993. A translation approach to portable ontology specifica-
tions. Knowledge acquisition 5, 2 (1993), 199–220.

[11] David Janzen and Hossein Saiedian. 2005. Test-driven development concepts,
taxonomy, and future direction. Computer 38, 9 (2005), 43–50.

[12] C Maria Keet, Agnieszka Ławrynowicz, Claudia d’Amato, Alexandros Kalousis,
Phong Nguyen, Raul Palma, Robert Stevens, and Melanie Hilario. 2015. The data
mining optimization ontology. Journal of web semantics 32 (2015), 43–53.

[13] Michal Laclavik, Martin Šeleng, Marek Ciglan, and Ladislav Hluchy. 2009. Ontea:
Platform for pattern based automated semantic annotation. Computing and
informatics 28, 4 (2009), 555–579.

[14] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in Python
with automatic classification and high level constructs for biomedical ontologies.
Artificial intelligence in medicine 80 (2017), 11–28.

[15] Monica Landoni and Forbes Gibb. 2000. The role of visual rhetoric in the design
and production of electronic books: the visual book. The electronic library 18, 3
(2000), 190–201.

[16] Tobias Lauinger, Abdelberi Chaabane, Sad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. In Proceedings of the 24th Annual
Network and Distributed System Security Symposium. Internet Society.

[17] Avraham Leff and James T Rayfield. 2001. Web-application development using the
model/view/controller design pattern. In Proceedings of the 5th IEEE International
Enterprise Distributed Object Computing Conference. IEEE, 118–127.

[18] Marlaine E Lockheed, Stephen C Vail, and Bruce Fuller. 1986. How textbooks
affect achievement in developing countries: Evidence from Thailand. Educational
Evaluation and Policy Analysis 8, 4 (1986), 379–392.

[19] Bernardo Magnini, Carlo Strapparava, Giovanni Pezzulo, and Alfio Gliozzo. 2002.
Comparing ontology-based and corpus-based domain annotations in wordnet.
In Proceedings of the First International WordNet Conference. 21–25.

[20] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[21] Jeanne Moulton. 1994. How do teachers use textbooks and other print materials:
A review of the literature. The Improving Educational Quality Project, South Africa
(1994).

[22] H-M Müller, Kimberly M Van Auken, Yuling Li, and Paul W Sternberg. 2018.
Textpresso Central: a customizable platform for searching, text mining, viewing,
and curating biomedical literature. BMC bioinformatics 19, 1 (2018), 94.

[23] Matthew North. 2012. Data mining for the masses. Global Text Project Athens.
[24] Aannemarie Sullivan Palinscar and Ann L Brown. 1984. Reciprocal teaching of

comprehension-fostering and comprehension-monitoring activities. Cognition
and instruction 1, 2 (1984), 117–175.

[25] Hilary E Pearson. 2000. Open source licences: Open source—the death of propri-
etary systems? Computer Law & Security Review 16, 3 (2000), 151–156.

[26] Ronald Rivest. 1992. The MD5 message-digest algorithm. (1992). Issue RFC1321.
[27] Amanda J Rockinson-Szapkiw, Jennifer Courduff, Kimberly Carter, and David

Bennett. 2013. Electronic versus traditional print textbooks: A comparison study
on the influence of university students’ learning. Computers & Education 63
(2013), 259–266.

[28] Bella Ross, Ekaterina Pechenkina, Carol Aeschliman, and Anne-Marie Chase.
2017. Print versus digital texts: understanding the experimental research and
challenging the dichotomies. Research in Learning Technology 25 (2017), 1976–
1981.

[29] Suzanne Sackstein, Linda Spark, and Amy Jenkins. 2015. Are e-books effective
tools for learning? Reading speed and comprehension: iPad® i vs. paper. South
African Journal of Education 35, 4 (2015).

[30] Michel F Sanner et al. 1999. Python: a programming language for software
integration and development. J Mol Graph Model 17, 1 (1999), 57–61.

[31] Irena Spasic, Sophia Ananiadou, John McNaught, and Anand Kumar. 2005. Text
mining and ontologies in biomedicine: making sense of raw text. Briefings in
bioinformatics 6, 3 (2005), 239–251.

[32] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[33] Cornelis J Van Rijsbergen. 1979. Information Retrieval. 2nd. Newton, MA.
[34] XiaoyunWang andHongbo Yu. 2005. How to breakMD5 and other hash functions.

In Annual international conference on the theory and applications of cryptographic
techniques. International Association for Cryptologic Research, 19–35.

	Abstract
	1 Introduction
	2 Background
	2.1 Digital Smart Textbooks
	2.2 Text Annotation

	3 Design
	3.1 System Architecture
	3.2 Software Development

	4 Implementation
	4.1 Source Upload
	4.2 Textbook Annotation
	4.3 Textbook Rendering

	5 Evaluation
	5.1 Materials and Methods
	5.2 Results and Discussion

	6 Conclusions
	References

